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ABSTRACT
Background. Cardiac magnetic resonance image (MRI) has been widely used in
diagnosis of cardiovascular diseases because of its noninvasive nature and high image
quality. The evaluation standard of physiological indexes in cardiac diagnosis is
essentially the accuracy of segmentation of left ventricle (LV) and right ventricle (RV) in
cardiac MRI. The traditional symmetric single codec network structure such as U-Net
tends to expand the number of channels to make up for lost information that results
in the network looking cumbersome.
Methods. Instead of a single codec, we propose amultiple codecs structure based on the
FC-DenseNet (FCD) model and capsule convolution-capsule deconvolution, named
Nested Capsule Dense Network (NCDN). NCDN uses multiple codecs to achieve multi-
resolution, which makes it possible to save more spatial information and improve the
robustness of the model.
Results. The proposedmodel is tested on three datasets that include the YorkUniversity
Cardiac MRI dataset, Automated Cardiac Diagnosis Challenge (ACDC-2017), and the
local dataset. The results show that the proposed NCDNoutperformsmostmethods. In
particular, we achieved nearly the most advanced accuracy performance in the ACDC-
2017 segmentation challenge. This means that our method is a reliable segmentation
method, which is conducive to the application of deep learning-based segmentation
methods in the field of medical image segmentation.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Neural Networks
Keywords Cardiac diagnosis, Nested Capsule Dense Network, Multiple codecs

INTRODUCTION
Heart disease causes one-third of all deaths worldwide. The statistics of the World Health
Organization in 2016 proved that cardiovascular disease accounted for 31% of the world’s
total deaths (Mozaffarian et al., 2015). It is predicted that by the year 2030, a population
of 23.3 million will be killed by cardiovascular diseases (CVDs) all over the world (World
Health Organization, 2010;Mathers & Loncar, 2006). With the wide application of modern
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medical technology, i.e., magnetic resonance imaging (MRI), making a noninvasive
qualitative and quantitative evaluation of cardiac anatomical structure and function has
become increasingly convenient. At the same time, researchers have invested a lot of effort
in the research of cardiovascular diseases to find out effective methods to reduce morbidity
and mortality in recent years.

The regressionmethod such as direct and simultaneous four-chamber volume estimation
by the multioutput sparse latent regression (MSLR) (Zhen et al., 2015), use DAISY
feature to train the regression model (Du et al., 2018) and Contour-Guided Regression
Models (Wang et al., 2019), has been employed to predict the ventricular functional indices,
while the most popular way to estimate the functional indices is based on segmentation,
i.e., segmentation of the ventricles first and then calculating the indices. The calculation
of related indicators relies on the manual and accurate depiction of the endocardial
and epicardial contours of the left ventricle (LV) and right ventricle (RV) (Tran, 2016).
The continuous optimization of models and segmentation methods has made great
contributions to the improvement of accuracy (Wu, Wang & Jia, 2013; Zhang et al., 2020).
Manual rendering is a time-consuming and tedious task and is prone to high variability
within and between observers (Petitjean & Dacher, 2013; Miller et al., 2013; Tavakoli &
Amini, 2013; Suinesiaputra et al., 2014). Therefore, it would be very helpful to find a fast,
high accuracy, reusable, automatic segmentation.

Before the rise of deep learning, some methods, such as threshold-based
segmentation (Sadeghian et al., 2009; Bazin & Pham, 2008), edge detection-based
segmentation (Belaid & Mourou, 2009; Bellon & Silva, 2002), and genetic algorithm-
based segmentation (Ramos & Muge, 2004) cannot compare with deep learning-based
segmentation methods in effect.

Although deep learning-based cardiac MRI segmentation has made great progress in the
past decades, there are still many problems to be solved. So far, a model has not been found
that is generally applicable to cardiac MRI segmentation tasks in various scenarios. The
existing heart datasets have the problems of a small amount of data and insufficient data
distribution so that the trained model does not respond well to the real-world situation,
resulting in insufficient generalization ability. It has become the goal of many researchers
to construct a model with fast learning speed and strong generalization ability on a limited
data set.

In this article, we firstly propose a nested neural network architecture named Nested
Capsule Dense Network (NCDN), which combines the FC-DenseNet model (Jégou et
al., 2016) and capsule convolution-capsule deconvolution (Lalonde & Bagci, 2018). The
Capsule Dense Block (CDB) is an important component module, which consists of a
dense connection of multiple Capsule Convolution Units (CCU). Each CCU contains two
capsule convolution layers and a capsule deconvolution layer. Because the introduction
of the capsule model eliminates the traditional pooling layer for image size scaling and
can retain more information for further semantic confirmation, the convolution capsule-
deconvolution capsule is used to replace the convolution-deconvolution to implement
CCU (Sabour, Frosst & Hinton, 2017). The correctness of this choice was also proved by
subsequent experiments. The nested capsule dense architecture intuitively decomposes a
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single codec structure into multiple sub-codec structures and uses the dense structure to
better integrate feature information. Each step of feature extraction and reconstruction in
CDB is accompanied by the abstraction and materialization of features by the network.
Through multiple encoding and decoding, the image noise contained in the feature map
is filtered out layer by layer, so that the network can learn more general features, such as
contour features. On this basis, we can improve the generalization ability of the network.
This nested network structure is our attempt to improve the FC-DenseNet model, which
must be a trade-off between the accuracy of local marking and the determination of
semantics. Furthermore, we replace the ‘‘concat’’ operation in the FC-DenseNet model
with an ‘‘add’’ operation to reduce the parameters of the model. The verification effect on
the test sets proves that our NCDN has better performance and stronger robustness than
other models. There are four main contributions to our work, which can be summarized
as follows:
(1) We firstly propose a nested capsule dense network called NCDN to decompose a single

codec into multiple codecs. This structure allows more posture and other information
to be retained and the noise in the sample is easier to filter in the early stage of feature
learning.

(2) The Capsule Dense Block made of Capsule Convolution Units (CCU) designed by
us eliminates the traditional pooling layer for image size scaling and can retain more
information for further semantic confirmation.

(3) We design a new connection structure, which greatly reduces the model parameters.
(4) The proposed NCDNmodel is used to complete the segmentation task of cardiac MRI.

The bi-ventricular segmentation and cardiac function diagnosis tasks in the ACDC
2017 dataset have shown good results.

RELATED WORK
In the past few years, the segmentation of bi-ventricle MR images has received considerable
attention. Many scholars have proposed various methods to obtain better accuracy and
make the model have stronger generalization ability. The main model types can be
summarized as Fully Convolutional Neural Networks (FCNs), Recurrent Neural Networks
(RNNs), and Generative Adversarial Networks (GAN) (Chen et al., 2019).

By replacing the fully connected layer in the classification network with a convolutional
layer, FCN (Long, Shelhamer & Darrell, 2015) predicts the category of each pixel in a dense
prediction manner, which is successfully applied to the field of image segmentation and
has become the mainstream method of current ventricular segmentation. Tran (2016)
demonstrated the effectiveness of a fully convolutional neural network architecture
for semantic segmentation of cardiac MRI and the utility of FCN to segment complex
features of the left and right ventricles. Moreover, in order to reduce the class imbalance
problem in ventricle segmentation and reduce the computational cost, Abdeltawab et al.
(2020) used two FCNs (Long, Shelhamer & Darrell, 2015) to complete the selection of
the region of the interest (ROI) and segmentation of instances. Different from ordinary
FCN, Ronneberger, Fischer & Brox (2015) proposed a multi-scale U-shaped network based
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on channel connections to refine the segmentation results. In order to avoid the loss
of information caused by the maximum pooling layer in U-Net, Shen et al. (2020)
use a purely dilated convolution operation to increase the receptive field to accelerate
model convergence and improve model performance. Sun et al. (2020) believe that shape
information is more meaningful than image texture information and thus add a secondary
stream that processes shape features of the image in parallel with the U-Net to help cardiac
ventricular segmentation. Taking advantage of the implicit deep supervision and feature
reuse of the dense connection mechanism, Jégou et al. (2016) extended DenseNet (Huang
et al., 2016) to FC-DenseNet for semantic segmentation problems. Similarly, Penso et al.
(2021) proposed a dense block-based skip connection structure to reduce the semantic gap
of skip connections in ventricular segmentation.

Unlike natural images, many medical images are 3D time series made up of 2D images,
such as CT and MRI. 3D UNet (Özgün et al., 2016) and 3D VNet (Milletari, Navab &
Ahmadi, 2016) extend the 2D segmentation network to the 3D segmentation network,
making better use of the temporal and spatial information present in cardiac data to achieve
accurate segmentation.However, recurrent neural networks, especially LSTM(Hochreiter &
Schmidhuber, 1996) and GRU (Cho et al., 2014) have more advantages than convolutional
neural networks for processing time-series tasks. One of the use cases is Poudel, Lamata &
Montana (2017) combined RNN and 2D FCN to exploit the observed spatial dependencies
in adjacent slices, improve themodel’s ability to identify the border regions of the heart, and
solve the segmentation problem of multi-slice MRI images in a straightforward manner.
GAN network is a competitively aware network structure, which is generally composed of
generators and discriminators. In the process of model training, the generator generates
images that attempt to deceive the discriminator, and the discriminator aims to identify
real images in fake images. In the application of heart image segmentation, the role of the
segmentation network is to generate segmentation results, and the discriminator is used
to judge the difference between segmentation results and ground truth. Qi et al. (2019)
adopted an adversarial training approach, where the generator and discriminator optimized
the network by competing with each other, which alleviated the class imbalance of the heart,
eliminated interference from other organs and tissues, and improved the segmentation
accuracy of general ‘‘difficult’’ slices. In this way, a more accurate segmentation map will
be generated.

Sabour, Frosst & Hinton (2017) proposed a capsule network (CapNet) with dynamic
routing to use the reconstruction of output capsule instead of maximum pooling. The
vector output of CapNet is better than the scalar output of Convolutional Neural Networks
(CNN) to discover and save the position and posture information of objects in the image
(such as spatial angle magnitude order, etc.). However, although CapNet has obtained
good results in digital recognition and small image recognition, it has the problem of
large parameters when performing large-scale image segmentation tasks or deep network
construction, while images in the medical field are mostly large-size images. Therefore, the
original CapNet is not suitable for image segmentation tasks in the medical field. Lalonde
& Bagci (2018)modified the capsule network and applied it to the image segmentation task
for the first time. They improved the dynamic routing algorithm to reduce the parameters.
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The dynamic routing in the traditional capsule network is equivalent to the full connection
mapping between capsules, which makes the number of parameters huge. The author
uses window control and the same type of capsule sharing weight method to reduce the
parameters. In addition to changing the dynamic routing algorithm to increase the size of
the accepted input picture, a novel capsule convolution-capsule deconvolution network
architecture called SegCaps is proposed to perform image segmentation tasks. Based
on work (Lalonde & Bagci, 2018), Cao et al. (2021) proposed to extract low-level image
features such as grayscale and texture of the left ventricle of the heart, as well as semantic
features such as location and size for ventricular segmentation.

Inspired by the FC-DenseNet model (Lalonde & Bagci, 2018) and the SegCaps
model (Lalonde & Bagci, 2018), our model was proposed for the semantic segmentation
task of cardiac MRI.

MATERIALS & METHODS
Network structure
We will introduce our network in detail. As shown in Fig. 1, based on FC-DenseNet,

(1) We replace the dense block with Capsule Dense Block (CDB) proposed by us, this
block will be explained in detail in ‘Capsule Convolution Unit’.

(2) We design a new connection structure: Define yk as the kth layer. When yk−1 is
Transition Down (TD), yk is CDB, and yk+1 is

yk+1= yk−1+yk (1)

where ‘‘+’’ means that the feature maps produced in layers k−1, k are added in the last
dimension. This means that the shape of the k−1th and kth layers must be consistent.

By fusing the output feature map of the CDB and the input feature map again, the
relationship between layers can be closer, and the whole semantics cannot be directly
connected in the process of capturing, to reduce the omission of image information. The
other parts are similar to the idea of FC-DenseNet. Convolution is used to extract feature
images, TD reduces the image size to increase the perception range, and Transition Up
(TU) performs image reconstruction and precise positioning.

The detailed structure is shown in Table 1. We increase its channel number to 32 in the
first convolution operation and do not change it in the subsequent process until it is finally
transformed into the target number of channels through three convolutions. The purpose
of our design is to avoid excessive parameters. The method we adopted is that the input
and output of the CDB are the same in shape. If only ‘‘concat’’ is used instead of ‘‘add’’,
the parameter increases from 5.5M to 330.8M, which is due to the dense feature of nested
structure.

Capsule convolution unit
The CCU is a constituent element of the CDB. By using the capsule convolution and
capsule deconvolution structure proposed by Lalonde & Bagci (2018) to achieve the nested
encoding-decoding structure in the CDB. The structure of a single CCU is as shown in
Fig. 2 shown.
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Figure 1 The illustration shows the NCDN architecture used for ACDC segmentation tasks, the out-
put image consists of four feature maps that represent background, RV, MYO, and LV, respectively.
The data shown in the figure comes from the ACDC dataset.

Full-size DOI: 10.7717/peerjcs.1146/fig-1
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Table 1 The architecture of the Nested Capsule Dense Network. Conv layer in the table represents the
BN-ReLU-Conv sequence.

Layers NCDN Ouput size

Input size 128× 128× 1 –
Convolution 3× 3 Conv, stride 2 128× 128× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 128× 128× 32
Add Convolution+ Capsule Dense Block 128× 128× 32
Transition Down BN-ReLU-2× 2 max pool, stride 2 64× 64× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 64× 64× 32
Add Convolution+ Capsule Dense Block 64× 64× 32
Transition Down BN-ReLU-2× 2 max pool, stride 2 32× 32× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 32× 32× 32
Add Convolution+ Capsule Dense Block 32× 32× 32
Transition Down BN-ReLU-2× 2 max pool, stride 2 16× 16× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 16× 16× 32
Transition Up 3× 3 deconv, stride 2 32× 32× 32
Add Deconvolution+ Capsule Dense Block 32× 32× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 32× 32× 32
Transition Up 3× 3 deconv, stride 2 64× 64× 32
Add Deconvolution+ Capsule Dense Block 64× 64× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 64× 64× 32
Transition Up 3× 3 deconv, stride 2 128× 128× 32
Add Deconvolution+ Capsule Dense Block 128× 128× 32
Capsule Dense Block [BN-ReLU-CCU-Dropout]× 3 128× 128× 32
Convolution 3× 3 Conv, stride 2 128× 128× 16
Convolution 3× 3 Conv, stride 2 128× 128× 8
Convolution 3× 3 Conv, stride 2 128× 128× 4

The specific details are: let the input length, width, number of capsules, and number
of channels be Kh, Kw , Kcap, Kc . The input [ Kh, Kw , Kcap, Kc] first passes through 3 ×
3 capsule convolution with routing number 1, which becomes [ Kh/2, Kw/2, Kcap×2,
Kc]. After passing 3 × 3 capsule convolution with routing number 3, it becomes [ Kh/2,
KW /2, Kcap, Kc]. Finally, the shape of the output is [ Kh, Kw , Kcap, Kc] after 3 × 3 capsule
deconvolution with routing number 3.

Capsule dense block
Capsule Dense Block (CDB) in Fig. 3 consists of a dense capsule connection layer at the
front and a regression layer at the rear. The dense capsule connection layer is composed
of three Capsule Convolution Units (CCU) densely connected. The regression layer is a
convolutional layer and its purpose is to convolve the feature map (Fd,4) formed by the
dense connection into the shape of the CDB input (Fd,1).

Dense connection: in CDB, dense connection is realized by passing the state of the
previous layer to the subsequent layers. Let Fd,1 and Fd,5 be the input and output of the
d-th CDB respectively. The output of d-th CDB can be formulated as

Fd,5= σ (wd,5[Fd,1,Fd,2,Fd,3,Fd,4]) (2)

Zhang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1146 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1146


Figure 2 The architecture of our proposed Capsule Convolution Unit (CCU). The input dimensions in
the figure are length, width, number of capsules, and number of channels, respectively.

Full-size DOI: 10.7717/peerjcs.1146/fig-2

Figure 3 Capsule dense block (CDB) architecture.Our CDB includes a dense capsule connection layer
at the front and a regression layer at the rear. The dense capsule connection layer is composed of three
Capsule Convolution Units (CCU) densely connected.

Full-size DOI: 10.7717/peerjcs.1146/fig-3

where σ denotes the ReLU (Glorot, Bordes & Bengio, 2011) activation function. wd,5 is the
weights of the Fd,5, where the bias term is omitted for simplicity. [ Fd,1, Fd,2, Fd,3, Fd,4]
refers to the concatenation of the feature maps produced by Fd,1, Fd,2, Fd,3, Fd,4. The CDB
of the former layer and the output of each layer are directly connected with the latter layer,
which not only retains the feedforward nature but also extracts the local dense feature.
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RESULTS
DataSet
In our previous work, a total of three datasets have been used to evaluate our proposed
NCDN model. They are the York University Cardiac MRI dataset, the Automated Cardiac
Diagnosis Challenge, and the local dataset.

The York University Cardiac MRI dataset (York)
York consists of short-axis cardiac MR image sequences of 33 subjects, a total of 7980 2D
images, provided by theDepartment ofDiagnostic Imaging of theHospital for SickChildren
in Toronto, Canada (Andreopoulos & Tsotsos, 2008). Most data are a variety of cardiac
abnormalities, such as cardiomyopathy, aortic regurgitation, ventricular enlargement,
ischemia, etc., and a few data are abnormalities related to the left ventricle. Because some
of the markers in the dataset are missing or incomplete, the problematic images were
removed from the dataset. The original 256 × 256 pixel images were clipped to form 3020
images with a scale of 80 × 80 pixels that only retained the left ventricle endocardium and
epicardium.

The Automated Cardiac Diagnosis Challenge (ACDC)
The ACDC dataset was created based on real clinical examination results obtained by the
University Hospital of Dijon (France) (Bernard et al., 2018). This dataset is the first and
largest fully annotated public MRI cardiac data in the medical imaging community setting.
The data consisted of short-axis section sequences of cardiac magnetic resonance images
from 150 patients, divided into five subgroups, 30 normal subjects (NOR), 30 patients with
previous myocardial infarction (MINF), 30 patients with dilated cardiomyopathy (DCM),
30 patients with hypertrophic cardiomyopathy (HCM), and 30 patients with abnormal
right ventricle (RV). The spatial resolution was from 1.37 to 1.68 mm2/pixel. We obtained
1902 images of 100 subjects from the training set of this dataset. Each slice was center
cropped to a resolution of 128px by 128px.

Local dataset
This dataset has been employed in full left ventricle quantification (Xue et al., 2017a), and
direct multitype cardiac indices estimation (Xue et al., 2017b). It consists of 2,900 images
of 145 cases from three hospitals belonging to two medical centers (London Healthcare
and St. Joseph’s Healthcare). Most patients had a variety of pathological manifestations,
including regional wall motion abnormalities, myocardial hypertrophy, mildly enlarged
LV, atrial septal defect, LV dysfunction, etc.

Metrics
Let A and M be the corresponding areas enclosed by the predicted (automated) contours
a and ground truth (manual) contours m, respectively. The following is our introduction
to the main evaluation indicators.
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Figure 4 Dice index (A) and Hausdorff distance (B).
Full-size DOI: 10.7717/peerjcs.1146/fig-4

Dice index
The Dice index (DI) (Dice, 1945) is a measure of overlap or similarity between two contour
areas and is defined as (3) and Fig. 4A:

D(A,M )= 2∗
A∩M
A+M

. (3)

The Dice index varies from zero (total mismatch) to unity (perfect match).

Hausdorff distance
Hausdorff distance (HD) (Huttenlocher, Klanderman & Rucklidge, 1993) is another
evaluation metric, as shown in Fig. 4B. d (p,m) means a point (p) on a to its nearest
point (p′) of m and the converse is d (p′, a), as followed:

d(p,m)=min||p−p′|| (4)

then, find the maximum values of d (p,m) and d (p′, a) for all the points. HD is the
maximum of the two values and always during [ 0,∞]. HD increases, its performance
degrades.

HD(m,a)=max(maxd(p,m),maxd(p′,a)). (5)

Training implementation
In the experiment, the deep learning framework is Tensorflow, the GPU is NVidia GTX
1080Ti, the optimizer is Adam, the loss function is cross-entropy loss, the learning rate is
set to 10−4, the batch size is set to 1, and the training is about 30 epochs. Data expansion
is applied to image expansion. For each dataset, we first divide the training set, validation
set, and testing set. The division ratios are 0.7, 0.1, and 0.2. After that, the divided training
set is expanded fourfold by rotating 90◦, 180◦, 270◦.
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Table 2 To evaluate the effects of different segmentation techniques, the test results after training on
the York data set are presented in the form of average (std.).

York

Dice index HD (mm)

LV MYO LV MYO

U-Net 0.90 (0.03) 0.95 (0.03) 9.42 (3.7) 8.32 (3.87)
FC-DenseNet 0.91 (0.03) 0.95 (0.03) 9.15 (3.6) 8.10 (3.83)
NCDN 0.92 (0.03) 0.95 (0.02) 9.07 (3.49) 8.05 (3.62)

Notes.
Optimal values are indicated in bold.

Table 3 To evaluate the generalization ability of different segmentation techniques, use the Local data
set to test after training on the York dataset, and the results are presented in the form of average (std.).

Local

Dice index HD (mm)

LV MYO LV MYO

U-Net 0.69 (0.09) 0.85 (0.07) 22.51 (6.58) 21.55 (8.41)
FC-DenseNet 0.74 (0.07) 0.89 (0.06) 18.93 (6.87) 16.74 (5.88)
NCDN 0.78 (0.09) 0.89 (0.06) 14.94 (6.32) 17.13 (6.84)

Notes.
Optimal values are indicated in bold.

Generalization results
In this section, We show the results of the generalization ability of the segmentation model
we designed. Table 2 is the test result of the three models trained on the York dataset.
Table 3 is the result of training on the York dataset and testing on the Local dataset.
Compared with the other two models, our model performed well in ordinary segmentation
effect evaluation, which its Accuracy, Dice index, and Hausdorff distance all show the best
results among the two contrasted models, as shown in Table 2. And as shown in Table 3,
our model has better generalization ability than UNet, outperforms the FC-DenseNet on
Segmentation of the LV and is on par with the FC-DenseNet on segmentation of the MYO.
The model trained on the York dataset is used for testing on the Local dataset. Training
with the York data set and then testing with the local data set results in worse segmentation
than training and testing with the York data set. However, the NCDN we proposed still
has better resistance to image changes and better performance than the other two models
on DI, and HD.

Ablation experiments
To verify the performance of the NCDN model, the following models were used for
comparison: (1) The origin U-net model (Ronneberger, Fischer & Brox, 2015), (2) the
FC-DenseNet introduced in Jégou et al. (2016), (3) Nested Convolution Dense Network
(NConvDN) replaces capsule convolution-capsule deconvolution of NCD-N with
convolution-deconvolution. We used the ACDC dataset (Bernard et al., 2018) to train
and test these models and separately count the segmentation effects of subjects with
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Table 4 Average DI and HD (std.) on RV in the four models.

Dice index HD (mm)

ED ES ED ES

U-Net 0.92 (0.09) 0.86 (0.11) 14.09 (11.63) 20.66 (19.64)
FC-DenseNet 0.92 (0.09) 0.87 (0.12) 14.40 (13.25) 17.73 (17.14)
NConvDN 0.92 (0.10) 0.87 (0.11) 14.80 (16.55) 24.63 (34.73)
NCDN 0.93 (0.07) 0.88 (0.10) 13.94 (12.23) 16.57 (14.95)

Notes.
Optimal values are indicated in bold.

Table 5 Average DI and HD (std.) onMYO in the four models.

Dice index HD (mm)

ED ES ED ES

U-Net 0.87 (0.08) 0.89 (0.07) 11.90 (10.43) 12.32 (12.08)
FC-DenseNet 0.88 (0.06) 0.89 (0.07) 8.86 (4.03) 10.29 (7.11)
NConvDN 0.88 (0.07) 0.89 (0.07) 9.39 (6.85) 11.71 (10.55)
NCDN 0.89 (0.07) 0.90 (0.06) 8.91 (5.29) 10.47 (6.27)

Notes.
Optimal values are indicated in bold.

Table 6 Average DI and HD (std.) on LV in the four models.

Dice index HD (mm)

ED ES ED ES

U-Net 0.95 (0.06) 0.91 (0.09) 9.33 (8.15) 9.50 (7.37)
FC-DenseNet 0.95 (0.05) 0.91 (0.07) 7.73 (3.56) 9.16 (5.01)
NConvDN 0.95 (0.08) 0.91 (0.09) 7.85 (4.89) 9.29 (6.56)
NCDN 0.96 (0.04) 0.92 (0.08) 7.71 (5.61) 8.64 (4.86)

Notes.
Optimal values are indicated in bold.

different disease types, which distinguished the end-diastolic (ED) and end-systolic (ES).
The evaluation indicators include DI and HD. All four models follow the settings in
‘Training Implementation’ and use five-fold cross-validation. The results of comparing
the NCDN model with other models according to the segmentation accuracy are shown
in Tables 4, 5 and 6. The right ventricle is the hardest part of ventricular segmentation, yet
through Table 4, NCDN outperforms the other three contrasting models in both Dice and
HDmetrics. Table 5 lists the segmentation results of myocardium. FC-DenseNet is slightly
higher than NCDN in HD index, but NCDN is still the best performing model in Dice
index. Table 6 shows the segmentation results of the left ventricle, compared with the other
three comparison models, NCDN achieves the best results in both Dice and HD metrics.

Figure 5 shows the segmentation effect of the four models in the same image (Bernard et
al., 2018). The images shown cover the ES and ED of different groups of people. From left
to right are the original image, ground truth, and the prediction results of the four network
models.
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Figure 5 The segmentation results of DCM, HCM,MINF, NOR, and RV. The illustration shows the seg-
mentation effect of NCDN and the other three networks, where GT stands for ground truth (Bernard et
al., 2018). The data shown in the figure comes from the ACDC dataset (Bernard et al., 2018).

Full-size DOI: 10.7717/peerjcs.1146/fig-5

Using UNet, FC-DenseNet, NConvDN, and the proposed NCDN to conduct ablation
experiments, the results show that our proposed model has better performance. In the
comparison of multiple dimensions, the segmentation accuracy of NConvDN is worse
than that of NCDN. This may be because capsule convolution can save more spatial
information than convolution, which is beneficial to improve the ability to distinguish
things from different perspectives.

In order to better prove the performance of the proposed model, the model with the
most advanced results was used for comparison, which ranks among the top 10 in ACDC
test set segmentation performance. As shown in Table 7(A), on the Dice metric, the NCDN
obtained the best results on ED ofMYO and ED of LV compared with the other tenmodels.
In addition, ED and ES of RV ranked 6th, ES of MYO ranked 2nd, and ES of LV ranked
4th. As shown in Table 7(B), in terms of HD index, ED and ES of RV ranked 8th and 7th
respectively, ED and ES of MYO ranked 6th, and ED and ES of LV ranked 6th and 7th
respectively. NCDN does not perform very well in HD, using some proper post-processing
methods may bring improvements.

DISCUSSION
In this work, a nested network structure is proposed to complete the segmentation
task of cardiac MRI, hoping to have better segmentation performance. Local and
third-party evaluations have reflected that it has improved segmentation accuracy and
robustness relative to the benchmark model, and it also has the most advanced results in
some indicators. The proposed model has good performance on the DI index, but the
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Table 7 The segmentation effect of different segmentation techniques on the ACDC test set.

Dice index

RV MYO LV

ED ES ED ES ED ES

NCDN 0.932 0.882 0.899 0.911 0.966 0.916
Isensee et al. (2018) 0.946 0.904 0.896 0.919 0.965 0.933
Zotti et al. (2018) 0.934 0.885 0.886 0.902 0.964 0.912
Painchaud et al. (2020) 0.933 0.884 0.881 0.897 0.961 0.911
Khened, Alex & Krishnamurthi (2018) 0.941 0.882 0.889 0.898 0.964 0.917
Baumgartner et al. (2017) 0.935 0.879 0.882 0.897 0.963 0.911
Wolterink et al. (2017) 0.932 0.883 0.892 0.901 0.961 0.918
Rohé, Sermesant & Pennec (2017) 0.928 0.872 0.884 0.896 0.957 0.900
Zotti et al. (2017) 0.916 0.845 0.875 0.894 0.957 0.905
Patravali, Jain & Chilamkurthy (2017) 0.911 0.819 0.867 0.869 0.955 0.885
Grinias & Tziritas (2018) 0.887 0.767 0.799 0.784 0.948 0.848

HD (mm)

RV MYO LV

ED ES ED ES ED ES

NCDN 13.9 14.5 9.7 10.8 7.5 9.6
Isensee et al. (2018) 8.8 11.4 7.6 7.1 5.6 6.3
Zotti et al. (2018) 11.0 12.6 9.6 9.3 6.2 8.4
Painchaud et al. (2020) 13.7 13.3 8.6 9.6 6.1 8.3
Khened, Alex & Krishnamurthi (2018) 10.3 14.0 9.8 12.6 8.1 9.0
Baumgartner et al. (2017) 14.0 13.9 9.8 11.3 6.5 9.2
Wolterink et al. (2017) 12.7 14.7 8.7 10.6 7.5 9.6
Rohé, Sermesant & Pennec (2017) 11.9 13.4 8.7 9.3 7.5 10.7
Zotti et al. (2017) 14.0 15.9 11.1 10.7 6.6 8.7
Patravali, Jain & Chilamkurthy (2017) 13.5 18.7 11.5 13.0 8.2 10.9
Grinias & Tziritas (2018) 19.0 24.2 12.3 14.6 8.9 12.9

Notes.
Optimal values are indicated in bold.

performance is relatively ordinary on the HD index, especially for the segmentation of
RV. Both the DI indicator and HD indicator measure the effect of segmentation but have
different focuses. DI can better reflect the consistency of the corresponding pixels of the
image, while HD focuses on the consistency of the segmentation edge. This means that an
outlier has little effect on DI, but may have a greater impact on HD indicators. NCDN is
an end-to-end network with capsule convolution as the kernel. The characteristics of the
capsule enable it to better perceive objects in different viewing angles, which effectively
avoids the state of failure of recognition in FC-DenseNet, such as incorrectly judging
whether a certain category exists on the image. However, it still lacks constraints on the
objects to be segmented in the image, which may lead to the appearance of outliers and
make the HD index too large. To alleviate this problem, new shape mechanisms such as
shape prior (Ravishankar et al., 2017) can be introduced. In addition, a more reasonable

Zhang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1146 14/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1146


cost function for HD constraints can be discovered or statistical techniques can be used to
correct outliers in the segmented image to ensure edge integrity and internal consistency.

CONCLUSIONS
In this work, we propose a nested network structure that decomposes a single codec into
multiple codecs to obtain better cardiac MR image segmentation results. This structure
based on the FC-DenseNet model and capsule convolution-capsule deconvolution shows
a better segmentation effect on multiple datasets than each part of the source network. The
smaller error and standard deviation further prove the effectiveness of network fusion. The
experimental results show that the segmentation effect of our model has better stability
than other traditional segmentation models. This makes it possible to apply our method
to the automatic segmentation of cardiac MRI systems in the future.
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