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ABSTRACT

Spatial crowdsourcing refers to the allocation of crowdsourcing workers to each
task based on location information. K-nearest neighbor technology has been widely
applied in crowdsourcing applications for crowdsourcing allocation. However, there
are still several issues need to be stressed. Most of the existing spatial crowdsourcing
allocation schemes operate on a centralized framework, resulting in low efficiency of
crowdsourcing allocation. In addition, these spatial crowdsourcing allocation schemes
are one-way allocation, that is, the suitable matching objects for each task can be
queried from the set of crowdsourcing workers, but cannot query in reverse. In this
article, a bidirectional k-nearest neighbor spatial crowdsourcing allocation protocol
based on edge computing (BKNN-CAP) is proposed. Firstly, a spatial crowdsourcing
task allocation framework based on edge computing (SCTAFEC) is established,
which can offload all tasks to edge nodes in edge computing layer to realize parallel
processing of spatio-temporal queries. Secondly, the positive k-nearest neighbor spatio-
temporal query algorithm (PKNN) and reverse k-nearest neighbor spatio-temporal
query algorithm (RKNN) are proposed to make the task publishers and crowdsourcing
workers conduct two-way query. In addition, a road network distance calculation
method is proposed to improve the accuracy of Euclidean distance in spatial query
scenarios. Experimental results show that the proposed protocol has less time cost and
higher matching success rate compared with other ones.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing, Mobile
and Ubiquitous Computing, Spatial and Geographic Information Systems, Internet of Things
Keywords Spatial crowdsourcing, Task allocation, Edge computing, Bidirectional k-nearest
neighbor, Road network distance

INTRODUCTION

The development of 5G technology promotes the wide application of intelligent services,
especially location-based crowdsourcing service platforms. Crowdsourcing is defined
as a business model in which tasks traditionally performed by company employees are
outsourced to a large group of voluntary non-specific masses in an open form (Howe,
2006). Nowadays, crowdsourcing has been widely applied in various fields, including
environmental monitoring, medical care, Meituan, Didi Taxi, and Amazon’s Turk robot
(Gummidi, Xie & Pedersen, 2019). At the same time, everyone with smart devices on
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mobile terminals can register as a worker on the crowdsourcing platform on the Internet.
In this context, an emerging crowdsourcing mode of outsourcing tasks with spatial
characteristics to workers on the Internet emerges, which is called spatial crowdsourcing
(Peng et al., 2022; Liu et al., 2022; Tong et al., 2020). In the spatial crowdsourcing platform,
the location-related task information is published by the task publisher to the platform
server, and then the specific task assignment algorithm is used by the platform server to
assign the corresponding crowdsourcing worker for the task publisher to provide service,
thus forming a benign business cycle model (Frigerio, Schenato ¢ Bossi, 2016; Wang et al.,
2020; Qawqzeh et al., 2021; Wu et al., 2022).

Ride-hailing platform is a typical spatial crowdsourcing application. Due to its large user
group, its service quality has attracted more and more attention (Zhao et al., 2019; Chen et
al., 2019; Bhatti, Gao & Chen, 2020). At present, drivers are slow to receive orders and take
a long time to arrive, leading to emotional anxiety and even anger among users, which is
one of the biggest pain points for users of ride-hailing platforms (Javid, Abdullah ¢ Ali,
2022). Therefore, in the spatial crowdsourcing platform, how to provide intelligent services
while ensuring high service quality is an important social problem to be solved urgently.

The service quality of spatial crowdsourcing platform is mainly determined by the
matching time efficiency, matching success rate and other indicators of crowdsourcing
tasks, which are closely related to the platform’s system framework and task matching
algorithm. Firstly, the traditional spatial crowdsourcing platform system framework is
mostly based on the central server, and each task publisher and crowdsourcing worker
need to upload their location information to the central server for calculation, which greatly
increases the computing overhead of the server and reduces the computational efficiency
of the algorithm (Zhang et al., 2020). Secondly, the existing crowdsourcing task allocation
algorithms are all one-way allocation, that is, they can only find the optimal crowdsourcing
worker for the task publisher among multiple crowdsourcing workers, and cannot conduct
two-way parallel spatio-temporal query between the task publisher and the crowdsourcing
workers (Frigerio, Schenato ¢ Bossi, 2016; Yang et al., 2019). In addition, in most of the
existing crowdsourcing task allocation algorithms, Euclidean distance is used as the basis
for task allocation, and the underlying road network information is ignored, resulting in
low accuracy of crowdsourcing matching and seriously affecting the satisfaction of users’
service experience (Elmongui, Mokbel & Aref, 2013; Li et al., 2014).

To overcome the shortcomings of traditional approaches, a bidirectional k-nearest
neighbor spatial crowdsourcing allocation protocol based on edge computing (BKNN-
CAP) is proposed in this article. The specific contributions of this work are as follows:

(1) A spatial crowdsourcing task allocation system framework based on edge computing
(SCTAFEC) is proposed, which includes three parts: the center control layer, the edge
computing layer and the crowdsourcing worker layer. With this framework, all tasks can
be unloaded to the edge nodes of the edge computing layer for processing, which realizes
parallel processing of spatiotemporal queries and greatly reduces the time cost of the
algorithm.

(2) The positive k-nearest neighbor spatio-temporal query algorithm (PKNN) and
reverse k-nearest neighbor spatio-temporal query algorithm (RKNN) are proposed. The
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two algorithms can realize bidirectional parallel spatio-temporal query between task
publishers and crowdsourcing workers, thus improving the efficiency of crowdsourcing
task allocation.

(3) The real road network is modeled and a road network distance calculation method
is proposed to improve the matching accuracy of crowdsourcing tasks.

The remainder of this article is organized as follows. The first section reviews the related
work. The second section describes the problem. The third section proposes a protocol
to solve the problem. The fourth section analyzes the experiments and results. At last, the
current work is summarized and and the future work is prospected.

RELATED WORK

Concerning work related to our proposal, the research on spatial crowdsourcing task
allocation, edge computing and k-nearest neighbor (KNN) technology is briefly reviewed.

Spatial crowdsourcing task allocation

Task allocation is a core issue in the field of spatial crowdsourcing, that is, how to arrange
appropriate crowdsourcing workers for crowdsourcing tasks. According to the classification
of problems, task allocation problems can be divided into a task matching problem and
task planning problem. Task matching problems usually match crowdsourcing workers
and crowdsourcing tasks one-to-one or one-to-many. In Xing et al. (2019), the matching
problem is combined with game theory to improve the matching satisfaction of users.
Zhang et al. (2019) propose a reliable task allocation problem according to the reliability
of workers and the employment cost. The task planning problem is to plan paths for
workers to accomplish multiple tasks. In Deng, Shahabi ¢ Demiryurek (2013 ), the problem
of planning paths for workers in offline scenarios is studied in order to accomplish as many
tasks as possible. Tao et al. (2018) study how to maximize the total utility value (revenue)
of completing tasks when workers and tasks arrive online for online scenarios.

Although these works have studied the task allocation problem in the spatial
crowdsourcing platform, the large task allocation problem is studied in the centralized
system framework, which is very different from the parallel processing problem model
focusing on spatio-temporal queries in this article.

Edge computing
Edge computing refers to a technology that integrates intelligent services such as network,
computing and storage near the edge of the network near the object or data source (Zhu
¢ Xiao, 2022). Since the service platform is at the edge of the network, compared with the
traditional central cloud network, the distance between users or devices and the service
platform is closer both at the physical level and the network topology level, so it can
more conveniently meet the service requirements of intelligent applications and real-time
services.

In recent years, edge computing technology is used to improve the efficiency of spatial
crowdsourcing platform (Xu et al., 2021; Xiao et al., 20205 Liao & Wu, 2020). In Xu et al.
(2022), the edge computing is used to study a distributed spatial crowdsourcing mechanism,
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which deployed some location services on edge clouds and ensured a low time delay. Based
on the idea of edge computing, Wang et al. (2021) propose a recruitment framework
based on crowdsourcing, which utilizes the power of crowdsourcing workers to provide
additional communication resources and enhance communication capabilities. In this
framework, intelligent network box nodes are creatively used as edge layer devices to
improve the efficiency of industrial Internet based on edge computing. In Li et al. (2019), a
hybrid computing framework is proposed, and an intelligent resource scheduling strategy
is designed to meet the real-time requirements of intelligent manufacturing supported by
edge computing.

Despite the above crowdsourcing scheduling strategy based on edge computing can
improve the scheduling efficiency to a certain extent. In practice, due to the limited
computing power of the edge server and network bandwidth, when users in the same
area send a large number of computing offload requests at the same time, resource
competition will occur, which will affect the network performance of the edge computing
layer. Therefore, it is a big challenge to design the corresponding task offload algorithm
and give the offload strategy for the user equipment in the application of edge computing
technology.

K-nearest neighbor technology

K-nearest neighbor technology (KNN) is one of the most important techniques for spatial
query. It refers to finding k data objects closest to the query point Q; from a data object
set O (Guan et al., 2021). However, most of the current KNN query algorithms find k
nearest neighbors by Euclidean distance (Zhu et al., 2016), and the nearest neighbor object
calculated is not the nearest to the road network, resulting in low accuracy of calculation.
To solve this problem, the KNN algorithms based on road network are proposed to ensure
the accuracy of spatial query results (Abeywickrama, Cheema & Storandt, 2020; Chung,
Hyun ¢ Loh, 2022; Yang, Tang ¢ Zhang, 2019). However, the above algorithms are only
applicable to the static scenario, that is, the query point and the data object are stationary.
Based on this, the continuous k-nearest neighbor (CKNN) algorithms are proposed, which
can query the k-nearest object of the corresponding query point when both the data object
and the query point are moved (Miao et al., 2020; Huang, Chen ¢ Lee, 2009). In order to
further improve the efficiency of KNN query, Bok, Park ¢ Yoo (2019) propose a method
to effectively process CKNN query using distance relation pattern (DRP). The DRP is a
list of relative coordinates sorted in ascending order by the distance between the points in
a cell and other cells so that cells can be accessed sequentially. However, this method is to
conduct CKNN simulation query on grid cells, which cannot be applied to the actual road
network scenario.

Although KNN technology in road network has been widely used in spatial query, the
existing KNN algorithms are all one-way query, that is, they can only find the KNN result
of a query point Q; in the data object set O, but cannot find the KNN result of a data object
O; from the query point set Q. Therefore, how to utilize it for bidirectional spatial query
and combine it with task allocation problem in crowdsourcing platform is a big challenge
at present.
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PROBLEM DESCRIPTION

The subsection “Motivation scenario” shows a motivating example to inspire our research.
The problem definition includes the representation of basic definition and problem
formalization are described in subsection “Problem definition”.

Motivation scenario

In this section, an example of the operational framework of the ride-hailing platform is
introduced to illustrate the problems existing in the current spatial crowdsourcing platform.
As shown in Fig. 1, the current ride-hailing operation framework is mostly centralized,
which includes three parts: passengers, drivers and central server. In this framework,
passengers can be seen as task publishers and drivers as crowdsourcing workers. Task
requests containing their location information are posted by passengers to a central
server, which assigns each passenger a corresponding driver based on a specific matching
algorithm. However, in the centralized framework, all tasks need to be centrally processed
by the central server, which leads to low computing resource utilization and scheduling
efficiency.

In addition, the task allocation algorithm in online ride-hailing platform can be regarded
as a spatial query processing process. However, the existing spatial query process mostly
queries the matching results for passengers according to the Euclidean distance, and rarely
considers the real urban road network structure. As a result, the spatial query results are
not the drivers closest to the actual road network, which makes the service quality of
the platform poor. Therefore, it is necessary to design a new platform framework and
task allocation algorithm to improve the scheduling efficiency and service quality of the
platform.

Problem definition

Definition 1 (road network, N). Figure 2 shows a road network. The road network is a
undirected weighted graph N = (V,E, W). Where V is the set of crossroads, also known
as the road network node set. E represents the set of sections of the road, also known as the
set of edges in the network. W is the set of weights of sections, each element in W refers
to the length of the corresponding section of road.If the edges and weights between nodes
are known, it is easy to calculate the shortest path length between nodes. The road network
node v; € V,v;=(L,,,DQ,,,DO,,). Where L, is the position of v;, DQ,,, DO,, are two sets,
which contain road network node v; sorting all query points and data objects in ascending
order of road network distance within a certain range. In Fig. 2, the black solid dot such as
Ve is a road network node, DQ,, = (Q3, Qs, Q). That’s to say, over K miles, Q3, Qs and Q
are closest to vg. Similarly, DO,, = (Oy4, Os, O,). That is, the closest data objects to v are
04,05 and O,.

Definition 2 (query point, Q). Query point Q; refers to the user who publishes task
information in the spatial crowdsourcing platform, also known as task publisher. Such as
the passenger who initiates a taxi request in the taxi platform. As shown in Fig. 2, cross
stars are query points in the road network. The query points set Q = {Q;, Qa,...,Qj},

Qi = (LQ;,DVq,,DOq,). Where LQ; is the current position of Q;, DV(,, DO, are two sets,
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Figure 1 A scenario showing the inefficient operation of ride-hailing platform.
Full-size & DOI: 10.7717/peerjcs.1244/fig-1
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Figure 2 An example of real road network.
Full-size & DOI: 10.7717/peerjcs.1244/fig-2

which contain query point Q; sorting all network nodes and data objects in ascending order
of road network distance within a certain range.

Definition 3 (data object, O). The data object O; refers to the worker who sends
and processes the task request in the spatial crowdsourcing platform, also known as
crowdsourcing worker. Such as the driver who completes the passenger carrying task in
the taxi platform. The triangular points in Fig. 2 are the data objects in the road network,
denoted by the set O, O ={0;,0,,...,0;}, O; = (LO‘,DVoj,Don). Where LO; is the
current position of O;, DVo,, DQo; are two sets, which contain data object O; sorting all
network nodes and query points in ascending order of road network distance within a
certain range.

Definition 4 (node distance matrix, M). The node distance matrix M records the
shortest distance between 7 nodes in the road network N, and the matrix M (V;;),xn(i=
1,2,...,n);j=(1,2,...,n), where n is the total number of road network intersection. As
shown in Eq. (1), V7, is the shortest path distance from node V; to node V,,.. The shortest
path distance between road network nodes can be stored in M through pre-calculation,
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which improves the efficiency of road network distance calculation.

YViil .- Vi
(1)
Vol e Vo
Definition 5 (Road network distance, D). The road network distance is based on the
shortest path distance of the actual road network, such as road network and railway
network. In this article, the road network distance between query point Q; and data object
O; can be calculated by Eq. (2). When query point Q; is adjacent to data object O;, the road
network distance between them is Euclidean distance d(Q;, O;), which is calculated by Eq.
(3), where x1, y1, X, and y; are the longitude and latitude of Q; and O;. When Q; and O; are
not adjacent, assume Q; is on the edge (vy, v, ). Firstly, the network node v, and v, closest to
vy and v, are found, and then the distances from v, and v, to O; are calculated respectively.
Finally, the distances of the two methods are compared, and the smaller distance result is
selected as the network distances of Q; and O;. As shown in Fig. 2, since Qs and Oy are
adjacent, so the road network distance D(Qs, O4) = d(Qs, O4). Similarly, Qs and O, are not
adjacent, so D(Qg, O,) = min(d(Qs, V13) +v13,7+d(v7,02),d(Qs, V14) +v148+d(Vs, O2)).

D(Q;,0j) =d(Q;,0;) Qi and O; are adjacent
D(Qi.0))  =min(d(Qi,v:)) +vxp+d(vp. 0)).d(Qi.vy) +vy g +d (v, 0)) (2)
Q; and O; are not adjacent

4(Qi0) = /(2= 1)+ (x2—x1)? 3)

Definition 6 (Crowdsourcing matching problem based on road network, CMPRN).
Given a set of query points Q with specific initial locations, a set of requesters O,
which appear dynamically, and a distance function D(Q;,O;) in road network. The
CMPRN problem is to find a matching R, with minimum total distance Cost(R) =
ZQ;‘EQ,O]' <coP(Q;, Oj). And R satisfies the following two constraints:

(1) Real-time constraint: When a task appears, the platform must immediately assign a
service provider to the service provider before the next requester arrives.

(2) Invariant constraint: Once a service provider is assigned to a requester, the assignment
cannot be revoked.

Theorem 1. CMPRN is an NP complete problem.

Proof. CMPRN is a Travelling Salesman Problem with Time Window (TSPTW), and the
TSPTW problem has been proved to be an NP-complete problem in Savelsbergh (1985).
The input of TSPTW is an initial time ), N vertices {1,2..., n}, where 1 is the starting
point, the pairwise distance between vertices is D', and each vertex has a time window
iw=<e;,l; >, where I; > ¢; > t;. The TSPTW problem is to determine whether there is
a path with a distance less than D’ that allows a salesman to travel from vertex 1 to all
other vertices at #; and return to vertex 1 within the corresponding time window. From the
description of CMPRN and TSPTW problem, we know that CMPRN is a generalization of
the general form of TSPTW problem, so CMPRN is an NP-complete problem.
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Table 1 Symbol definition.

Symbol Description

N Road network

V,v; The network node set, network node

DQ,,,DO,, DQ,,,DO,, are two sets, which contain road network node

v; sorting all query points and data objects in ascending
order of road network distance within a certain range
Q,Q The query point set, the query point Q;

DVq,, DOy, DV, DOy, are two sets, which contain query point Q;
sorting all network nodes and data objects in ascending
order of road network distance within a certain range

0,0; The data objects set, the data object

DVo,,DQo; DVo,,DQo; are two sets, which contain data object O;
sorting all network nodes and query points in ascending
order of road network distance within a certain range

K; The query radius of PKNN algorithm

K, The query radius of RKNN algorithm

r The initial radius of the PKNN and RKNN algorithm

o The enlarged radius parameter

M,V,, The node distance matrix, the shortest path distance from
node V, to node V,

D(Q;,O;) The road network distance between Q; and O;

d(Q;,0)) The road Euclidean distance between Q; and O;

R The matching result set

The CMPRN problem inherently resembles a greedy problem. In real-world scenarios,
task publishers and crowdsourcing workers often expect their requests to be fulfilled
immediately. However, in a real-time computing scenario, it is impossible to find a global
optimal solution for task initiators and crowdsourcing workers. Therefore, it is necessary
to calculate its local optimal solution for the CMPRN problem. Table 1 lists the notations
used in this article.

BIDIRECTIONAL K-NEAREST NEIGHBOR SPATIAL CROWD-
SOURCING ALLOCATION PROTOCOL
BASED ON EDGE COMPUTING (BKNN-CAP)

In order to obtain the local optimal solution of CMPRN problem, bidirectional k-nearest
neighbor spatial crowdsourcing allocation protocol based on edge computing (BKNN-
CAP) is proposed in this section. The BKNN-CAP protocol includes spatial crowdsourcing
task allocation framework based on edge computing (SCTAFEC), positive k-nearest
neighbor spatio-temporal query algorithm (PKNN), and reverse k-nearest neighbor
spatio-temporal query algorithm (RKNN).
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Spatial crowdsourcing task allocation framework based on edge
computing (SCTAFEC)

Aiming at the shortcomings of platform framework in subsection “motivation scenario”,
a spatial crowdsourcing task allocation system framework based on edge computing
(SCTAFEC) is proposed. The system framework is shown in Fig. 3, which consists of cloud
services layer, edge computing layer and crowdsourcing worker layer.

Cloud services layer: it consists of a central control server with high performance and a
task publisher (TP) with task publishing requirements. The central control server has a
global overview of all available resources and communicates with each deployed edge node
server. When the central controller receives task information from the task publisher, the
tasks can be offloaded to the edge node server near the task publisher for processing.

Edge computing layer: this layer is composed of multiple edge nodes. Each edge node
is a server with computing power, which is responsible for processing the crowdsourcing
allocation calculation delivered by the central server and returning the results to the central
control server. During task distribution, task requests need to be assigned to the nearest
edge node for processing based on the specific location of task requests. Since each edge
node collects the location information of task publishers and crowdsourcing workers
around the node in advance, when the edge node receives the corresponding task request,
the reasonable crowdsourcing task allocation will be carried out according to the location
information of nearby crowdsourcing workers and task publishers collected by the edge
node.

Crowdsourcing worker layer: it consists mainly of mobile devices and wireless sensors for
crowdsourcing workers (CW). The location information of CW is uploaded to the nearby
edge node server through wireless sensor, and the edge node server can allocate the most
appropriate crowdsourcing task for CW according to the road network distance.
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Positive k-nearest neighbor spatio-temporal query algorithm (PKNN)
Different from the traditional KNN algorithm, the idea of PKNN algorithm in this section
is as follows: given a set of data objects O and a set of query points Q, find the data object
closest to the query point Q; road network from the O set within K miles. If the search fails
within K miles, expand the query radius K until the search succeeds. As shown in Fig. 4,
the circular area with solid red line is PKNN query, where query point Q; can search for
the data object closest to road network within the area with radius Kj.

Stepl: construct the road network node distance matrix M, the ascending sequence
DV, of the query point to the road network node and the ascending sequence DO,, of the
road network node to the data object.

Step2: query stage. Find the road network nodes v, and v, in the front and rear directions
of the query point within the initial radius K; miles, and the road network distance of the
nearest data object from Q; to vx and v, are calculated respectively. The data object with
the smallest road network distance was the matching result of the query point, and the
algorithm ends. If no data object can be found within K; miles, then K; =r 4« continues
(lines 1-8 in Alg. 1), where & = o + T, when the road network is not dense, the value of t
can be a larger value. Conversely, when the road network is dense, the value of T can be
smaller. In this article, T =1 is taken as the graph is relatively dense.

Step3: in the dynamic update phase, the newly emerged query points and data objects
are inserted into the collections Q and O, and the successfully matched query points and
data objects are deleted from Q and O (lines 9-11 in Alg. 1).

An example of PKNN algorithm is shown in Fig. 5. Firstly, the nearest front and rear
road network nodes v and v, from the query point Q; are foud. Secondly, Search for the
latest data objects O, and O, of road network nodes v, and v,. Thirdly, the road network
distances of data object O,,, O, and query point Q; are compared respectively, and the
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data object with the closest road network distance is taken as the final matching result.
Where d(Q;,vx),d(vy, 01),d(Q;,vy) and d(v4, O,) are calculated by Euclidean distance
respectively. vy, and vy, can be pre-calculated through A-star algorithm (Ju, Luo & Yan,
2020).

The pseudocode of PKNN algorithm is shown in Alg. 1.

Algorithm 1: Positive K-nearest neighbor spatio-temporal query algorithm (PKNN)

Input: The road network N, a query points set Q, a data object points set O, the value
of r, «.
Output: Global task matching result set R
1 for Q;in Qdo
2 Initial value r = 1, @ = 0. Find the nearest road network node v, and v, in the front
and rear direction of query point Q; within K; miles;
if DO,, =@, DO,, =, then
a=o+1,Ki=r+uo;
else

[= S

the road network distance of the nearest data object from Q; to v and v, are cal-

culated respectively. The data object with the smallest road network distance is the
matching result of the query point;

7 endif

8 end for

9 for new and departed Q,, Op do
10 Add new elements and delete those that have left;
11 end for
12 return match result set R

Reverse k-nearest neighbor spatio-temporal query algorithm (RKNN)
Due to the PKNN algorithm can only be initiated by query points to search for matching
results of query points, it cannot be initiated by data objects to search for matching results
of data objects, so the RKNN algorithm is proposed in this section. The RKNN algorithm
refers to a given set of data objects O and a set of query points Q, this query finds the nearest
query point Q; from the Q set to the data object O; within K, miles. As shown in Fig. 4, the
blue dotted circle is an RKNN query, where the data object O; can find the nearest query
point of the road network in the area with a radius of K.

Stepl: construct the road network node distance matrix M, the ascending sequence
DQo, of the data object to the road network node and the ascending sequence DQ,, of the
road network node to the query point.

Step2: query stage. Find the road network node v, and v, in the front and rear directions
of the data object within the initial radius K, miles, and the road network distance of the
nearest query point from O; to v, and v, are calculated respectively. The query point with
the smallest road network distance was the matching result of the data object, and the
algorithm ends. If no query point can be found within K, miles, then K, = r 4+« continues,
where « is the enlarged radius parameter (lines 1-8 in Alg. 2).
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Step3: in the dynamic update phase, the newly emerged query points and data objects
are inserted into the collections Q and O, and the successfully matched query points and
data objects are deleted from Q and O (lines 9-11 in Alg. 2).

Figure 6 shows an example of the RKNN algorithm. When the data object O; initiates
a query, the following processing is performed. Firstly, find the nearest left and right road
network nodes v, and v, from the data object O;. Secondly, search for the latest query point
Qn and Q, of road network node v, and v,. Thirdly, the road network distances of query
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point Q,,, Q, and data object O; are compared respectively, and the query point with the
closest road network distance is taken as the final matching result.
The pseudocode of RKNN algorithm is shown in Alg. 2.

Algorithm 2: Reverse K-nearest neighbor spatio-temporal query algorithm (RKNN)

Input: The road network N, a query points set Q, a data object points set O, the value
of r, «.
Output: Global task matching result set R
1 for O;in O do
Initial value r = 1, @ = 0. Find the nearest road network node v, and v, in the front

N

and rear direction of data object O; within K, miles;

3 it DQ,, =9, DQ,, =0, then

4 a=a+1,K;=r+ua;

5  else

6 the road network distance of the nearest data object from O; to v, and v, are cal-

culated respectively. The query point with the smallest road network distance was the
matching result of the data object;
7 endif
8 end for
9 for new and departed Q,, Oy do
10 Add new elements and delete those that have left;
11 end for
12 Return match result set R

SIMULATION EXPERIMENT ANALYSIS

The spatial crowdsourcing scenario used in this article is an online car-hailing system, in
which passengers are the query points in the spatial crowdsourcing platform and the drivers
are the data objects. In traditional online taxi-hailing system, all computing processing is
carried out on the central server. In this article, the edge computing layer is introduced.
The central control server is responsible for distributing computing tasks to the edge nodes
for processing, thus reducing the computing pressure on the central server.

Simulation environment and data set

In this article, the simulation experiment environment of the central control server is
64-bit Windows 10 system, memory (RAM) is 8.00GB, and processor is Intel (R) Core 17.
Experimental data are mainly derived from partial road network data of Fuzhou captured
from OpenStreetMap. The original network data set contains 16,453 road nodes and 17,801
roads composed of these road nodes. When the original data was used in the experiment,
there was too much data and redundant data. Therefore, in order to ensure the effectiveness
of the experiment and better verify the model, we optimized the selection of the original
road network data and simplified it to a certain extent. In the case of multiple small
segments in a road, roads were merged, which greatly reduced the road node set, road
network crossing node set and road network boundary set. The final data set processed
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included 4,116 road nodes, 3,457 road network crossing nodes and 5464 roads. Assume
that there are 3,000 base stations in the network. The coverage radius of the base stations is
500 m. The CPU of the edge node server is RK3399 and the Cortex A53 quad-core 1.4 GHz
and A72 dual-core 2 GHz. The main frequency is up to 2.0 GHz, the memory is 2 GB, the
storage is 4 GB, and the communication channel bandwidth is 1 MHz. Such a parameter
setting can enable each edge node server to collect the location information of ride-hailing
and passengers within a radius of 500 m, and to process calculation tasks with moderate
data volume. Figure 7 shows the road network after final treatment.

Feasibility analysis

As shown in Fig. 8, U64 is a passenger ID 64, and 8 is a driver ID 8. U64 and 8 are matched
successfully after the test run, and the blue route is the network route from driver to
passenger. Drivers can connect to U64 along this road. This proves the feasibility of the
BKNN-CAP protocol proposed in this article.

Evaluation indicators
Five evaluation indicators are introduced in this section, namely time cost, average response
time, energy consumption cost, the number of successful matches and matching success
rate.

(1) Time cost

The time cost T in this article refers to the time cost required to complete the matching
of M passengers and N task initiators at a certain time. Its calculation is obtained from
Eq. (4), where t; is the pre-calculated time of the protocol and t, is the query time of the
protocol.

T=t+1t (4)

(2) Average response time

Average response time T, refers to the time taken by each passenger in the spatial
crowdsourcing platform from the initiation of a taxi request to the successful matching of
online car-hailing. The shorter the average response time T, the better the service quality
of the platform. In this article, the average response time T, is calculated by Eq. (5). Where
n is the number of passengers in the spatial crowdsourcing platform at a certain moment.

T,=T/n (5)

(3) Energy consumption cost

Energy consumption cost refers to the energy cost generated by the scheme matching
results in practical application, such as the electricity cost of electric vehicles or the
gasoline cost of fuel vehicles. Since the cost of energy consumption is directly proportional
to the journey of an online car, in order to conveniently calculate the cost of energy
consumption, the road network distance of the online car-hailing is used to represent the
energy consumption cost in this article.

(4) The number of successful matches

In the simulation experiment, due to some objective factors, such as the location of
passengers is too remote and other factors, the nearby online taxi cannot be matched.
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Figure 7 An example of some road networks in Fuzhou.
Full-size & DOI: 10.7717/peerjcs.1244/fig-7
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Figure 8 An example of driver passenger matching visualization. Map source credit: (2022 Baidu.
Full-size & DOLI: 10.7717/peerjcs.1244/fig-8

Therefore, the number of successful matching in this article refers to the number of
passengers successfully matched to the nearby online taxi in a certain period of time.
The higher the number of successful matches, the better the service quality of the spatial
crowdsourcing platform.

(5) Matching success rate

Matching success rate (MSR) refers to a certain time period the proportion of passengers
to successful matching to the nearby mesh about, its computation as shown in Eq. (6),
where |O| is the number of drivers, |R| indicates the number of successful matches.

MSR=|R]|/|O|. (6)

Comparative analysis

In view of the above indicators, the BRNN-CAP protocol proposed in this article will be
compared and analyzed with the CAKNN algorithm in Miao et al. (2020) and pRMatch
algorithm in Yu, Zhang & Yu (2020).
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(1) Comparative analysis of time cost

As shown in Fig. 9, the time consumption of the BKNN-CAP protocol proposed
in this article is lower than that of CAKNN algorithm and pRMatch algorithm. The
reason is that BKNN-CAP protocol adopts the idea of edge computing and offloads
all task requests to edge nodes for processing, which greatly improves the efficiency of
crowdsourcing allocation. For example, when the volume of online car booking is 200, the
time consumed by BKNN-CAP, pRMatch and CAKNN algorithms is 8,451, 15,048 and
39,608 ms, respectively. In addition, the time consumption of BKNN-CAP protocol is still
lower than that of the other two algorithms when the number of drivers keeps increasing,
which reflects the superiority of the algorithm proposed in this article in terms of time.

(2) Comparative analysis of average response time

As shown in Fig. 10, the average response time of both CAKNN algorithm and pRMatch
algorithm increases with the increase of the driver scale. When the driver scale is less than
150, the average response time of BKNN-CAP is slightly higher than that of pRMatch,
because BKNN-CAP needs to conduct the prediction calculation of the node distance
matrix, while pRMatch has no prediction calculation. When the size of the driver is larger
than 150, BKNN-CAP protocol avoids double calculation due to the precalculation, so that
the average response time tends to be stable, and the duration is below 70 ms, which greatly
reduces the query waiting time of passengers and drivers in the spatial crowdsourcing
platform, thus improving the user experience of the spatial crowdsourcing platform.

(3) Comparative analysis of energy consumption cost

As shown in Fig. 11, the energy consumption of the BKNN-CAP protocol proposed
in this article is lower than that of CKNN and pRMatch algorithms. For example, when
the volume of online ride-hailing car is 200, the energy cost consumed by BKNN-CAP,
pRMatch and CAKNN algorithm is 2012, 2463 and 2198 respectively. When the driver
scale is less than 150, some CAKNN points are higher than pRMatch, but some are not.
The reason is that CKNN algorithm is accurate in calculating road network distance, while
pRmatch algorithm is obtained by approximate calculation. When the size of the driver is
small, the energy consumption between the two is not stable, and its superiority cannot
be better reflected. However, when the driver scale is larger than 150, CAKNN calculates
the road network distance more accurately, so the road network distance is shorter, so
the response energy consumption is lower than pRmatch. On the whole, the BKNN-CAP
protocol is more energy efficient than the other two algorithms, because the bidirectional
k-nearest space—time query mechanism can find the real nearest ride-hailing driver for
each passenger, thus making the network distance shorter.

(4) Comparative analysis of successful matching quantity

As shown in Fig. 12, when the size of drivers is 50, the matching success amounts of
BKNN-CAP, CAKNN and pRMatch algorithms are 24, 22 and 25, respectively. However,
when the driver size increases, the matching success of BRNN-CAP query protocol is
higher than that of the other two algorithms. For example, when the driver size is 300, the
matching success of BRNN-CAP, CAKNN and pRMatch algorithm are 224, 193 and 206,
respectively. In practical application scenarios, the number of drivers on the crowdsourcing
platform is generally more than 50. Therefore, the BKNN-CAP protocol proposed in this
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article is more practical. Some CAKNN points are higher than pRMatch but some are not,
because when the driver scale is less than 200, the calculation result of road network distance
of CAKNN algorithm is more accurate, so its successful matching quantity is higher than
pRMatch. When the driver scale is greater than 200, the road network distance of pRMatch
algorithm adopts the approximate calculation method. Therefore, the crowdsourcing
matching efficiency of pRMatch algorithm is higher, so the number of successful matching
is higher than that of CAKNN algorithm.

(5) Analysis of matching success rate

As shown in Fig. 13, the MSR of BKNN-CAP protocol is always higher than pRMatch
and CAKNN algorithm. This is because the BRNN-CAP protocol is a two-way matching
query mechanism, while the other two algorithms are one-way queries. When the volume of
online ride-hailing cars is 200, the MSR of BKNN-CAP, pRMatch and CAKNN algorithms
are 69%, 53% and 56%, respectively. In addition, with the continuous expansion of drivers,
the matching success rate of the BRNN-CAP protocol proposed in this article keeps rising,
while the matching success rate of CAKNN and pRMatch algorithms shows volatility.
Therefore, the BKNN-CAP protocol is more stable.

CONCLUSIONS

In spatial crowdsourcing platform, how to provide intelligent services while ensuring a
high quality of service is an important yet challenging problem. To solve this problem, the
bidirectional k-nearest neighbor spatial crowdsourcing allocation protocol based on edge
computing (BKNN-CAP) is proposed in this article. Firstly, a spatial crowdsourcing task
allocation system framework based on edge computing (SCTAFEC) is established. With
this framework, all tasks can be unloaded to the edge nodes of the edge computing layer for
processing, which greatly reduces the service response time. Secondly, based on the KNN
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algorithm, the positive k-nearest neighbor spatio-temporal query algorithm (PKNN) and
reverse k-nearest neighbor spatio-temporal query algorithm (RKNN) are proposed, which
make query points and data objects query in parallel. Thirdly, in order to further improve
the matching accuracy, a road network distance calculation method is proposed based
on the urban road network. Finally, sufficient experiments are carried out on real road
network data sets to prove the superiority of BKNN-CAP protocol in time cost, energy
consumption cost, matching success and other indicators.

Future studies in this research can be performed in the following directions. Firstly,
location privacy protection technology will be applied to BKNN-CAP protocol to achieve
crowdsourcing matching and protect users’ location privacy data at the same time. Secondly,
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the combination of BKNN-CAP protocol with other optimization objectives will be
studied.

Zhang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1244 19/23


https://peerj.com
https://doi.org/10.7717/peerjcs.1244/fig-12
https://doi.org/10.7717/peerjcs.1244/fig-13
http://dx.doi.org/10.7717/peerj-cs.1244

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work is funded by the National Natural Science Foundation of China (No.
61902069 and the U1905211), Natural Science Foundation of Fujian Province of China
(2021J011068). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The National Natural Science Foundation of China: No. 61902069, U1905211.
Natural Science Foundation of Fujian Province of China: 2021J011068.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Jing Zhang conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

e Qian Ding conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

e Biao Li performed the experiments, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

e Xiucai Ye performed the experiments, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.

Data Deposition
The following information was supplied regarding data availability:

The original data set, the code, and the data used to generate the figures are in the
Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1244#supplemental-information.

REFERENCES

Abeywickrama T, Cheema MA, Storandt S. 2020. Hierarchical graph traversal for aggre-
gate k nearest neighbors search in road networks. In: Proceedings of the international
conference on automated planning and scheduling, volume 30. 2—10.

Bhatti SS, Gao X, Chen G. 2020. General framework, opportunities and challenges for
crowdsourcing techniques: a comprehensive survey. Journal of Systems and Software
167:1-27.

Zhang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1244 20/23


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1244#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1244#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1244

PeerJ Computer Science

Bok K, Park Y, Yoo J. 2019. An efficient continuous k-nearest neighbor query
processing scheme for multimedia data sharing and transmission in loca-
tion based services. Multimedia Tools and Applications 78(5):5403—-5426
DOI10.1007/s11042-018-6433-3.

Chen Z, Cheng P, Zeng Y, Chen L. 2019. Minimizing maximum delay of task assignment
in spatial crowdsourcing. In: 2019 IEEE 35th international conference on data
engineering (ICDE). Piscataway: IEEE, 1454—1465.

Chung M, Hyun SJ, Loh WK. 2022. Efficient exact k-flexible aggregate nearest neigh-
bor search in road networks using the M-tree. The Journal of Supercomputing
78:16286-16302.

Deng D, Shahabi C, Demiryurek U. 2013. Maximizing the number of worker’s self-
selected tasks in spatial crowdsourcing. In: Proceedings of the 21st acm sigspatial
international conference on advances in geographic information systems. 324-333.

Elmongui HG, Mokbel MF, Aref WG. 2013. Continuous aggregate nearest neighbor
queries. Geolnformatica 17(1):63-95 DOI 10.1007/s10707-011-0149-0.

Frigerio S, Schenato L, Bossi G. 2016. Crowdsourcing with mobile techniques for crisis
support. Peer] Preprints 4:1-9.

Guan Y, Lu R, Zheng Y, Shao J, Wei G. 2021. Toward oblivious location-based k-nearest
neighbor query in smart cities. IEEE Internet of Things Journal 8(18):14219-14231
DOI 10.1109/JI0T.2021.3068859.

Gummidi SRB, Xie X, Pedersen TB. 2019. A survey of spatial crowdsourcing. ACM
Transactions on Database Systems (TODS) 44(2):1-46.

Howe J. 2006. The rise of crowdsourcing. Wired Magazine 14(6):1-4.

Huang Y, Chen Z, Lee C. 2009. Continuous k-nearest neighbor query over moving
objects in road networks. In: Advances in data and web management. Suzhou, China:
Springer, 27-38.

Javid MA, Abdullah M, Ali N. 2022. Travellers’ perceptions about ride-hailing services
in Lahore: an extension of the theory of planned behavior. Asian Transport Studies
8:1-11.

JuC, Luo Q, Yan X. 2020. Path planning using an improved a-star algorithm. In: 2020
11th international conference on prognostics and system health management (PHM-
2020 Jinan). Piscataway: IEEE, 23-26.

LiJ, Thomsen JR, Yiu ML, Mamoulis N. 2014. Efficient notification of meeting points
for moving groups via independent safe regions. IEEE Transactions on Knowledge and
Data Engineering 27(7):1767-1781.

Li X, Wan J, Dai H, Imran M, Xia M, Celesti A. 2019. A hybrid computing so-
lution and resource scheduling strategy for edge computing in smart man-
ufacturing. IEEE Transactions on Industrial Informatics 15(7):4225-4234
DOI 10.1109/T11.2019.2899679.

Liao JX, Wu XW. 2020. Resource allocation and task scheduling scheme in priority-
based hierarchical edge computing system. In: 2020 19th international symposium on
distributed computing and applications for business engineering and science (DCABES).
Piscataway: IEEE, 46—49.

Zhang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1244 21/23


https://peerj.com
http://dx.doi.org/10.1007/s11042-018-6433-3
http://dx.doi.org/10.1007/s10707-011-0149-0
http://dx.doi.org/10.1109/JIOT.2021.3068859
http://dx.doi.org/10.1109/TII.2019.2899679
http://dx.doi.org/10.7717/peerj-cs.1244

PeerJ Computer Science

LiuZ, Li K, Zhou X, Zhu N, Gao Y, Li K. 2022. Multi-stage complex task assignment in
spatial crowdsourcing. Information Sciences 586:119-139
DOI10.1016/j.in5.2021.11.084.

Miao X, Gao Y, Mai G, Chen G, Li Q. 2020. On efficiently monitoring continuous
aggregate k nearest neighbors in road networks. IEEE Transactions on Mobile
Computing 19(07):1664—1676 DOI 10.1109/TMC.2019.2911950.

Peng P,NiZ, Wu Z, Zhu X, Xia P. 2022. Research on incentive strategy based on service
quality in spatial crowdsourcing task allocation. Journal of Intelligent & Fuzzy Systems
43(5):1-16 DOI 10.3233/JIFS-201628.

Qawqzeh Y, Alharbi MT, Jaradat A, Sattar KNA. 2021. A review of swarm intelligence
algorithms deployment for scheduling and optimization in cloud computing
environments. Peer] Computer Science 7:1-17.

Savelsbergh MW. 1985. Local search in routing problems with time windows. Annals of
Operations Research 4(1):285-305 DOI 10.1007/BF02022044.

Tao Q, Zeng Y, Zhou Z, Tong Y, Chen L, Xu K. 2018. Multi-worker-aware task planning
in real-time spatial crowdsourcing. In: International conference on database systems
for advanced applications. Cham: Springer, 301-317.

Tong Y, Zhou Z, Zeng Y, Chen L, Shahabi C. 2020. Spatial crowdsourcing: a survey. The
VLDB Journal 29(1):217-250 DOI 10.1007/s00778-019-00568-7.

Wang P, Lin C, Yu Z, Yang L, Zhang Q. 2021. CrowdBox: crowdsourced network-in-
box recruitment for edge computing-enabled industrial internet of things. Wireless
Communications and Mobile Computing 2021:1-10.

WangY, Gao Y, LiY, Tong X. 2020. A worker-selection incentive mechanism for
optimizing platform-centric mobile crowdsourcing systems. Computer Networks
171:1-14.

WuX, Sun Y-E, DuY, Gao G, Huang H, Xing X. 2022. An anti-malicious task alloca-
tion mechanism in crowdsensing systems. Future Generation Computer Systems
127:347-361 DOI 10.1016/j.future.2021.09.016.

Xiao S, Liu C, Li K, Li K. 2020. System delay optimization for mobile edge computing.
Future Generation Computer Systems 109:17-28 DOI 10.1016/j.future.2020.03.028.

Xing Y, WangL, Li Z, Zhan Y. 2019. Multi-attribute crowdsourcing task assignment with
stability and satisfactory. IEEE Access 7:133351-133361
DOI 10.1109/ACCESS.2019.2941045.

Xu X, Cai Q, Zhang G, Zhang J, Tian W, Zhang X, Liu AX. 2021. An incentive mech-
anism for crowdsourcing markets with social welfare maximization in cloud-edge
computing. Concurrency and Computation: Practice and Experience 33(7):1-18.

XuY, Xiao M, Liu A, Wu J. 2022. Edge resource prediction and auction for distributed
spatial crowdsourcing with differential privacy. IEEE Internet of Things Journal
9(17):15554-15569 DOT 10.1109/J10T.2022.3183006.

Yang C, Yu Z, Liu Y, Wang L, Guo B. 2019. Dynamic allocation for complex mobile
crowdsourcing task with internal dependencies. In: 2019 IEEE smartworld, ubiquitous

Zhang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1244 22/23


https://peerj.com
http://dx.doi.org/10.1016/j.ins.2021.11.084
http://dx.doi.org/10.1109/TMC.2019.2911950
http://dx.doi.org/10.3233/JIFS-201628
http://dx.doi.org/10.1007/BF02022044
http://dx.doi.org/10.1007/s00778-019-00568-7
http://dx.doi.org/10.1016/j.future.2021.09.016
http://dx.doi.org/10.1016/j.future.2020.03.028
http://dx.doi.org/10.1109/ACCESS.2019.2941045
http://dx.doi.org/10.1109/JIOT.2022.3183006
http://dx.doi.org/10.7717/peerj-cs.1244

PeerJ Computer Science

intelligence ¢ computing, advanced & trusted computing, scalable computing & com-
munications, cloud & big data computing, internet of people and smart city innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Piscataway: IEEE, 818—825.

Yang S, Tang S, Zhang X. 2019. Privacy-preserving k nearest neighbor query with
authentication on road networks. Journal of Parallel and Distributed Computing
134:25-36 DOI 10.1016/j.jpdc.2019.07.013.

Yu H, Zhang H, Yu X. 2020. Hail the closest driver on roads: privacy-preserving ride
matching in online ride hailing services. Security and Communication Networks
2020:1-13.

Zhang H, Zhao C, Wang Y, Zhang L, Zhao C. 2020. Spatial crowdsourcing task alloca-
tion model based on improved particle swarm optimization. Application Research of
Computers 37(9):2698—2700.

Zhang X, Yang Z, Liu Y, Tang S. 2019. On reliable task assignment for spatial crowd-
sourcing. IEEE Transactions on Emerging Topics in Computing 7(01):174-186
DOI 10.1109/TETC.2016.2614383.

Zhao B, Xu P, Shi Y, Tong Y, Zhou Z, Zeng Y. 2019. Preference-aware task assignment in
on-demand taxi dispatching: an online stable matching approach. In: Proceedings of
the AAAI conference on artificial intelligence, volume 33. 2245-2252.

Zhu H, Yang X, Wang B, Lee WC. 2016. Range-based obstructed nearest neighbor
queries. In: Proceedings of the 2016 international conference on management of data.
2053-2068.

Zhu X, Xiao Y. 2022. Adaptive offloading and scheduling algorithm for big data based
mobile edge computing. Neurocomputing 485:285-296
DOI 10.1016/j.neucom.2021.03.141.

Zhang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1244 23/23


https://peerj.com
http://dx.doi.org/10.1016/j.jpdc.2019.07.013
http://dx.doi.org/10.1109/TETC.2016.2614383
http://dx.doi.org/10.1016/j.neucom.2021.03.141
http://dx.doi.org/10.7717/peerj-cs.1244

