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ABSTRACT

Pan-sharpening is a fundamental and crucial task in the remote sensing image
processing field, which generates a high-resolution multi-spectral image by fusing
a low-resolution multi-spectral image and a high-resolution panchromatic image.
Recently, deep learning techniques have shown competitive results in pan-sharpening.
However, diverse features in the multi-spectral and panchromatic images are not fully
extracted and exploited in existing deep learning methods, which leads to information
loss in the pan-sharpening process. To solve this problem, a novel pan-sharpening
methodbased onmulti-resolution transformer and two-stage feature fusion is proposed
in this article. Specifically, a transformer-based multi-resolution feature extractor is
designed to extract diverse image features. Then, to fully exploit features with different
content and characteristics, a two-stage feature fusion strategy is adopted. In the
first stage, a multi-resolution fusion module is proposed to fuse multi-spectral and
panchromatic features at each scale. In the second stage, a shallow-deep fusion module
is proposed to fuse shallow and deep features for detail generation. Experiments
over QuickBird and WorldView-3 datasets demonstrate that the proposed method
outperforms current state-of-the-art approaches visually and quantitatively with fewer
parameters. Moreover, the ablation study and feature map analysis also prove the
effectiveness of the transformer-based multi-resolution feature extractor and the two-
stage fusion scheme.

Subjects Artificial Intelligence, Computer Vision, Neural Networks

Keywords Multi-resolution transformer, Two-stage feature fusion, Pan-sharpening, Remote
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INTRODUCTION

Multi-spectral (MS) images are widely used in remote sensing applications such as land

cover classification (Ghamisi et al., 2019), environmental change detection (Bovolo et

al., 2010) and agriculture monitoring (Gilbertson, Kemp & Van Niekerk, 2017). Due to

physical constraints, there is a trade-off between spatial and spectral resolutions during

satellite imaging. The satellite can only provide low-spatial-resolution (LR) MS images and

corresponding high-spatial-resolution (HR) PANchromatic (PAN) images (Zhang, 2004;

Zhou, Liu & Wang, 2021). However, many applications mentioned above require satellite

imagery with high spatial and spectral resolutions. Pan-sharpening meets the demand by

fusing the LRMS and PAN images to obtain an HRMS image.
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Various methods are proposed for pan-sharpening. They can be separated into four

main classes: component substitution (CS), multi-resolution analysis (MRA), variational

optimization (VO) and deep learning (DL) (Vivone et al., 2015; Vivone et al., 2021b; Vivone

et al., 2021a). The first three classes belong to traditional algorithms that appeared several

decades ago. The DL-basedmethods have emerged recently and achieved promising results.

The CS algorithms transform the LRMS image to another domain to replace its spatial

component with the corresponding PAN data. Widely known CS approaches include

those utilizing intensity-hue-saturation (IHS) transform (Carper, Lillesand & Kiefer, 1990),

principal component analysis (PCA) (Kwarteng & Chavez, 1989), the Gram–Schmidt (GS)

transform (Laben & Brower, 2000), and band-dependent spatial detail (BDSD) (Garzelli,

Nencini & Capobianco, 2008).

The MRA category consists of algorithms that adopt a multi-scale decomposition to

extract spatial details from the PAN image and inject them into up-sampled MS bands

(Xiong et al., 2021). Wavelet transform (WT) (Kim et al., 2011), discrete wavelet transform

(DWT) (Pradhan et al., 2006) and generalized Laplacian pyramidswithmodulation transfer

function (MTF-GLP) (Aiazzi et al., 2003) are well-known MRA methods.

TheVOmethods rely ondefining and solving optimization problems. For instance, P+XS

(Ballester et al., 2006) obtains a high-fidelity HRMS image via a variational optimization

process with several reasonable hypotheses. SR-D (Vicinanza et al., 2015) uses sparse

dictionary elements to represent the desired spatial details. The representation coefficients

are obtained by solving a variational optimization problem. In the last few years, VO

methods have also been combined with DL techniques to use the advantages of both classes

fully (Shen et al., 2019; Deng et al., 2021).

The DL class typically leverages data-driven learning to get an optimized solution for

pan-sharpening.Huang et al. (2015) launched the first attempt atDL-based pan-sharpening

by utilizing a modified sparse de-noising auto-encoder scheme. Inspired by convolutional

neural networks (CNN) based image super-resolution (Dong et al., 2016),Masi et al. (2016)

proposed an efficient three-layer CNN called PNN. To fully extract spectral and spatial

features, RSIFNN (Shao & Cai, 2018) uses a two-stream architecture to extract features

from the LRMS and PAN images separately. PanNet (Yang et al., 2017) generates spatial

details with a deep residual network in the high-pass filtering domain for better spatial

preservation. Spectral information is also preserved by directly adding the up-sampled

LRMS image to the details. Observing that the scale of features varies among different

ground objects, Yuan et al. (2018) proposed a multi-scale and multi-depth CNN called

MSDCNN.Many follow-upworks exploitmulti-scale feature extraction in pan-sharpening.

For example, PSMD-Net (Peng et al., 2021) embeds multi-scale convolutional layers into

dense blocks for pan-sharpening. Zhang et al. (2019) proposed a bidirectional pyramid

network that reconstructs the HRMS image from coarse resolution to fine resolution.

Recently, several transformer-based pan-sharpening methods emerged (Meng et al., 2022;

Zhou et al., 2022). They utilize transformers to extract long-range image features but have

not considered multi-scale information. DR-NET (Su, Li & Hua, 2022) introduces Swin

Transformer (Liu et al., 2021) blocks into a UNet-like architecture for spatial information

preservation. CPT-noRef (Li, Guo & Li, 2022) uses a pyramid transformer encoder to

Fan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1488 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1488


supply global and multi-scale features. With long-range feature extraction capacity, these

transformer-based methods have achieved promising results. However, the utilization

of transformers also induces higher model complexity. To avoid this, in this article, we

aim to design a lightweight network that can exploit diverse features. Transformers in the

proposed network only need to extract a few distinct features.

In existing DL-based methods, diverse features with multi-scale, multi-depth and

contextual information are not fully extracted. And in image reconstruction, the

indiscriminate use of these diverse features also limits the fusion quality. To solve these

problems, we propose a pan-sharpening approach based on multi-resolution transformer

and two-stage feature fusion in this article. Two transformer-basedmulti-resolution feature

extractors (MRFE) are applied separately to the LRMS and PAN images to extract diverse

features fully. After feature extraction, a multi-resolution fusion module (MRFM) and a

shallow-deep fusion module (SDFM) are proposed to exploit multi-scale and multi-depth

features for spatial detail generation. Finally, the generated details are injected into the

up-sampled LRMS image to obtain the pan-sharpened image. Extensive experiments

over QuickBrid (QB) and WorldView-3 (WV3) datasets demonstrate that the proposed

method outperforms state-of-the-art algorithms visually and quantitatively. The main

contributions can be summarized as follows:

1. A two-branch transformer-based feature extractor is designed to facilitate information

interaction between different resolutions and finally learn effective multi-scale feature

representation of the LRMS and PAN images.

2. An MRFM is proposed to fuse LRMS and PAN features at each resolution, which is

simple yet effective for the fusion of multi-resolution modality-specific features.

3. An SDFM is proposed to fuse shallow local and deep multi-scale features, which is

essential for fully utilizing diverse features.

MATERIALS & METHODS

Datasets

Pan-sharpening is a technique that uses the PAN image to sharpen the LRMS image. It

has a wide application in the remote sensing field. However, there are various imaging

satellites. The PAN and LRMS data they captured have different characteristics, which

challenges the generality of pan-sharpening methods. Thus, two datasets captured by QB

andWV3 satellites are used in the experiments to evaluate the performance of the proposed

method. Another challenge is the absence of real HRMS images. Since the ground-truth

(GT) HRMS images are unavailable for the pan-sharpening task, we followWald’s protocol

(Wald, Ranchin & Mangolini, 1997) to spatially degrade the LRMS and PAN images by a

factor of 4 (the spatial-resolution gap between the PAN and LRMS images). Then, the

original full-resolution LRMS images can be regarded as references, i.e., GTHRMS images.

All the images are cropped into PAN patches with size of 128 × 128 and LRMS patches

with size of 32 × 32 to generate datasets. As a result, the QB dataset has 11,216 patch

pairs, and the WV3 dataset has 11160 patch pairs. The 11216 QB patch pairs are randomly

divided into 8974/1121/1121 (80%/10%/10%) pairs for the training, validation, and testing
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Table 1 Detailed information about the two datasets.GSD denotes the ground sample distance, which
describes the spatial resolution of remote sensing imagery.

Satellite Image

type

#Bands GSD Patch

size

#Patch pairs

(training/validation

/testing)

PAN 1 0.6 m 128 × 128
QuickBird

MS 4 2.4 m 32 × 32
8974/1121/1121

PAN 1 0.3 m 128 × 128
WorldView-3

MS 8 1.2 m 32 × 32
8928/1116/1116

sets, respectively. Similarly, the 11160 WV3 patch pairs are divided into 8928/1116/1116

(80%/10%/10%) pairs for training, validating and testing. Additionally, to evaluate the

performance of models on real-world full-resolution data, the original LRMS and PAN

images without spatial degradation are cropped into 1121 QB patch pairs and 1116 WV3

patch pairs for full-resolution testing sets. Details about the datasets are given in Table 1.

Method
Overall network architecture

The overall architecture of the proposed method is depicted in Fig. 1, whereXP ∈R
H×W×1,

XM ∈R
H
4 ×W

4 ×B and ŶM ∈R
H×W×B represent the PAN image, the LRMS image and the

fused image. W and H are the width and height of the PAN image. B is the number of

MS bands. First, shallow local features of up-sampled XM and XP are extracted by two

convolution layers with kernel size of 3 × 3, respectively. These convolution layers are also

referred to as pre-conv layers. Then, the shallow local features are fed into an MRFE to

further extract deep multi-resolution feature maps of the two images. The feature maps

at the same resolution are concatenated and fused by an MRFM. Finally, the deep and

shallow features are merged by an SDFM and added to the up-sampled XM to obtain the

pan-sharpened image ŶM. The entire pan-sharpening process can be described as follows:

MS =Pre-conv(↑XM) (1)

PS =Pre-conv(XP) (2)

MHR,MMR,MLR,PHR,PMR,PLR =MRFE(MS,PS) (3)

FD =MRFM([MHR,PHR],[MMR,PMR],[MLR,PLR]) (4)

YD = SDFM([MS,PS,FD]) (5)

ŶM =YD+ ↑XM (6)

where ↑ XM represents the up-sampled LRMS image. MS and PS are shallow features

of the LRMS and PAN images. MHR and PHR are HR feature maps. MMR and PMR are

Middle-Resolution (MR) feature maps. MLR and PLR are LR feature maps. FD denotes the

deep features. YD is the generated spatial details injected into the up-sampled LRMS image.

[·] represents concatenation at the channel dimension. The MRFE, MRFM and SDFM are

key components of the proposed method, which will be elaborated in the following.
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Figure 1 The overall architecture of the proposed pan-sharpening network. ↑ 4 denotes up-sampling
by a factor of 4 (the spatial resolution gap between XP and X M). Pre-convolution (pre-conv) layers and
the HRFormer-based MRFE are employed to extract diverse features. To fully exploit these features, a
two-stage feature fusion strategy is adopted. The multi-resolution fusion is completed via the MRFM. The
shallow-deep fusion is executed by the SDFM, which generates the spatial details YD. YD is added to the
up-sampled XM to obtain the pan-sharpened image. The photos in this figure are generated from the raw
data available at https://github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-1

Multi-resolution feature extractor

Extracting effective and diverse features is of great importance to spatial information

preservation. To this end, the MRFE keeps an HR stream without down-sampling

to prevent spatial information loss and gradually adds MR and LR streams to extract

multi-scale features. Furthermore, skip connections with up-sampling or down-sampling

operations are used between multi-resolution streams to facilitate information interaction,

which can help improve the features’ effectiveness and reduce redundancy among streams.

For long-range feature extraction, HRFormer blocks (Yuan et al., 2021) are used as basic

blocks to build the MRFE. The structure of an HRFormer block is shown in Fig. 2.

The Local-Window Self-Attention (LWSA) mechanism models long-range dependencies

between pixels. Then, the Feed-Forward Network (FFN) with a 3 × 3 Depth-Wise (DW)

convolution exchanges information across windows to acquire contextual information. As

shown in Fig. 1, the MRFE consists of HRFormer blocks and skip connections between

streams. Therefore, the HRFormer blocks can encode contextual information into the

features. And the multi-resolution streams exchange information with each other to

generate effective and diverse deep feature representationsMHR,MMR,MLR, PHR, PMR, and

PLR. In the following, two fusion stages are designed to fuse these features progressively.
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Figure 2 The structure of an HRFormer block.MHSA denotes the multi-head self-attention mecha-
nism. Left: the local-window self-attention splits feature maps into local windows and performs MHSA
separately in each window. Right: the feed-forward network uses convolution layers to exchange informa-
tion across local windows.

Full-size DOI: 10.7717/peerjcs.1488/fig-2

Multi-resolution fusion module

In the first fusion stage, we propose an MRFM to fuse LRMS and PAN feature maps at

each resolution. The structure of the MRFM is shown in Fig. 3. Every two LRMS and

PAN feature representations with the same resolution are concatenated and fed into a

3 × 3 convolution layer to fuse the modality-specific features. Then, a residual block

(ResBlock) (He et al., 2016) is used to refine the fused features. To restore the spatial details

of the MR and LR feature maps, 3 × 3 convolution and pixel shuffle layers are used as

learnable up-sampling procedures. Finally, feature maps with multi-scale information

are concatenated to constitute the deep features FD. Thanks to the different depths and

resolutions of these streams, the feature maps in FD are diverse and complementary to the

shallow features.

Shallow-deep fusion module

To generate spatial details by fully using the shallow featuresMS, PS, and the deep features

FD, an SDFM is proposed, which helps the network focus on more informative features

and avoids the degradation problem (He et al., 2016). Figure 4 displays the structure of the

SDFM. MS, PS and FD are concatenated by the channel dimension and fed into a 1 × 1

convolution to primarily fuse the features. Note that the shallow features MS and PS skip

the MRFM. They are directly fed to this stage to preserve the original image information.

Then, a standard squeeze and excitation block (Hu, Shen & Sun, 2018) is adopted to excite

informative features. Specifically, a global average pooling (GAP) is used to aggregate

the channel-wise global information into a channel descriptor. Subsequently, two 1 ×

1 convolution layers reduce and restore the dimension of the descriptor to capture the

correlations among channels. The restored descriptor is mapped to a set of channel weights

via a sigmoid function. Thus, informative channels can be excited by scaling the primarily
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Figure 3 The structure of the MRFM. The MS and PAN feature maps at the same resolution are concate-
nated and fused via a corresponding subnetwork. The subnetworks up-sample the feature maps via pixel
shuffle layers, resulting in high-resolution feature maps FD1, FD2, and FD

3. These feature maps are con-
catenated to form the fused deep features FD.

Full-size DOI: 10.7717/peerjcs.1488/fig-3

Figure 4 The structure of the SDFM. The shallow featuresMS, PS, and deep features FD are concatenated
and fused via convolution layers and a standard channel attention mechanism. The output is the spatial
details YD, which will be added to the up-sampled LRMS image to obtain the pan-sharpened image.

Full-size DOI: 10.7717/peerjcs.1488/fig-4

fused features with the channel weights. We exploit the excited features to learn a residual

component to refine the fused features. A 3 × 3 convolution layer completes this step.

Finally, a 1 × 1 convolution generates spatial details YD from the refined features. The

details are injected into the up-sampled LRMS image to obtain the pan-sharpening result

ŶM.
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RESULTS

Metrics

Five widely used indicators are adopted to evaluate different methods quantitatively. The

indices can be grouped into four full-reference indicators and one no-reference indicator

according to whether they require a GT image in calculations. For the evaluation on

reduced-resolution datasets, we measure the four full-reference indices, including Spectral

Angle Mapper (SAM) (Yuhas, Goetz & Boardman, 1992), relative dimensionless global

error in synthesis (ERGAS) (Wald, 2002), spatial Correlation Coefficient (sCC) (Zhou,

Civco & Silander, 1998), and the Q2n (Alparone et al., 2004; Garzelli & Nencini, 2009)

index (i.e., Q4 for 4-band data and Q8 for 8-band data). ERGAS and Q2n evaluate the

global quality of pan-sharpened results. SAM estimates spectral distortions. sCC measures

the quality of spatial details. In the evaluation on full-resolution datasets, we adopt the

no-reference index Hybrid Quality with No Reference (HQNR) (Aiazzi et al., 2014) with

its spectral distortion component Dλ and spatial distortion component DS to measure the

quality of pan-sharpened results.

Experimental setting

The proposed method is implemented with the PyTorch framework and runs on an

NVIDIA GEFORCE RTX 3090 GPU. Our model is trained for 500 epochs by an AdamW

(Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 0.0005, a momentum

of 0.9, β1 = 0.9, β2 = 0.999, and a weight decay coefficient of 0.05. The mini-batch size is

set to 16.

The hyper-parameter setting of the proposed method is listed in Table 2. Since the

shallow pre-conv layers mainly focus on local regions and extract fine-grained features

with rich spatial details, the channel number of output feature maps at these shallow

layers is set to CS = 16. The deep multi-scale feature maps in the MRFE and MRFM have

contextual information. Contextual information is essential to pan-sharpening because of

the similarity among ground objects. However, the pan-sharpening task focuses more on

fine-grained spatial details than contextual semantic information. Therefore, the number

of output feature maps at each layer in the MRFE and MRFM is set to CD = 8. In the

SDFM, except for the last layer, the number of feature maps equals the total feature map

amount of MS, PS and FD (i.e., 56). K is the window size of the LWSA in an HRFormer

block, which is set to 8 by default. H denotes the head number of the MHSA in the LWSA.

H = 1 is enough as the channel number C = 8 is quite low.

Experiments are conducted to verify the proposed model configuration. First, under the

condition of a roughly unchanged total number of feature maps, the channel number of

shallow features CS and the channel number of deep features CD are adjusted to find an

appropriate setting of feature map numbers. The mean and standard deviation (STD) of

the experimental results are reported in Table 3, which demonstrates that the fine-grained

shallow feature maps at fine should be slightly more than the coarse-grained deep feature

maps. We tested different values to determine the MHSA’s head number H. The results

are listed in Table 4, which proves that H = 1 is enough.

Fan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1488 8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1488


Table 2 The architecture configuration of the proposed method. The PAN and MS feature extractors share the same configuration. Therefore, the
settings of one pre-conv and MRFE branch are listed for brevity. Downsp. Rate denotes the downsampling rate of a network stream.

Downsp.

Rate

Pre-conv MRFE MRFM SDFM

1× 3 × 3, 16

[

LWSA,K = 8,H = 1
FFN,C = 8

]

×2 3 × 3, 8; ResBlock 1 × 1, 56

[

GAP;1×1,14;1×1,56
Sigmoid;3×3,56

]

1 × 1, B

2×

[

LWSA,K = 8,H = 1
FFN,C = 8

]

×2 3 × 3, 8; ResBlock

[

3×3,32
Pixel Shuffle

]

3×

[

LWSA,K = 8,H = 1
FFN,C = 8

]

3 ×3, 8; ResBlock

[

3×3,32
Pixel Shuffle

]

×2

Table 3 Quantitative comparison (mean± STD) of model variants with different numbers of shallow and deep feature maps on the reduced-

resolution QB testing set. The best results are bold. CS is the number of shallow feature maps. CD is the number of deep feature maps.

CS CD SAM ERGAS sCC Q4 Dλ DS HQNR

10 10 1.1602 ± 0.4216 0.8120 ± 0.3043 0.9908 ± 0.0053 0.9451 ± 0.0674 0.0307 ± 0.0284 0.0469 ± 0.0473 0.9249 ± 0.0650

16 8 1.1138± 0.4043 0.7738± 0.2898 0.9917± 0.0049 0.9488± 0.0651 0.0267± 0.0211 0.0426± 0.0392 0.9324± 0.0527

20 6 1.1662 ± 0.4237 0.8147 ± 0.3044 0.9907 ± 0.0053 0.9451 ± 0.0664 0.0281 ± 0.0288 0.0444 ± 0.0482 0.9298 ± 0.0651

Ideal value 0 0 1 1 0 0 1

Table 4 Quantitative comparison of model variants with different head numbers on the reducedresolution QB testing set. The best results are
bold. H is the number of heads in the MHSA mechanism.

H SAM ERGAS sCC Q4 Dλ DS HQNR

1 1.1138± 0.4043 0.7738± 0.2898 0.9917± 0.0049 0.9488± 0.0651 0.0267± 0.0211 0.0426± 0.0392 0.9324± 0.0527

2 1.1575 ± 0.4212 0.8070 ± 0.3019 0.9909 ± 0.0053 0.9455 ± 0.0671 0.0304 ± 0.0258 0.0464 ± 0.0447 0.9255 ± 0.0617

4 1.1655 ± 0.4227 0.8138 ± 0.3033 0.9908 ± 0.0053 0.9449 ± 0.0672 0.0289 ± 0.0240 0.0448 ± 0.0448 0.9284 ± 0.0604

Ideal value 0 0 1 1 0 0 1

Comparison with other methods

The proposed method is compared with eight widely used pan-sharpening techniques,

including two CS algorithms: GSA (Aiazzi, Baronti & Selva, 2007), BDSD (Garzelli, Nencini

& Capobianco, 2008), one MRA method: MTF-GLP-FS (Vivone, Restaino & Chanussot,

2018), one VO-based method: TV (Palsson, Sveinsson & Ulfarsson, 2014), two CNN-based

methods: PNN (Masi et al., 2016), MSDCNN (Yuan et al., 2018), and two transformer-

based methods: DR-NET (Su, Li & Hua, 2022) and Zhou et al. (2022).

Experimental results on reduced-resolution datasets

To verify the effectiveness of the proposedmethod, we conducted comparative experiments

on the reduced-resolution QB and WV3 datasets. In this case, the original LRMS images

are GT images for visual assessment.

Figure 5 displays visual results on the reduced-resolution QB data. To highlight the

differences, we visualize residual maps between the pan-sharpening results and the

reference (GT) in Fig. 6. A pixel with a small mean absolute error (MAE) is shown in

blue. In contrast, a pixel with a big MAE is displayed in yellow. From the enlarged box
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Figure 5 Pan-sharpening results of different methods on a reduced-resolution QB testing patch pair.

(A) Up-LRMS. (B) PAN. (C) GT. (D) GSA. (E) BDSD. (F) MTF-GLP-FS. (G) TV. (H) PNN. (I) MSD-
CNN. (J) DR-NET. (K) Zhou et al. (2022) (L) Ours. Up-LRMS denotes the LRMS image up-sampled to
the PAN size. The photos in this figure are generated from the raw data available at https://github.com/
zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-5

and the red buildings in the bottom center of images, it can be observed that results from

GSA, MTF-GLP-FS and PNN have severe spectral distortions. The result of TV suffers

from blurring effects. As shown in the enlarged views in Fig. 6, BDSD, MSDCNN, DR-NET

and Zhou et al. (2022) show distinct yellow points, while the residual map of our MRPT is

almost dark blue, which demonstrates the proposed method’s superiority.

Fusion results on the reduced-resolution WV3 data are displayed in Fig. 7. Figure 8

displays the corresponding residual maps. As shown in the enlarged views of Fig. 7, the

result of GSA, BDSD, MTF-GLP-FS and TV suffer from spectral distortions. From the

enlarged views of residual maps in Fig. 8, it can be found that the results of PNN,MSDCNN,

DR-NET and Zhou et al. (2022) have larger MAE in local areas than our method.

Tables 5 and 6 list the average performance and STD of different methods across all

testing reduced-resolution image pairs. It can be found that transformer-based Zhou et al.

(2022) and DR-NET have the second-best and third-best results on both datasets. Over the

reduced-resolution QB testing set, our method yields the best quantitative results on SAM,
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Figure 6 Residual maps between the results and the GT in Fig. 5. (A) GSA. (B) BDSD. (C) MTF-GLP-
FS. (D) TV. (E) PNN. (F) MSDCNN. (G) DR-NET. (H) Zhou et al. (2022) (I) Ours. The photos in this fig-
ure are generated from the raw data available at https://github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-6

Figure 7 Pan-sharpening results of different methods on a reduced-resolutionWV3 testing patch pair.

(A) Up-LRMS. (B) PAN. (C) GT. (D) GSA. (E) BDSD. (F) MTF-GLP-FS. (G) TV. (H) PNN. (I) MSD-
CNN. (J) DR-NET. (K) Zhou et al. (2022) (L) Ours. The photos in this figure are generated from the raw
data available at https://github.com/zhysora/PGMAN.

Full-size DOI: 10.7717/peerjcs.1488/fig-7
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Figure 8 Residual maps between the results and the GT in Fig. 7. (A) GSA. (B) BDSD. (C) MTF-GLP-
FS. (D) TV. (E) PNN. (F) MSDCNN. (G) DR-NET. (H) Zhou et al. (2022) (I) Ours. The photos in this fig-
ure are generated from the raw data available at https://github.com/zhysora/PGMAN.

Full-size DOI: 10.7717/peerjcs.1488/fig-8

Table 5 Quantitative comparison of different methods on the reduced-resolution QB testing set. The
best results are bold and the second-best results are underlined.

SAM ERGAS sCC Q4

GSA 1.9273 ± 0.8478 1.4668 ± 0.6854 0.9678 ± 0.0251 0.8788 ± 0.0931

BDSD 1.9180 ± 0.8243 1.4297 ± 0.6622 0.9736 ± 0.0193 0.8888 ± 0.0829

MTF-GLP-FS 1.8771 ± 0.8068 1.4589 ± 0.6426 0.9691 ± 0.0234 0.8812 ± 0.0871

TV 1.9741 ± 0.8194 1.8726 ± 0.9622 0.9656 ± 0.0191 0.8245 ± 0.1316

PNN 1.4217 ± 0.5216 1.0570 ± 0.3631 0.9850 ± 0.0096 0.9107 ± 0.0866

MSDCNN 1.2629 ± 0.4563 0.9011 ± 0.3213 0.9886 ± 0.0064 0.9328 ± 0.0747

DR-NET 1.1280 ± 0.4101 0.7855 ± 0.2957 0.9918± 0.0048 0.9475 ± 0.0662

Zhou et al. 1.1601 ± 0.4196 0.8130 ± 0.3062 0.9907 ± 0.0054 0.9447 ± 0.0675

Ours 1.1138± 0.4043 0.7738± 0.2898 0.9917 ± 0.0049 0.9488± 0.0651

Ideal value 0 0 1 1

ERGAS and Q4. Furthermore, over the WV3 testing set, our method has the best results

for all indicators.

Experimental results on full-resolution datasets

All the methods are tested on original PAN and LRMS images to further verify the

effectiveness of our method on the full-resolution real data. However, there are no GT

HRMS images as references in this circumstance.

Figure 9 shows visual results on the full-resolution QB data. As shown in the enlarged

view, the fusion result of GSA suffers from severe spectral distortions. It can also be

observed that the results of BDSD, MTF-GLP-FS, PNN and DR-NET have slight color

distortions. On the other hand, despite well-maintained spectral information, the results

of TV, MSDCNN and Zhou et al. (2022) suffer from blurring effects. By comparison, our

method presents the best pan-sharpening result regarding spectral and spatial fidelity.
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Table 6 Quantitative comparison of different methods on the reduced-resolutionWV3 testing set.

The best results are bold and the second-best results are underlined.

SAM ERGAS sCC Q4

GSA 5.1082 ± 2.3376 3.8059 ± 1.7799 0.9455 ± 0.0395 0.8779 ± 0.1224

BDSD 5.6257 ± 2.6578 4.0366 ± 1.8778 0.9536 ± 0.0281 0.8688 ± 0.1314

MTF-GLP-FS 5.0723 ± 2.2696 3.8957 ± 1.7825 0.9466 ± 0.0365 0.8746 ± 0.1176

TV 5.2736 ± 2.0988 4.1111 ± 1.5417 0.9435 ± 0.0309 0.8538 ± 0.1356

PNN 3.4963 ± 1.2863 2.6023 ± 1.2673 0.9810 ± 0.0132 0.9126 ± 0.1228

MSDCNN 3.4077 ± 1.1944 2.4896 ± 1.1989 0.9829 ± 0.0123 0.9218 ± 0.1213

DR-NET 2.9762 ± 1.2064 2.2273 ± 1.2094 0.9871 ± 0.0119 0.9298 ± 0.1152

Zhou et al. (2022) 3.0180 ± 1.1999 2.2440 ± 1.1637 0.9861 ± 0.0114 0.9286 ± 0.1156

Ours 2.9452± 1.1927 2.1842± 1.1480 0.9871± 0.0112 0.9308± 0.1165

Ideal value 0 0 1 1

Figure 9 Pan-sharpening results of different methods on a full-resolution QB testing patch pair. (A)
Up-LRMS. (B) PAN. (C) GSA. (D) BDSD. (E) MTF-GLP-FS. (F) TV. (G) PNN. (H) MSDCNN. (I) DR-
NET. (J) Zhou et al. (2022) (K) Ours. The photos in this figure are generated from the raw data available at
https://github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-9
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Figure 10 Pan-sharpening results of different methods on a full-resolutionWV3 testing patch pair.

(A) Up-LRMS. (B) PAN. (C) GSA. (D) BDSD. (E) MTF-GLP-FS. (F) TV. (G) PNN. (H) MSDCNN. (I)
DR-NET. (J) Zhou et al. (2022) (K) Ours. The photos in this figure are generated from the raw data avail-
able at https://github.com/zhysora/PGMAN.

Full-size DOI: 10.7717/peerjcs.1488/fig-10

Figure 10 displays visual results on the WV3 testing set at full resolution. From the

enlarged views of Fig. 10, it can be observed that TV suffers from artifacts. The results

of GSA, BDSD, MTF-GLP-FS, PNN, DR-NET and Zhou et al. (2022) have slight spectral

distortions. MSDCNN suffers from blurring effects. Our method yields a fusion image

with more explicit details and higher spectral fidelity.

The quantitative results of different methods on the two datasets are listed in Tables 7

and 8. Over the QB dataset, our method yields the best quantitative results on all three

indicators. As for the WV3 testing set, TV has the best D λ, and Zhou et al. (2022) has the

best D S. Our method has the second-best results on both indicators and the best HQNR

value, which indicates that the proposed method has the best overall performance.

Parameter numbers and time performance

To further evaluate the complexity of the proposed method, the parameter number and

average runtime of each method on the 1,121 QB reduced-resolution testing patches are

given in Table 9. The traditional algorithms are tested on a 2.6-GHz Intel Core i7-10750H

CPU, and the DL-based approaches are tested on an NVIDIA GeForce RTX 2060 GPU.

By comparison, the VO-based TV consumes more runtime than other methods. PNN
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Table 7 Quantitative comparison of different methods on the full-resolution QB testing set. The best
results are bold and the second-best results are underlined.

Dλ DS HQNR

GSA 0.0796 ± 0.0713 0.1216 ± 0.0980 0.8146 ± 0.1328

BDSD 0.0701 ± 0.0470 0.0734 ± 0.0647 0.8636 ± 0.0908

MTF-GLP-FS 0.0413 ± 0.0337 0.0887 ± 0.0786 0.8748 ± 0.0895

TV 0.1398 ± 0.1483 0.0692 ± 0.0390 0.8024 ± 0.1511

PNN 0.0619 ± 0.0700 0.0554 ± 0.0572 0.8887 ± 0.0986

MSDCNN 0.0498 ± 0.0582 0.0514 ± 0.0507 0.9031 ± 0.0862

DR-NET 0.0498 ± 0.0636 0.0495 ± 0.0467 0.9050 ± 0.0891

Zhou et al. (2022) 0.0333 ± 0.0290 0.0486 ± 0.0493 0.9208 ± 0.0675

Ours 0.0267± 0.0211 0.0426± 0.0392 0.9324± 0.0527

Ideal value 0 0 1

Table 8 Quantitative comparison of different methods on the full-resolutionWV3 testing set. The best
results are bold and the second-best results are underlined.

Dλ DS HQNR

GSA 0.0829 ± 0.0885 0.0924 ± 0.0929 0.8392 ± 0.1390

BDSD 0.1446 ± 0.1084 0.0734 ± 0.0639 0.7969 ± 0.1370

MTF-GLP-FS 0.0484 ± 0.0481 0.0681 ± 0.0751 0.8889 ± 0.0982

TV 0.0395± 0.0471 0.0771 ± 0.0768 0.8883 ± 0.0980

PNN 0.0819 ± 0.0988 0.0610 ± 0.0897 0.8696 ± 0.1435

MSDCNN 0.0798 ± 0.1025 0.0584 ± 0.0870 0.8737 ± 0.1443

DR-NET 0.0698 ± 0.0654 0.0571 ± 0.0843 0.8819 ± 0.1219

Zhou et al. (2022) 0.0558 ± 0.0519 0.0509± 0.0784 0.8996 ± 0.1081

Ours 0.0467 ± 0.0450 0.0510 ± 0.0809 0.9078 ±0.1064

Ideal value 0 0 1

exhibits the lowest time consumption because it only has three convolution layers. Thus,

its computational complexity is extremely low. Other methods show relatively close time

consumption. In terms of parameter numbers, the parameters of DR-NET are considerably

more than other methods. It is due to the large number of feature maps throughout the

DR-NET. Exploiting these feature maps leads to redundancy and high complexity. The

proposed method has the fewest parameters, which means low spatial complexity and will

facilitate model deployment on devices with limited memory resources.

Ablation study

Since the MRFE with skip connections, MRFM and SDFM are the core of our method, a

series of ablation experiments are conducted to validate their effectiveness. Four variants

of our network are built for the ablation study: (a) w/o MRFE; (b) w/o MRFM; (c) w/o

SDFM; (d) w/o skip connections (w/o SC). The structures of these variants are shown in

Fig. 11. The quantitative results of ablation experiments are listed in Table 10. Figure 12

shows the visual results of the variants over the QB dataset. Corresponding residual maps
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Table 9 Parameter number and average runtime comparison of different methods on the reduced-

resolution QB testing set. The runtimes’ units are seconds (s). The parameters in a deep neural network
may not have a straightforward physical interpretation. Thus, they have no units.

Method #Params Runtime (s)

GSA – 0.0067

BDSD – 0.0121

MTF-GLP-FS – 0.0211

TV – 0.4026

PNN 80,420 0.0013

MSDCNN 189,852 0.0038

DR-NET 2,619,017 0.0120

Zhou et al. (2022) 70,600 0.0235

Ours 70,156 0.0170

Figure 11 Structure diagrams of the model variants in the ablation study. (A) W/o MRFE. (B) w/o
MRFM. (C) w/o SDFM. (D) w/o SC. The photos in this figure are generated from the raw data available at
https://github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-11

are displayed in Fig. 13. Figure 14 shows the convergence performance of the variants

during the training process.
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Figure 12 Pan-sharpening results of the ablation study on a reduced-resolution QB testing patch pair.

(A) Up-LRMS. (B) PAN. (C) GT. (D) w/o MRFE. (E) w/o MRFM. (F) w/o SDFM. (G) w/o SC. (H) Ours.
The photos in this figure are generated from the raw data available at https://github.com/zhysora/PSGan-
Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-12

Figure 13 Residual maps between the results and the GT in Fig. 12. (A) w/o MRFE. (B) w/o MRFM.
(C) w/o SDFM. (D) w/o SC. (E) Ours. The photos in this figure are generated from the raw data available
at https://github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-13

Importance of the multi-resolution feature extractor

The MRFE extracts deep multi-scale feature representations. The MRFM subsequently

fuses these representations. Therefore, removing the MRFE leads to the simultaneous

ablation of the MRFM. In the ablation study settings, the variant w/o MRFE eliminates

both the MRFE and MRFM, while the variant w/o MRFM only eliminates the MRFM. As a

result, the influence of theMRFE can be found by comparing the results of the two variants.

As shown in Table 10, the variant w/o MRFM yields much better results than the variant

w/o MRFE. From the residual maps in Fig. 13, it can also be observed that the variant w/o

MRFE shows larger residuals than the variant w/o MRFM. The comparison between these

two variants demonstrates that the MRFE plays a significant role in the proposed method.
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Figure 14 Convergence performance of the variants in the training phase of the ablation study on the

QB data set. The loss function values of the first several epochs are much bigger than 13, which are omit-
ted to highlight the final differences.

Full-size DOI: 10.7717/peerjcs.1488/fig-14

Table 10 Quantitative comparison of the variants in the ablation study on the QB testing set. The best results are bold.

Variant SAM ERGAS sCC Q4 Dλ DS HQNR

w/o MRFE 1.2678 ± 0.4643 0.8921 ± 0.3321 0.9888 ± 0.0066 0.9377 ± 0.0705 0.0504 ± 0.0474 0.0560 ± 0.0571 0.8987 ± 0.0879

w/o MRFM 1.1506 ± 0.4201 0.7997 ± 0.2999 0.9911 ± 0.0052 0.9465 ± 0.0665 0.0280 ± 0.0247 0.0455 ± 0.0455 0.9287 ± 0.0612

w/o SDFM 1.1824 ± 0.4352 0.8248 ± 0.3163 0.9903 ± 0.0057 0.9446 ± 0.0666 0.0264± 0.0205 0.0450 ± 0.0376 0.9303 ± 0.0498

w/o SC 1.1182 ± 0.4064 0.7750 ± 0.2894 0.9917± 0.0049 0.9484 ± 0.0656 0.0277 ± 0.0228 0.0435 ± 0.0422 0.9307 ± 0.0567

Ours 1.1138± 0.4043 0.7738± 0.2898 0.9917± 0.0049 0.9488± 0.0651 0.0267 ± 0.0211 0.0426± 0.0392 0.9324± 0.0527

Ideal value 0 0 1 1 0 0 1

Importance of the multi-resolution fusion module

The MRFM is removed as the variant w/o MRFM in Fig. 11 to verify the necessity of two-

stage feature fusion. In the variant w/o MRFM, both multi-resolution and shallow-deep

features are fused by the SDFM. The results of the variant w/o MRFM in Table 10 are

apparently inferior to our full model, which demonstrates that the MRFM is effective.

These results also prove the two-stage feature fusion is better than the traditional one-shot

fusion. Furthermore, the residual map in Fig. 13 also shows that removing the MRFM is

harmful.

Importance of the shallow-deep fusion module

To verify the effectiveness of the SDFM, we replace the module with a simple 3 × 3

convolution layer. The metrics of the variant w/o SDFM in Table 10 show that replacing
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Figure 15 Visualization of the feature maps from the Pre-conv layers and theMRFM. (A)MS. (B) PS.
(C) FD1. (D) FD2. (E) FD3. The photos in this figure are generated from the raw data available at https://
github.com/zhysora/PSGan-Family.

Full-size DOI: 10.7717/peerjcs.1488/fig-15

the SDFM with a simple convolution layer is detrimental to fusion results. In Fig. 14, it is

evident that the variant w/o SDFM converges slower than other structures, especially in

the first 50 epochs. The slow convergence of the variant w/o SDFM demonstrates that a

slightly more complicated shallow-deep fusion module can boost the convergence speed

of our method.

Importance of the skip connections between resolutions

Information exchange across resolutions relies on up-sampling and down-sampling skip

connections. All the connections except those adding the streams are deleted in the variant

w/o SC to investigate their influence on feature extraction. The results of the variant w/o

SC in Table 10 show that all metrics are slightly down, which demonstrates that the skip

connections are helpful.

Visualization and analysis of feature maps

To verify the proposed network’s diverse feature extraction ability, we visualize the feature

maps extracted from a QB testing image pair in Fig. 15. These feature maps are finally fused

by the SDFM and relate directly to the quality of pan-sharpening results.

The MS and PS feature maps are shallow features of the MS and PAN images. It can be

observed that the MS feature maps are blurry and lack spatial details. The PS feature maps
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are clear and some are high-frequency detail features. For instance, the PS feature maps at

the second and fourth rows in Fig. 15 have rich high-frequency details.

The F1D, F
2
D and F3D feature maps are multi-scale deep features obtained from theMRFM.

The feature maps from different resolutions have distinct content. The F1D are HR features

and thus have rich spatial details. The MR features F2D contributes both detailed and

contextual information. In LR features F3D, some unique high-level features apparently

different fromMS, PS, F1D, and F2D are presented. All the various feature maps demonstrate

that our method fully exploits the MS and PAN images’ information.

DISCUSSION

The proposed method has been compared with different pan-sharpening methods on

reduced-resolution and full-resolution datasets. The parameter number and inference

time of these methods have also been measured. It can be found that our method can

yield superior results with minimum parameters and achieve a good trade-off between

calculation and performance. The proposed method controls the number of parameters by

keeping fewer feature maps throughout the network and turns to multi-resolution feature

extraction for more effective feature maps. Visualizing these feature maps has verified that

they have distinct content, which brings our method high efficiency.

By comparing the full model with the variants w/o MRFE and w/o SC, it can also be

found that the HRFormer-like feature extractor is useful. The skip connections between

every two resolutions have slightly improved the pan-sharpening performance.

As for the two-stage feature fusion, it can be observed that all indicators declined

significantly, no matter removing the MRFM or the SDFM. Besides, the SDFM apparently

boosts the convergence speed of our method. The variants w/o MRFE, w/o MRFM, w/o SC

and the full model show the same convergence speed due to the SDFM. As the final fusion

stage of diverse features, the SDFM inspired by residual learning significantly impacts the

results and eases the gradient back-propagation. Among the variants, the variant w/oMRFE

is simplest and can be regarded as a pure CNN-based baseline, which is easier to train than

the transformer-based MRFE. Thus, the SDFM ensures the strength of the baseline, and

the baseline guarantees the convergence speed of those variants with the MRFE.

CONCLUSIONS

In this article, we proposed a pan-sharpening approach based on multi-resolution

transformer and two-stage feature fusion. In the proposed network, two HRFormer-like

structures formed a two-branch multi-resolution feature extractor to learn multi-scale and

contextual feature maps from the MS and PAN images. A two-stage fusion scheme was

proposed to fuse these diverse features. TheMRFM fusesmodality-specificmulti-resolution

features, and the SDFM finally fused shallow and deep features to generate the details to

be injected into the MS image. Experiments on two kinds of datasets demonstrated the

superiority of our method over state-of-the-art methods. The extracted feature maps were

visualized to verify the diversity of the extracted features, and the ablation study also proved

the effectiveness of the MRFE. Besides, the two-stage feature fusion is also proved to be

Fan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1488 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1488


necessary via ablation experiments. The SDFM can even boost the convergence speed

of the network. In future works, efforts will be made to enhance the time efficiency of

transformer-based pan-sharpening methods.
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