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ABSTRACT
The existing data repair methods primarily focus on addressing missing data issues
by utilizing variational autoencoders to learn the underlying distribution and generate
content that represents the missing parts, thus achieving data repair. However, this
method is only applicable to data missing problems and cannot identify abnormal
data. Additionally, as data privacy concerns continue to gain public attention, it
poses a challenge to traditional methods. This article proposes a generative adversarial
network (GAN) model based on the federated learning framework and a long short-
term memory network, namely the FedLGAN model, to achieve anomaly detection
and repair of hydrological telemetry data. In this model, the discriminator in the
GAN structure is employed for anomaly detection, while the generator is utilized for
abnormal data repair. Furthermore, to capture the temporal features of the original
data, a bidirectional long short-term memory network with an attention mechanism
is embedded into the GAN. The federated learning framework avoids privacy leakage
of hydrological telemetry data during the training process. Experimental results based
on four real hydrological telemetry devices demonstrate that the FedLGAN model can
achieve anomaly detection and repair while preserving privacy.

Subjects Data Mining and Machine Learning, Distributed and Parallel Computing, Mobile and
Ubiquitous Computing, Internet of Things
Keywords Federated learning, Anomaly detection, Data repair, Generative adversarial network,
Long short-term memory networks

INTRODUCTION
With the increasing uncertainty of global natural disasters, the construction of smart
hydrology has received more and more attention. Its purpose is to build an integrated
hydrological telemetry system that incorporates cloud computing, big data, and other
technologies, in order to observe and record hydrological phenomena occurring in
nature in a more real-time and accurate manner, providing a data foundation for
hydrological research (Yan et al., 2019; Corbari et al., 2019; Karimi et al., 2019; Kong et al.,
2022). Obviously, as the primary source of hydrological data, hydrological telemetry devices
bear the responsibility of data collection and storage. The ability of telemetry devices to
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provide accurate and reliable hydrological data directly affects fundamental decisions such
as flood control and drought resistance scheduling, ecological environmental protection,
and comprehensive development of water resources. However, in the actual operation
process, telemetry devices often encounter issues such as system failures, equipment aging,
and weak signals in remote locations, leading to abnormal situations such as numerical
errors, partial data loss, and severe data gaps in the collected hydrological data (Qin &
Lou, 2019). This seriously affects the integrity, authenticity, and accuracy of hydrological
data, directly resulting in a significant reduction in the capabilities of various hydrological
model statistical analyses. Therefore, identifying anomalies in hydrological data, mining
the underlying data features, and simultaneously repairing abnormal data are of great
significance for improving hydrological forecasting performance and reducing losses caused
by uncertainty in disasters. For time series data such as hydrological telemetry data, existing
abnormal detection methods mostly utilize the advantages of long short-term memory
(LSTM) networks for learning temporal features and constructing coupled models in
combination with other detection algorithms (Cook, Mısırlı& Fan, 2019; Blázquez-García
et al., 2021). Malhotra et al. (2015) used stacked LSTM networks to learn higher-level
temporal features and made predictions on the data over multiple time steps. Considering
the effectiveness and real-time requirements of abnormal detection algorithms, Ding
et al. (2019) proposed using LSTM models to evaluate the real-time anomalies of each
univariate sensor time series, followed by a Gaussian mixture model for multidimensional
joint detection of possible anomalies. Xu et al. (2020) proposed a new fusion algorithm,
LSTM-GAN-XGBOOST, to detect anomalies in deep features of massive time series
data.Niu, Yu & Wu (2020) introduced an LSTM-based variational autoencoder-generative
adversarial network model (LSTM-based VAE-GAN) that jointly trains the encoder and
GAN, leveraging the mapping ability of the encoder and the discriminative ability of the
discriminator, significantly reducing the time required for anomaly detection. However,
the aforementioned studies focus more on anomaly detection rather than repairing the
detected abnormal data.

In practical scenarios, the identification and repair of abnormal data often need to be
addressed synchronously, which involves detecting the abnormal data and then processing
the abnormal portions. Even more, compared to anomaly detection, data repair has
greater importance. Kong et al. (2023) proposed a dynamic graph convolutional recursive
interpolation network (DGCRIN) to interpolate and repair traffic data, which employed
a graph generator and dynamic graph convolutional gated recurrent unit (DGCGRU)
to perform fine-grained modeling of the dynamic spatiotemporal dependencies of road
network. In order to achieve both anomaly detection and repair for time-series data
simultaneously, Zhang et al. (2017) designed an iterative minimum-change-perception
repair algorithm called IMR, which demonstrates high adaptability to existing anomaly
detection techniques such as AR and ARX. Park et al. (2021) proposed a robust sliding
window-based light gradient boosting machine (LightGBM) model, where anomalies are
detected using a variational AutoEncoder (VAE), followed by the utilize of random forest
to repair the anomalies. Random forest itself is not typically used directly for repair, but
rather for anomaly detection and then aiding in the process of deciding how to repair them.
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The relevant repair strategies using Random Forest will depend on the nature of anomalies
and the domain where the anomalies occur. Typically, it involves various actions such as
filling missing values, correcting data errors, removing outliers, and even potentially more
complex transformations.

However, the aforementioned studies did not take into account the privacy issues
present in the training data. Hence, in this study, we present a GAN model based on the
federated learning framework and LSTM network, which performs anomaly detection and
reconstructs the time-series data, while ensuring data privacy protection. Themodel consists
of three main components: the federated learning framework, the generative adversarial
network model, and the attention-based long short-term memory network. The federated
learning framework utilizes its unique mechanism of keeping data local to preserve privacy
and employs the federated averaging algorithm to aggregate local training parameters
for updating the global model. The generative adversarial network is the core part of
the model, composed of a generator and a discriminator, which are optimized through
adversarial training. We used the property of the generator in the generative adversarial
network to fit real data for data repair. The discriminator’s ability to distinguish between
real and generated data enables anomaly detection. The attention-based bidirectional long
short-term memory network is incorporated to better handle sequential data and further
explore the temporal dependencies in hydrological data. Experimental results on four real
datasets demonstrate that the GAN model based on federated learning outperforms other
control group methods in multiple metrics (training time as well as detection and repair
accuracy). This effectively achieves anomaly detection and repair for time series data. The
contributions of this article are summarized as follows:

(I) We propose a distributed model based on the federated learning framework, LSTM
and GAN, called FedLGAN, which achieves efficient and accurate anomaly detection
and data repair while ensuring data privacy. To the best of our knowledge, it is the first
time that the federated learning framework has been used in the context of anomaly
detection and data repair for hydrological telemetry data.

(II) Integrating the attention-based bidirectional LSTM into the generative adversarial
network enables effective capturing of the complex dynamics and temporal correlations
in hydrological telemetry data. This enhancement strengthens themodel’s interpretability
of anomalies and its capability for data repair.

(III) By conducting extensive experiments on datasets from four real hydrological
stations, we demonstrate the superiority and effectiveness of the proposed FedLGAN
model.

The remainder of this article is organized as follows: In the part of related work, we
reviewed the cutting-edge methods for anomaly detection and data repair in hydrological
telemetry data. Then, we described the foundational knowledge of our framework in the
Preliminary section. In the Methodology section, we introduce the proposed framework.
The experiment part provides the performance evaluation. Finally, the conclusions are
presented.
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RELATED WORK
Anomaly detection for hydrological telemetry data
Hydrological data anomaly detection is an important research field that holds significant
implications for water resource management, flood forecasting, climate change studies,
and more. Existing research methods (Li et al., 2021; Chadha et al., 2021) include statistical
modeling approaches such as clustering and classification algorithms, as well as deep
learning methods such as convolutional neural networks and recurrent neural networks.

These methods leverage the learning of patterns and features within hydrological data to
achievemore accurate detection of anomalies.Kulanuwat et al. (2021) developed amedian-
based statistical outlier detection approach using a sliding window technique. Shao et al.
(2020) proposed a detection algorithm called AR-iForest, which is a hydrological time series
anomaly detection algorithm based on Isolation Forest. It uses an autoregressive model
to predict the current data and calculate the confidence interval. Data that falls outside
this interval is identified as an anomaly. To enhance the stability of anomaly detection
results, Liu, Lou & Huang (2020) proposed a parallel anomaly detection algorithm called
Flink-iForest, which combines the use of the iForest algorithm with the k-means algorithm
to address the threshold partitioning problem. In contrast to their approach, Sun, Lou &
Ye (2017) proposed a density-based anomaly pattern detection method specifically tailored
for large-scale hydrological data with a significant amount of noise. This method addresses
the high time complexity issue of traditional anomaly detection algorithms.

Although the above methods demonstrate good performance in detecting extreme
and specific value anomalies, they are prone to missing small anomalies. Furthermore,
these methods often struggle to uncover the underlying spatiotemporal information
in hydrological sequences and fail to provide explanations for the types and causes of
anomalies.

Data repair for hydrological telemetry data
Hydrological telemetry data has always been a scarce and valuable resource. Even more,
these data are susceptible to interference, leading to anomalies such as missing values
and abrupt changes during the collection and transmission processes. Therefore, the
restoration of hydrological data anomalies has always been a research problem of great
significance (Gao et al., 2018).

The existing hydrological data repair methods primarily involve constructing time
series models such as autoregressive (AR) and moving average (MA) models to learn the
distribution characteristics of the data. Thesemodels are then used to predict, interpolate, or
reconstruct the anomalous portions of the data. Among thesemethods, deep learning-based
time series models such as LSTM and RNN are widely applied in practice. He et al. (2023)
proposed a deep learning model named Con-GRU for repairing water level monitoring
data with long-term anomalies, which captures both long-term and local time-dependent
features via one-dimensional convolution (Conv1D) and gated recurrent units (GRU).Gill
et al. (2007) proposed a short-term prediction method for groundwater levels in well fields
by combining artificial neural networks (ANN) and support vector machines (SVM).
They utilized interpolation techniques to fill in missing data and tested their approach
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based on the observed data. Heras & Matovelle (2021) used automatic learning machines
of the Python Scikit Learn module, which integrates a wide range of automated learning
algorithms, such as linear regression and random forest.

Currently, there is limited research on the repair of abnormal parts in hydrological data,
and previous methods used by researchers have become somewhat outdated and may not
be suitable for the current characteristics of multimodal and complex hydrological data.
Not only that, but there are also few methods that can simultaneously achieve anomaly
detection and data repair. Furthermore, the privacy of hydrological data has been receiving
increasing attention, leading to a decrease in available data. Therefore, there is an urgent
need for a new method that can ensure data privacy while achieving these two important
functionalities.

PRELIMINARY
Federated averaging algorithm
The Federated Averaging (FedAvg) algorithm (McMahan et al., 2017) describes the process
of server-weighted aggregation of local model parameters. In this process, it is assumed that
there are K clients in total, and the servers aggregate t times in total. First, the central server
initializes the global model wt , and then selects at least one up to k clients to participate
in the training. Each selected client simultaneously receives the global model wt delivered
by the server, trains the respective local model wk

t+1 with their own data and sends it back
to the server. The server will receive all local models and aggregate them in the way of
weighted average to get the next round of global model weight wt+1, which is calculated
by Eq. (1):

wt+1←

K∑
k=1

nk
n
wk
t+1. (1)

Each participant in the federated learning architecture uses its own local data set to train
the model. This involves computing the gradients of the model parameters locally, usually
through backpropagation and optimization algorithms such as stochastic gradient descent.
During training, participants cannot access other data, thereby achieving the purpose of
privacy protection.

Attention-based bidirectional LSTM
The bidirectional LSTM based on the attention mechanism was initially proposed by
Bahdanau, Cho & Bengio (2014) for sequence modeling and prediction. It combines the
bidirectional LSTM and attention mechanism to better capture contextual information
and important features in the input sequence. In the traditional bidirectional LSTM, the
input sequence is processed by two LSTM layers in both forward and backward directions.
The forward LSTM computes in the order of the input sequence from the beginning to
the end, while the backward LSTM computes in the reverse order. In this way, the forward
and backward LSTMs capture the forward and backward context information of the input
sequence, respectively, generating two sets of hidden state sequences.
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To better utilize these hidden state sequences, the attention mechanism is introduced.
At each time step of the LSTM, the attention mechanism computes a similarity score
between the current hidden state and the input sequence representation via dot product,
scaled dot product, and concatenation of neural network layers. These scores are then used
to compute attention weights for each element in the input sequence, which represent
the importance of each input element relative to the current time step. At the same time,
a weighted sum of input sequence elements, i.e., context vector, is calculated according
to these attention weights. The most relevant information in the input sequence of the
current time step of the LSTM can be captublack by the context vector. Finally, the context
vector is combined with the output of the LSTM at the current time step as input to the
output layer, which generates predictions or further processing. In summary, the attention
mechanism allows the model to dynamically assign weights to the inputs based on their
importance. It calculates attention weights at each time step, focusing the attention on
the most relevant parts of the input sequence for the current prediction. This enables the
model to pay more attention to key information in the input sequence, thereby improving
the performance of modeling and prediction.

GAN
The basic idea of GAN (Goodfellow et al., 2014) is derived from the ‘‘two-player zero-
sum game’’ in game theory, and its main structure contains a generative model G and
a discriminative model D. Among them, generator G is used to generate data, while
discriminatorD’s main task is to distinguish the real data from the fake data forged by G ·G
is committed to learning the distribution of real data to fool the discriminator, and the two
are optimized in the process of confrontation. The loss function of GAN optimization is
as follows:

min
G

max
D

V (D,G)= Ex∼Pdata(x)[logD(x)]+

Ez∼Pz (z)[log (1−D(G(z)))]. (2)

when D can no longer distinguish the real data from the forged data, the ideal state of
GAN training is reached. In our federated anomaly detection task, we use transformer as
the generator G of GAN to reconstruct the original sequence, and strengthen the ability of
transformer to learn data distribution by means of confrontation.

METHODOLOGY
In this section, we formally introduce our distributed framework, FedLGAN, which is
designed for anomaly detection and data repair. More specifically, it includes the overall
framework of FedLGAN, the basic idea behind the framework, and the key technologies.

Overall framework
The overall framework of FedLGAN is depicted in Fig. 1, which can be divided into
three parts: the collaborative training part, the anomaly detection part and the data
reconstruction part. The basic idea of FedLGAN is to use the federated learning framework
to cooperatively train the data of multiple edge devices, thereby improve the detection
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Figure 1 Overall framework of FedLGAN.
Full-size DOI: 10.7717/peerjcs.1664/fig-1

ability and generalization of the model. Among them, the federated learning framework
is used to provide a secure distributed scene to protect the data privacy of edge devices,
and the adversarial training mode of GAN is used to enhance the data repair capability of
the generator and the anomaly discrimination ability of the discriminator. The LSTM is
used to mine the degree of correlation and multi-scale sequence features of sequences. The
LSTM is used to improve the GAN’s ability to capture the temporal dependencies in time
series. We will introduce it in more detail in the following section.

Collaborative training
Figure 1 shows that the overall structure of the model training is based on the federated
learning framework and GAN. In the process of local model collaborative training, we use
the cloud server to initialize the global model and distribute it to each edge. After receiving
it, the edge will input the local preprocessed normal data into the local model and start
training the client. Figure 2 shows the structure of the local model, namely the LGAN.

We further explain the framework of adversarial training stage of FedLGAN in details.
As shown in Fig. 2, the generator G and the discriminator D have similar structures,
both of which are composed of LSTM blocks. Firstly, we convert the input sequence
X into the tensor form I ∈RL×f with modality, where L represents the length of the
sequence, and f is the dimension of potential representation. In the case of Vanilla GAN,
neither G nor D have a specific structure to handle time series data. Therefore, the lack of
consideration for the unique temporal characteristics of time series data during training
is a major reason for the generator’s weak ability to fit real data and the discriminator’s
low accuracy in detecting anomalies. To address these issues, we have introduced LSTM
networks and bidirectional LSTM networks with attention mechanism in theG andD parts
of the generative adversarial network model, respectively. At the same time, in the training
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Figure 2 Structure of LGAN.
Full-size DOI: 10.7717/peerjcs.1664/fig-2

process of GAN, the discrimination ability of the discriminator needs to be slightly greater
than the camouflage ability of the generator, otherwise it will easily lead to mode collapse,
which refers to a situation where the G produces a limited variety of similar outputs, failing
to capture the full diversity of the target distribution.

Therefore, the discriminator is often trained multiple times before the generator is
trained once. First initialize the generator G and fix it, start training the discriminator D,
take the real data I and forged data I as the input of D, and pass through the bidirectional
LSTM layer, attention layer and The fully connected layer finally outputs the identification
result. We feed the processed tensor I into the discriminator D. As shown in Figs. 3 and 4,
the tensor I first enters the LSTM layer. The core of LSTM is the memory unit, which is
cut or added information through a structure called gate to control the circulation and loss
of features. This structure determines the degree to which the LSTM unit maintains the
previous state and remembers the extracted features of the current data input. It has three
gates of the control unit state, which are the input gates, forget gates and output gates are
calculated by Eqs. (3), (4) and (5):

it = σg (WiIt +Uiht−1+bi) (3)

ft = σg (Wf It +Uf ht−1+bf ) (4)

ot = σg (WoIt +Uoht−1+bo) (5)
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Figure 3 Internal unit of the LSTM.
Full-size DOI: 10.7717/peerjcs.1664/fig-3

Figure 4 The details of BiLSTM.
Full-size DOI: 10.7717/peerjcs.1664/fig-4

Then, the cell state at time can be calculated, and the calculation formula is as following
equation:

Ct = ft ×Ct−1+ it × C̃t (6)

where it , ft and ot are the output values of the input gate, forget gate and output gate at
time t respectively, It is the t-th input sequence; ht−1 refers to the tth time. The hidden
layer state of W , U and b are the weight vector, parameters and offset of the gating unit,
respectively. C̃t represents the unit state update value, σ is the activation function, and the
Sigmoid function is generally used. LSTM is composed of a series of memory unit chains,
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and controls the transmission state through gating settings, remembers information that
needs to be memorized for a long time, and forgets unimportant content, so as to retrieve
the time series variation rules of relatively long intervals and delays in the time series.

The bidirectional LSTMbased on the attentionmechanism is improved on the traditional
LSTM, as shown in Fig. 4, by adding a reverse LSTM layer to the original forward LSTM
network layer. The purpose is to consider the context of the two directions to increase
the available information of the network (Schuster & Paliwal, 1997). Therefore, different
from the traditional LSTM, the network structure contains two forward-passed Eht and
backward-passed ht← respectively. The calculation of the hidden layer state ht at time t is
as shown in Eq. (7):

ht = [ Eht ⊕ht←]. (7)

To improve the learning ability of the discriminator, an attention mechanism is also
introduced. The matrix for extracting the weights of this layer is defined in Eqs. (8) and
(9).

M = tanh(H ) (8)

α= softmax(wTM ). (9)

And use the product of the weight matrix as the output of the attention layer:

r =HαT (10)

where H is the output of the LSTM layer, wL is the transposition of a parameter vector
obtained by training and learning, α is the weight matrix, and r is the output of this
layer. By adding the improvement of the above structure to the generative confrontation
network, the ability of D to detect anomalies and the ability of G to fit the data can be
enhanced at the same time, thereby improving the performance of the model as a whole.
Finally, we input the result into the fully connected layer network and use the sigmoid
activation function to fix the value in the [0,1] interval. Then we can get the probability
that each time point t in the time series I is normal, and this probability is defined as P .
If the input of the discriminator is I , that is, real and normal data, the judgment value of
the output result at all time points is as close to 0 as possible, otherwise the output tends to
1. Because the discriminator keeps optimizing itself, which means enhancing its detection
capability. For normal data, the discriminator is more inclined to correctly recognize it,
thus it tends to output 0. Obviously, for the discriminator D, whether it is generated data
or abnormal data, it is hoped that the output result will be as close to 1 as possible. The
training process of G is similar to that of the discriminator D. We input the tensor I into
G, and pass through the LSTM layer and the fully connected layer in turn. After the output
can be obtained from Formulas (3), (4), and (5), we can get the reconstructed data I ′ by
adding it to the fully connected layer. In this way, we can reconstruct and replace abnormal
data, so as to repair data.

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1664 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1664


Our local model uses two LSTM blocks, mainly to form an adversarial structure. This
way of confrontation forces G to fully learn the characteristic information of normal data,
to thereby cheat D in the training process. At the same time, the distinguish transformer D
is also trying to distinguish between real data and reconstructed data, which are constantly
optimized during the process of confrontation. In the framework of federated learning,
k edge devices use their local data for training. After a certain number of iterations, each
client uploads its own training parameters to the cloud server for aggregation. Among
them, we use the most classic federated average algorithm for aggregation. After that,
the cloud server blackistributes the aggregated parameters and models to each client to
let them start training again, and so on until convergence. The specific process of model
collaborative training is shown in Algorithm 1.

Algorithm 1Model Collaborative Training Stage
Input: The generator G and discriminator D; the total optimization roundM ; the edge

devices indexed by k and their training samples Ik ; initialized global model parame-
ters:W 0

global ; the local model parameters:W 0,k
local ; the ratio of D and G training times

per round: N ;
Output: a well-trained G; a well-trained D;
1: for each roundm= 1,2,...,M do
2: for each edge devices k do
3: Wm,k

local←Wm
global

4: for each round n= 1,2,...,N do
5: ∇θd [logD(I )+ log (1−D(G(Ik)))]
6: end for
7: ∇θg log (1−D(G(Ik)))
8: Wm+1

global← FedAvg [Wm,0
local,...,W

m,k
local]

9: Wm+1,k
local ←Wm+1

local
10: end for
11: end for

Optimization method
Since our local model is based on two LSTM blocks, the optimization process of the model
meets the training standard of GAN. That is, we update generator G and discriminator
D alternately. In the m-th iteration, when the D is trained, we fixed G and D is updated
according to the following equation:

∇θd

1
m

M∑
m=1

[logD(I (m)
k )+ log (1−D(G(I (m)

k )))] (11)

Similarly, we fixed D, and updated G according to the following equation:

∇θg

1
m

M∑
m=1

log (1−D(G(I (m)
k ))) (12)
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where M denotes the maximum iterations of local training. In order to make the model
converge more easily, we also use gradient punishment to force the Lipschitz constraint.
Therefore, the loss function of model training stage in the m-th iteration for D can be
defined as follows:

LD=
1
m

M∑
m=1

[logD(I (m)
k )+ log (1−D(G(I (m)

k )))] (13)

+λ(||∇ĨkD(Ĩ
(m)
k )||2−1)2 (13)

where Ĩ (m)
k = εI

(m)
k + (1− ε)G(I (m)

k ) refers the data randomly interpolated and sampled
on two vector lines I (m)

k and G(I (m)
k ). In order to keep the reconstructed data close to the

original data, we also take reconstruction loss as the optimization strategy of the generator.
As a result, for G, we get a new loss function of model training phase in m-th iteration:

LG=
1
m

M∑
m=1

log (1−D(Î (m)
k ))+||I (m)

k − Î
(m)
k ||

2 (14)

Anomaly detection and data repair
Figure 1 shows the steps of federated anomaly detection and data repair. First, the cloud
server distributes the final trained model parameters to all edge clients, and each client
updates the parameters in the local model after receiving them. Then, it enters the anomaly
detection and data repair stage. In this stage, we input sequence I into generator G and
discriminator D, and finally we can get the reconstructed sequence I ′ and the anomaly
time points in the detection sequence.

EXPERIMENT
In this section, we introduce the details of the experiment, including datasets, model
settings, evaluation indicators, etc. Then, we compare the performance of our FedLGAN
model and other methods. In addition, we also analyzed the hyperparameters of the model.

Datasets
We used hydrological data collected by four hydrological telemetry devices in Hangzhou,
Jinhua, Shaoxing, and Lishui in Zhejiang Province from September 2022 to December
2022 to conduct experiments to ensure that the data sources for model training and testing
are authentic and reliable. However, due to the differences in the equipment models and
geographical locations of different telemetry sites, the data recording interval and the
attributes of the collected data may be different. Therefore, in the experiment, the common
attributes of the hydrological equipment of the four telemetry stations are extracted,
and the collection records of data such as water level, rainfall, and voltage are counted at
intervals of 5min. In addition, according to the actual situation, the unreasonable abnormal
data is divided into a separate test set for the abnormal detection part of the experiment.
Considering that the data collected by the device is abnormal only in a few cases, it was
necessary to artificially add noise to the normal data to provide a sufficient amount of
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abnormal data for testing. Since the data set of each hydrological telemetry equipment
contains a total of 90 days of data from January 1 to March 31, 2022, the authors screened
all normal data within 90 days as the training set, and the normal and abnormal data of the
last 15 days are used as the test set. The experimental data is defined as X ={x1,x2,...,xt },
where t denotes the number of points in the sequence (the length of the sequence). In
addition, considering that the values of different features in multivariate time series data
are quite different, we normalize the training data:

xt =
xt −min(X)

max(X)−min(X)+α
(15)

where xt represents the vector value at time stamp t in the sequence, α is a small constant
to prevent zero-division.

Experimental settings
All experiments are run on the same server. The host operating system is Ubuntu 18.04,
the memory is 128 GB, the CPU is Intel(R) Xeon(R) Gold, 16-core dual-thread, and
the graphics card is NVDIA Quadro P6000. The Pytorch version is v1.6.0. We use non-
overlapping sliding windows to obtain subsequences. To balance the training efficiency
and convergence speed of the model, we set the batch size to 64, and the training process
was completed within 50 epochs. At the same time, we use the ADAM optimizer with an
initial learning rate of 10−4. In addition, the experiment uses mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), and mean absolute percentage
error (MAPE) as the evaluation indexes. At the same time, for anomaly detection, we also
use commonly used comparison indicators, namely precision, recall and F1 score. Among
them, the data of various indicators of anomaly detection are calculated by comparing the
detection results of the discriminator in the model with the real labels, while the index data
of data repair is obtained by using the formula of normal data before adding noise, against
the data repaired by the generator calculated.

Comparison experiments
In order to reflect the superiority of the generative adversarial network based on federated
learning, this experiment compares it with four control algorithms. The comparative
algorithms cover parametric methods, non-parametric methods, and deep learning
methods. Since this experiment includes both anomaly identification and data repair,
it is considered to compare these two parts separately, where anomaly detection part
includes LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014), and data
repair part includes VAE (Kingma &Welling, 2013) and GAN (Goodfellow et al., 2020).

• LSTM (Hochreiter & Schmidhuber, 1997): a special RNN that performs better on
longer sequences.

• GRU (Cho et al., 2014): a variant of LSTM that removes the forget gate and consists
only of an update gate and a reset gate.

• VAE (Kingma &Welling, 2013): a structure composed of an encoder and a decoder,
which is trained to minimize the reconstruction error between the encoded and decoded
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Figure 5 Performance comparison of different models.
Full-size DOI: 10.7717/peerjcs.1664/fig-5

data and the initial data, and its essence is to estimate the density of a function with
hidden variables

• GAN (Goodfellow et al., 2020): a deep learning model of unsupervised learning, which
consists of a generator and a discriminator, and uses the idea of confrontation to
continuously optimize the model.

The performance comparison results of different models for anomaly detection and data
repair are shown in Figs. 5, and 6 shows the performance of various indicators for model
data restoration.More details are shown in Tables 1 and 2, which respectively list the average
results of each group’s final testing in anomaly detection and data repair. From Table 1,
it can be seen that LSTM and GRU have significant advantages in time series prediction
compared to the discriminator of GAN model, with various indicator data of 0.371, 0.212,
and 13.541%, as well as 0.393, 0.230, and 17.411%, respectively. Although the performance
of our model in terms of convergence is not as good as traditional models for processing
time series such as LSTM, it still shows superiority in detecting anomalies. We believe that
it is mainly the bidirectional LSTM embedded in the GAN that fully learns the potential
features of real hydrological telemetry data, thereby being able to distinguish the difference
between normal values and abnormal values. From Table 2, it can be seen that GAN, as the
backbone of image processing, also performs well in hydrological data restoration work,
with various data indicators of 4.420, 1.843, and 85.940%, respectively. However, due to the
algorithm not taking into account the temporal characteristics of the data and the potential
for pattern collapse, there is still a significant gap between the repaired data and the original
normal data. Unlike GAN, VAE explicitly models the distribution of potential variables in
hydrological data using encoders and decoders, allowing for the specified distribution of
generated data. Therefore, compared to GAN, VAE has a slight performance improvement
in hydrological data restoration. Our proposed generative adversarial network model based
on federated learning, achieved the optimal experimental results, with three data indicators
lower than the control group, which were 3.430%, 1.708%, and 54.824%, respectively.
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Figure 6 Performance of data repair.
Full-size DOI: 10.7717/peerjcs.1664/fig-6

Table 1 Comparison of anomaly detection performance.

Model MAE MSE MAPE% Precision Recall F1

LSTM 0.371 0.212 13.541 0.726 0.752 0.739
GRU 0.393 0.230 17.411 0.675 0.764 0.717
FedLGAN 0.480 0.238 74.139 0.765 0.812 0.788

Table 2 Comparison of data repair performance.

Model MAE MSE MAPE%

VAE 3.447 2.151 72.607
GAN 4.420 1.843 85.940
FedLGAN 3.430 1.708 54.824

Ablation experiment
In order to demonstrate the effectiveness of the federated learning framework and the
attention based long-term and short-termmemory network, these two parts were removed
and ablation experiments were conducted. The experimental results are shown in Tables 3
and 4.

From Tables 3 and 4, it can be seen that when only using the generative adversarial
network model, good experimental results were not achieved in both anomaly detection
and data repair. Considering the temporal characteristics of experimental data, FedLGAN*
has a MAPE index of 75.037% and 82.639% in anomaly detection and data repair,
respectively, which is significantly better compared to the original generative adversarial
networkmodel. This change is expected, as LSTMnetworks can better capture the long-term
dependency characteristics of sequence information. In contrast, GAN focuses more on
local information and obtains local dependency information between sequences through
convolutional neural networks. This change is expected, as LSTM networks can better
capture the long-term dependency characteristics of sequence information. In contrast,
GAN focusesmore on local information and obtains local dependency information between
sequences through convolutional neural networks. Unlike FedLGAN, which focuses more
on data privacy and security, FedLGAN utilizes a federated learning framework to improve
the original model. Its MSE index in anomaly detection is 6.390, while its RMSE index
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Table 3 Performance comparison of anomaly detection ablation experiment.

Model MAE MSE MAPE% Precision Recall F1

GAN 1.0831 1.930 92.438 0.697 0.756 0.725
FedLGAN* 0.740 0.729 75.037 0.759 0.787 0.773
FedLGAN** 2.279 6.390 91.495 0.685 0.723 0.703
FedLGAN 0.480 0.238 74.139 0.765 0.812 0.788

Notes.
*Represents deletion of federated learning framework.
**Represents deletion of LSTM.

Table 4 Performance comparison of data repair ablation experiment.

Model MAE MSE MAPE% Training time/s

GAN 4.442 1.843 85.940 3,868.069
FedLGAN* 4.831 2.013 82.639 3,123.836
FedLGAN** 6.349 2.674 93.927 4,967.078
FedLGAN 3.430 1.708 54.824 5,334.658

Notes.
*Represents deletion of federated learning framework.
**Represents deletion of LSTM.

in data repair is 2.674. Although compared to the performance improvement brought by
long-term and short-term memory networks, federated learning frameworks may even
have a negative impact on certain indicators , slightly sacrificing the performance of the
model in exchange for data privacy and security has significant practical significance and
value. It is worth mentioning that due to the unique distributed training of federated
learning architecture, it has high requirements for communication, so its model training
time is often longer. Considering both data privacy security and its temporal characteristics,
all indicators achieved optimal experimental results in the hydrological dataset. Therefore,
the introduction of a federated learning framework and a bidirectional long short-term
memory network based on attentionmechanism in this study have both played a significant
role in improving the performance of the model.

CONCLUSION
We propose a generative adversarial network model based on a federated learning
framework, in which the federated learning framework acts on data privacy protection,
and the discriminator and generator in the generative adversarial network are used for
data anomaly detection and data restoration, respectively. In order to improve the ability
of the model to extract temporal features, the two-way long-short-term memory network
and the ordinary long-short-term memory network based on the attention mechanism are
respectively embedded in the model’s discriminator and generator. The model processes
the hydrological data of the hydrological telemetry equipment into a time series matrix
sequence as input, and extracts relevant time series information from the bidirectional long
short-termmemory network layer in the discriminator, and uses the result, namely the state
of the hidden layer, as the input of the attention layer to obtain weights matrix. Finally, it
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outputs the identification result through the fully connected layer to complete the abnormal
identification of the data. In addition, the matrix sequence judged as abnormal data by the
discriminator is also input to the generator, and its ability to fit the data distribution is used
to complete data restoration. The experiments are performed using real hydrological data
sets from four telemetry devices in Hangzhou, Jinhua, Shaoxing and Lishui provided by
the Zhejiang hydrological communication platform. The results fully prove the feasibility
and superiority of the model. However, due to training data are often non-independent
and identically distributed, if the data heterogeneity of different selected clients is too large,
which may lead to poor performance. Therefore, the generalizability and validity of the
model will continue to be verified on the data collected by other hydrological telemetry
equipment in different provinces and regions. To be specific, we mainly test and reduce
the impact of Non-IID on model performance, such as using data with different degrees of
heterogeneity for experimental comparison tests. In addition, considering the distributed
training method of the federated learning framework, compared with the centralized
model, the operation efficiency is not high. The follow-up work will also focus on reducing
the number of communications in federated learning and reducing the training time, so as
to further improve the practicability of the network model.
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