
Quick mining in dense data: applying
probabilistic support prediction in
depth-first order
Muhammad Sadeequllah1, Azhar Rauf1, Saif Ur Rehman1 and
Noha Alnazzawi2

1 Department of Computer Science, University of Peshawar, Peshawar, KP, Pakistan
2 Computer Science and Engineering Department, Yanbu Industrial College, Yanbu, Saudi Arabia

ABSTRACT
Frequent itemset mining (FIM) is a major component in association rule mining,
significantly influencing its performance. FIM is a computationally intensive
nondeterministic polynomial time (NP)-hard problem. At the core of FIM is the task
of computing support of candidate itemsets. This problem becomes more severe
when the dataset is dense as the support is computed for millions, or even billions, of
candidate itemsets. The rapid growth of data further exacerbates this problem. To
achieve high scalability and efficiency, recently, researchers have proposed various
approaches to approximate the support of an itemset using as small a subset of
transaction data as possible. In addition to efficiency, accuracy is another important
metric for these algorithms. They strive to increase true positives and reduce false
negatives and false positives. One such recently proposed approximate FIM
algorithm is Probabilistic Breadth-First (ProbBF), which is highly efficient for dense
data due to its unique approach of not using transactional data beyond 2-size
itemsets. Unlike other counterparts, this algorithm requires no additional input
parameters beyond the traditional support threshold. However, ProbBF is a breadth-
first algorithm, and it is well-established that breadth-first FIM algorithms consume
significantly more memory than depth-first algorithms on dense datasets. It is also
worth noting that significantly high memory consumption slows run-time
performance of an algorithm due to low utilization of locality of reference, thrashing,
and aggressive garbage collection etc. This article proposes a FIM algorithm, ProbDF,
that discards transaction data after determining all frequent itemsets of sizes one and
two. For frequent itemsets of size three or more, it employs a probabilistic support
prediction model (PSPM) to predict their support probabilistically. PSPM, first
proposed with ProbBF, uses lightweight calculations that exclude transaction data.
Our experiments demonstrate that ProbDF, with its depth-first search strategy
tailored to PSPM and other optimizations, is efficient in terms of time and space, and
successfully generates the majority of frequent itemsets on real-world benchmark
datasets. However, due to the probabilistic nature of ProbDF, some compromise in
quality is inevitable.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science, Databases
Keywords Frequent itemset mining, Association rule mining, Transaction databases, Approximate
frequent itemset mining, Data mining

How to cite this article Sadeequllah M, Rauf A, Rehman SU, Alnazzawi N. 2024. Quick mining in dense data: applying probabilistic
support prediction in depth-first order. PeerJ Comput. Sci. 10:e2334 DOI 10.7717/peerj-cs.2334

Submitted 27 May 2024
Accepted 26 August 2024
Published 4 October 2024

Corresponding author
Muhammad Sadeequllah,
sadeequllah@uop.edu.pk

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2334

Copyright
2024 Sadeequllah et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2334
mailto:sadeequllah@�uop.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2334
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Frequent itemset mining (FIM) is the fundamental task in Association rule mining that has
diverse applications. Some of these applications are market basket analysis, consecutive
clicks by users in click stream mining, stock analysis, business decisions, user actions in
intrusion detection, medical diagnosis, and bio-informatics. The concept of FIM, first
presented in Agrawal et al. (1996), represents an unsupervised data mining approach
aimed at discovering frequently co-occurring items within transaction datasets. This
technique entails substantial computational and memory demands, as it explores all
potential combinations of frequent items present in the transaction dataset. The most
resource-intensive aspect of an FIM algorithm lies in the support counting of itemsets
derived from transaction data.

The frequent itemsets generation process involves identifying sets of items that appear
together frequently in a transaction dataset. It starts with calculating the support
(frequency) of individual items, retaining those that meet a predefined minimum support
threshold. Next, it generates candidate itemsets of size 2 by combining frequent items,
calculates their support, and prunes those that are not frequent. This process iteratively
continues for larger itemsets, using the Apriori property, which ensures that only those
candidate itemsets whose all subsets are frequent are considered. The process terminates
with a collection of itemsets that frequently appear together in the transactions.

Motivation
Frequent itemset mining is a highly computational and memory-intensive task. It needs to
find all the frequent itemsets and their possible combinations that are also frequent. FIM
also needs to store the transaction data in memory associated with these discovered
frequent itemsets. This problem becomes even more severe when FIM is deployed to large
dense datasets. A dense dataset is one in which every frequent item is assumed to be
present in almost every transaction (Fournier-Viger et al., 2017; Luna, Fournier-Viger &
Ventura, 2019). One reason for this is that the number of frequent itemsets reaches into
billions even for an average-sized dense dataset with only a few dozen frequent items.

To make FIM algorithms more efficient and scalable, different researchers have
proposed various methods. One of these methods was to propose efficient data structures
to speed up FIM on dense datasets, but the constant challenge introduced by advances in
computing technology is the tremendous growth in data. Employing maximal frequent
itemsets (MFI) mining in dense datasets is another solution. While the support of an
itemset indicates its importance in the FIM domain, with the MFIs, we can only identify all
the frequent itemsets–we cannot rank them based on their support because we lack the
support information for each individual frequent itemset.

Some researchers have attempted to restrict the use of transactional data and calculate
an approximate value for the support of itemsets. Though the downside of these
algorithms is that they do not guarantee to generate all possible frequent itemsets, the
resulting loss is marginal. These algorithms have employed different techniques to
limit the transactional data used to derive the support of an itemset. For example,
some researchers have used sampling techniques (Li et al., 2016), hashing methods

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 2/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

(Zhang et al., 2018), filtering techniques (Abbasi & Moieni, 2021), and clustering
algorithms (Fatemi et al., 2021).

In one such recent effort, a probability-based technique, called probabilistic support
prediction model (PSPM), was proposed in Sadeequllah et al. (2024). This technique is
used to probabilistically predict the support of an itemset. This article also proposes a FIM
algorithm, called Probabilistic Breadth-First (ProbBF), that incorporates the PSPM
technique. This algorithm is different from other FIM algorithms in that it does not use
any additional parameter other than the minimum support threshold. Additionally, it uses
zero transaction data in its support approximation. These characteristics render the
ProbBF algorithm more efficient than other FIM algorithms, both approximate and exact.
It is also worth noting that ProbBF is the first approximate FIM algorithm designed for
dense data, whereas other approximate algorithms typically perform well with sparse data
only.

However, problem with the ProbBF algorithm is that it is a breadth-first algorithm, and
it is established that breadth-first algorithms are less efficient and less scalable than
depth-first algorithms when deployed to dense data. This is due to the fact that the
memory requirements of breadth-first and depth-first algorithms are respectively O wð Þ
(where w is the maximum width of the search space tree) and O hð Þ (where h is the
maximum depth of the search space tree). For dense data, w is much more larger (order of
magnitudes) than h. High memory requirements could also slow an algorithm due to the
reasons such as low utilization of locality of reference, thrashing, and aggressive garbage
collection. Although, a pure depth-first algorithm also suffers from slow runtime due to
large number of candidate generation. A better compromise is a hybrid search strategy
used by many breadth-first FIM algorithms (e.g., MAFIA (Burdick et al., 2005), Genmax
(Gouda & Zaki, 2005), NegFIN (Aryabarzan, Minaei-Bidgoli & Teshnehlab, 2018),
SelPMiner (Bai et al., 2019)).

Another important shortcoming of the ProbBF algorithm is its lack of support for
additional pruning techniques beyond apriori pruning. Many modern FIM algorithms
designed for dense datasets incorporate a highly efficient pruning technique initially used
by Maxminer and later known by various names such as Parent Equivalence Pruning
(PEP) in MAFIA (Burdick et al., 2005), Genmax (Gouda & Zaki, 2005), and SelPMiner
(Bai et al., 2019), Hypercube Decomposition in LCM (Uno, Kiyomi & Arimura, 2004), and
Promotion Pruning in PrePost+ (Halim, Ali & Khan, 2020), dFIN (Xun et al., 2021), and
negFIN (Aryabarzan, Minaei-Bidgoli & Teshnehlab, 2018). This technique prunes entire
subtrees rooted at frequent itemsets whose support equals that of their parent frequent
itemsets, significantly enhancing the runtime efficiency of FIM algorithms on dense data.

Furthermore, ProbBF employs a set-enumeration tree to store frequent itemsets, which
is memory inefficient. The nodes in this tree store pointers to both their children and
parent nodes, with the frequent prefix distributed across multiple nodes. A more memory-
efficient technique is needed to improve memory utilization in the proposed algorithm.

The ProbDF algorithm, proposed in this article, is an efficient depth-first algorithm that
addresses all the shortcomings of ProbBF (Sadeequllah et al., 2024). ProbDF utilizes a
novel depth-first traversal method that meets the requirements of the PSPM technique, a

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 3/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

cornerstone of ProbBF. It identifies all frequent children itemsets of an itemset using a
breadth-first approach and subsequently traverses these children itemsets in a depth-first
manner. This algorithm also introduces a technique to incorporate the Promotion Pruning
concept. Lastly, it proposes a single vector technique to store all frequent suffixes.

Contributions
The main contributions of this article are as follows:

1) This article proposes a depth-first algorithm ProbDF with a novel search strategy that
ensures the support of all (k-1) itemsets of a k-itemset be already known before
evaluating the support of the k-itemset. This is an important requirement of the PSPM
model.

2) This algorithm introduces a time and space efficient single vector technique to store a
common k-1 size prefex for all the k-size itemsets currently being explored. This is
contrary to the other algorithms that store k-1 frequent items prefix with every k-size
frequent itemset.

3) This algorithm also introduces the concept of promotion pruning to approximate FIM
algorithms to enhance its memory and runtime efficiency.

The structure of the article proceeds as follows: “Related Work” offers a review of the
most pertinent literature to our proposed solution in the field of FIM. “Problem Setting
and Preliminaries” introduces preliminary concepts relevant to frequent itemset mining.
“Probabilistic Support Prediction Model” outlines the PSPM technique discussed earlier.
Following this, “The Proposed Algorithm, ProbDP” unveils our proposed algorithm,
ProbDF. “Experimental Results” delves into a comprehensive analysis of ProbDF’s
performance against state-of-the-art FIM algorithms using real-world benchmark datasets.
Lastly, “Future Work” provides the article’s concluding remarks.

RELATED WORK
Mining frequent itemsets is a highly complex computational task, often classified as an
NP-hard problem. This is especially true when FIM deals with large, dense datasets. Given
the resource-intensive nature of this task and the ever-expanding size of datasets, research
interest in this domain is still alive. While early efforts primarily focused on the
development of frequent itemset mining algorithms (Halim, Ali & Khan, 2020; Xun et al.,
2021; Ledmi, Zidat & Hamdi-Cherif, 2021; Ghosh et al., 2023), the landscape has since
evolved into other itemset mining algorithms as well, such as sequential patterns mining
algorithms (Song, Ye & Fournier-Viger, 2022; Tang et al., 2022), data stream mining
algorithms (Xiao & Hu, 2020; Lu et al., 2020), graph mining algorithms (Nguyen et al.,
2022; Preti, Morales & Riondato, 2023), approximate frequent itemset mining in uncertain
data (Lin, Fu & Hsueh, 2022; Bashir & Lai, 2021), and high utility frequent itemset mining
algorithms (Kumar & Singh, 2023; Hung, Tung & Vo, 2021). In this section, we evaluate
frequent itemset mining algorithms that are the most relevant to our proposed algorithm.

In the FIM algorithms, particular attention is directed towards the exact frequent
itemset mining algorithms, which utilize the entirety of transaction data for the

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 4/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

identification of frequent itemsets. These algorithms are more precise and do not involve
the risk of false negatives or false positives. Research efforts continue towards enhancing
the efficiency of these algorithms, as evidenced by recent publications (Jamsheela & Raju,
2023; Lu et al., 2023; Fang et al., 2023; Qu et al., 2020).

Recently, renewed interest shown by scholars in another avenue of research that
explores approaches aimed at enhancing efficiency and scalability of FIM algorithms by
approximating itemset support using only a small subset of transaction data. Early
explorations in this area include the introduction of sampling techniques into the field of
frequent itemset mining (Toivonen, 1996). In sample-based frequent itemset mining
algorithms, a subset is extracted from the large dataset, and frequent itemsets are
exclusively identified within this subset. This approach tries to reduce false negatives by
lowering the support threshold, while false positives are addressed through an additional
iteration over the discovered itemsets. However, this extra step compromises
computational efficiency, thus undermining the intended goal of the proposed method
(Aggarwal & Han, 2014). Furthermore, the selection of the optimal sample size parameter
further complicates the application of sample-based methods because it governs the
tradeoff between accuracy and efficiency (Wu et al., 2015; Riondato & Upfal, 2015; Zhang,
Pedrycz & Huang, 2017). Li et al. (2016) experimented with dynamic sample size, however,
he also introduced two other parameters to tune the algorithm. Some researchers have also
investigated the application of clustering algorithms in FIM, e.g., Ordonez (2009). Recently,
Fatemi et al. (2021) used clustering to approximate Maximal Frequent Itemsets (MFI).
However, the problem of additional parameters tuning persists with clustering-based
approximate FIM algorithms as well. It requires tuning the number of clusters and the
Centroid threshold parameters. Hash-function-based methods were also explored to
estimate the intersection size of multiple sets. Cohen et al. (2001) used MinHash for
frequent itemsets mining, employing the Jaccard similarity index to approximate the
support of candidate itemsets. Pagh, Stöckel & Woodruff (2014) proposed a method based
on one permutation MinHash to estimate intersection sizes. Dasu et al. (2002) developed
an estimator using k-permutation Minwise hashing. Bera & Pratap (2016) suggested three
Apriori variations using LSH for frequent itemset computation. Recently, Zhang et al.
(2018) employed Minwise Hashing to estimate itemset support counts using reduced
transaction sets. However, hashing techniques also require additional parameters (K and E
values). They retain complete transaction data and, in certain instances, choose to calculate
support directly rather than relying on approximations, especially when E values are high.
Additionally, they employ transaction list signatures to estimate itemset support counts,
which are essentially condensed transaction lists based on parameter K . Moreover, these
algorithms employ complex computations on transaction data, and their reliance on even
limited transaction data hampers their efficiency and scalability, as a moderate-sized dense
dataset also results in substantial computations. Furthermore, the need for additional
parametric settings complicates their usage.

In a recent research effort, the ProbBF (Sadeequllah et al., 2024) approximate FIM
algorithm was proposed. ProbBF is a probabilistic approach that approximates the support
of an itemset with no additional parameters except the traditional minimum support

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 5/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

threshold. Another important feature of this algorithm is that it does not use transactional
data for support approximation—it only probabilistically predicts the support count.
Additionally, this algorithm employs relatively simple computations compared to its other
approximate counterparts.

However, it is worth noting that ProbBF operates as a breadth-first algorithm.
Numerous studies have established that breadth-first FIM algorithms tend to be less
efficient than their depth-first counterparts, both in terms of memory usage and running
time (Aggarwal & Han, 2014). Moreover, depth-first algorithms have incorporated parent
support equivalence pruning techniques to enhance the efficiency of the mining process
(Aryabarzan, Minaei-Bidgoli & Teshnehlab, 2018; Deng, 2016). Table 1 provides a concise
summary of the methodologies and drawbacks of all the algorithms discussed in this
section. Additionally, various symbols and notations used throughout this article are
summarized in the notation table presented at the end of the article.

PROBLEM SETTING AND PRELIMINARIES
In this section, we begin by offering a precise definition of the FIM problem. Following
this, we explore commonly used data formats in FIM literature.

Problem statement and definitions
Consider a set of n transaction items, denoted as I ¼ i1; i2;…; inf g, and a collection of m
transactions, denoted as T ¼ t1; t2;…; tmf g, where each transaction ti is a subset of I. Let
X � I be an itemset of size k, referred to as a k-itemset. For example, the set A;B;Cf g is a
3-itemset, which can be abbreviated as ABC.

If Y � T and for every y 2 Y and X � y, then the support of X, denoted r Xð Þ, is
defined as r Xð Þ ¼ Yj j= Tj j, where Yj j is the support count of X. This implies that r Xð Þ is
the probability that the itemset X appears in a randomly selected transaction from T . An
itemset X is considered frequent if r Xð Þ � min sup, where min sup is a user-defined
threshold for support.

Table 1 Analysis of different types of approximate FIM algorithms.

Agorithm Require extra
parametric input

Dense data
friendly design

Use transaction data in
support approximation

Store multiple
frequent prefixes

Use additional
pruning except
Apriori

Search space
traversal strategy

Sampling-based
Algorithms

Yes No Yes Yes No Use both depth/
Breadth-first

Hash-based
algorithms

Yes No Yes Yes No Depth-First

Clustering-
based
algorithms

Yes Yes Yes Yes No Not applicable

ProbBF
algorithm

No Yes No Yes No Breadth-first

ProbDF
algorithm

No Yes No No Yes Depth-first

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 6/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

An association rule A) B represents the probability that a random transaction t 2 T
contains both itemsets A and B, given that A 2 I, B 2 I, A 6¼ Ø, B 6¼ Ø, and A \ B ¼ Ø.
The support for the rule A) B is the joint probability of A and B, denoted as P A \ Bð Þ,
which is computed as r ABð Þ. The confidence of the rule A) B is the conditional
probability PðBjAÞ, defined as r ABð Þ=r Að Þ.

In a standard association rule mining process, all potential rules meeting specified
criteria—such as user-defined thresholds for support and confidence—are generated for a
given dataset. The most computationally demanding aspect of this process is frequent
itemset mining. Determining the frequency of an itemset X involves inspecting all
transactions containing X, known as the support count of X, which entails significant
computational expenses. In this article, we use a technique presented in the following
section to approximate this value.

Transactions data format
The transaction dataset comprises transactions, each assigned a unique transaction ID
(TID) along with associated transaction items. FIM algorithms utilize either horizontal or
vertical formats of this data for support count calculations of itemsets. For instance,
Table 2 illustrates a transaction dataset of 10 transactions, depicted in horizontal format on
the left and vertical format on the right. Calculating the support count of an itemset in the
horizontal format involves tallying all transactions that include the itemset. Conversely, in
the vertical format, the intersection operation is applied to the TID sets of the items
constituting the itemset, with the support count being the size of the resulting TID set.
ProbDF is tailored to utilize arrays that exclusively store the counts of these TIDs for all
itemsets of size two.

PROBABILISTIC SUPPORT PREDICTION MODEL
In this section, we reproduce the PSPM proposed in Sadeequllah et al. (2024). This model
is used to predict the support count of a k-size itemsets for k � 3. This model is recursively

Table 2 Horizontal vs. vertical data format.

Transaction ID Items Items Transaction IDs

1 Z Y W Z 1, 2, 3, 4, 5, 6, 7, 9, 10

2 Z Y X S Y 1, 2, 3, 5, 7, 8, 9, 10

3 Z Y X T X 2, 3, 4, 5, 6, 7, 9

4 Z X W S W 1, 4, 6, 7, 8, 10

5 Z Y X T S T 3, 5, 6, 8, 9

6 Z X W T S 2, 4, 5, 10

7 Z Y X W

8 Y W T

9 Z Y X T

10 Z Y W S

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 7/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

applied to find the support of higher order sets of size four and higher. This model is as
follows:

Let A, B, and C be any three finite sets, and suppose they are subsets of a universal set U .
According to the probability theory:

P A \ Bð Þ ¼ P Að Þ � PðBjAÞ: (1)

If A and B are independent events then PðBjAÞ ¼ P Bð Þ and (2) becomes:

P A \ Bð Þ ¼ P Að Þ � P Bð Þ: (2)

Another way to write Eq. (1) is:

P A \ Bð Þ ¼ P Að Þ � P Bð Þ � Cf A;Bð Þ: (3)

The Cf shows the correlation of two probabilistic events A and B, which is written as
follows.

Cf ¼ P A \ Bð Þ
P Að Þ � P Bð Þ : (4)

The Cf is called the correlation factor. If A and B are independent events then
Cf A;Bð Þ ¼ 1. In this case Eq. (3) equals Eq. (2). Though Eqs. (1) and (3) are equal, the

Eq. (3) has the advantage that it separates the data dependence. If P A \ Bð Þ, P A \ Cð Þ and
Cf B;Cð Þ are already known, and X ¼ ðA \ B), Y ¼ A \ Cð Þ, it could be shown that:

Pð X \ Yð ÞjAÞ ¼ PðXjAÞ � PðY jAÞ � Cf ð X;Yð ÞjAÞ: (5)

It is clear in Eq. (5) that X \ Yð Þ ¼ A \ B \ Cð Þ, but A \ B \ Cð Þ is the quantity that is
required. For the dense data, it was shown in Sadeequllah et al. (2024) that S ! T more
often if S is the immediate proper subset of T . Since X, Y , and A are the immediate proper
subsets of B, C, and U respectively, X ! B, Y ! C, and A ! U . Therefore, we assume
that the correlation of B and C in U approximates the correlation of X and Y in A as X and
Y are the immediate proper subsets of A. This is due to the fact that if X ! B, Y ! C, and
A ! U then Cf ð X;Yð ÞjAÞ ffi Cf B;Cð Þ. Therefore, we can approximate the probability of

Pð X \ Yð ÞjAÞ by substituting Cf B;Cð Þ for Cf ð X;Yð ÞjAÞ in Eq. (5).

Pað X \ Yð ÞjAÞ ¼ PðXjAÞ � PðY jAÞ � Cf B;Cð Þ (6)

where Pa is the approximate probability. Similarly, if we have the probability of a itemset,
we can easily determine its support count with the following equation.

Vj j ¼ P Vð Þ � Uj j P Vð Þ ¼ Vj j
Uj j (7)

where Vj j is the total number of transactions in which the itemset V is present, and Uj j
represents the total number of transactions in the dataset. Similarly, if U is the set of all
transactions in the dataset, A, B, C, X, and Y are the itemsets representing the set of

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 8/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

transactions that are the subsets of U . This means that Vj j is the support count in the
context of itemset mining. Like the ProbBF algorithm, the proposed algorithm ProbDF
also uses the following two equations for predicting the support count of k-size itemsets
for k � 3.

A \ B \ Cj j ¼ A \ Bj j � A \ Cj j � B \ Cj j � Uj j
Aj j � Bj j � Cj j (8)

Pref \ A \ B \ Cj j ¼ Pref \ A \ Bj j � Pref \ A \ Cj j � Pref \ B \ Cj j � Prefj j
Pref \ Aj j � Pref \ Bj j � Pref \ Cj j : (9)

These two equations are reduced forms of Eq. (6). When k ¼ 3, Eq. (8) is used, while
Eq. (9) is used for k � 4. In this equation, the last 3 items of a k� itemset are represented
with A, B, and C respectively. Pref (for prefix) is an itemset of size k� 3. If HIJKL is a
5-itemset, for example, then J , K , and L are the A, B, and C respectively, and HI is the Pref
itemset. The importance of the recursive application of Eq. (6) in the form of Eq. (9) is that
the sample space prefj j is continuously reducing. It is also important to note that support
counts of all the sets used in Eq. (9) would already be known.

Enforcing limits on predictions
If X ¼ A [Bð Þ, Y ¼ A [Cð Þ and Z ¼ B [Cð Þ, according to the anti-monotone property
of the support finding process, the ProbDF introduces the upper bound (Ub) on support
prediction as follows.

r A [B [Cð Þ � min X; Y ; Zð Þ ¼ Ub: (10)

Similarly, a lower bound on the support of any 3-itemset could be defined using the
following equation.

r a; b; cf gð Þ � r a; bf gð Þ þ r a; cf gð Þ � r af gð Þ (11)

This equation was first used in Max-miner (Bayardo, 1998). Consequently, a lower
bound (Lb) on the support prediction of a 3-itemset could be defined using the following
equation.

r A [B [Cð Þ � max
r Xð Þ þ r Yð Þ � r Að Þ;
r Xð Þ þ r Zð Þ � r Bð Þ;
r Yð Þ þ r Zð Þ � r Cð Þ

0
@

1
A ¼ Lb: (12)

The ProbDF clipps the predicted support on any of these theoratical bounds whenever
crossed. These bounds also help to establish a limit on the maximum error. Let #
represents this maximum error given as follows.

Error � # ¼ Ub� Lb� 1: (13)

In the above equation bounds the error 0; #½ �). The value �1 in the above equation
represents a unique situation, which is when r A [B [Cð Þ ¼ min X; Y ; Zð Þ. At this point

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 9/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Lb ¼ Ub. It has been shown in Sadeequllah et al. (2024) that these bounds improves the
predictions of the ProbDF greatly.

THE PROPOSED ALGORITHM, PROBDP
In this section, we present the depth-first based proposed algorithm ProbDF. This
algorithm generates frequent itemsets based on the set-enumeration tree (Rymon, 1992)
model. Every candidate, represented by a node N, has two items of information: the item
itself, and a vector of supports of its all possible children. Every node represents a k-size
frequent itemset, where k� 1 items are stored in a separate vector itemset and only the

kth item is stored in the node. The size of the itemset vector is equal to the total number of
frequent items. The item at the root node is represented by Ø and the support is set to the
total number of transactions. This is because ProbDF treats the root node as the universal
set U . To generate all frequent itemsets and print them to secondary storage, the ProbDF
uses the following three algorithms.

This algorithm has two for loops, the outer and the inner. The outer loop creates a node
for each frequent child in the support vector of the current node. The inner loop constructs
the support vector for each node created. This algorithm calculates the support count of
the new itemsets probabilistically using Eq. (9). This support is trimmed at either boundary
of Lb; Ub½ � if it goes beyond this interval. These boundaries, Lb and Ub, are given by
Eqs. (12) and (10) respectively.

Introducing promotion pruning in ProbDF
The parent equivalence pruning (PEP) feature, first introduced in Bayardo (1998) and
elaborated in detail in Sadeequllah et al. (2024), has been tuned to the needs of frequent
item mining in Aryabarzan, Minaei-Bidgoli & Teshnehlab, (2018), Deng, (2016) under the
name promotion method. According to this method if F is a k-size frequent itemset and S
is a set of items representing the frequent 1-item extensions of F such that
r Fð Þ ¼ r F [ið Þ 8i 2 S, then r Fð Þ ¼ r F [jð Þ8j 2 P Sð Þ, where P Sð Þ is the power set of S.
If M ¼ F [j j 2 P Sð Þ ^ size jð Þ > 1j gf , it is important to note that M is the set of frequent
itemsets that are directly generated (i.e., bypassing the candidate generation and test
strategy of the FIM algorithms). The experiments show the promotion method
significantly improves the time and space complexity of the FIM algorithms (Aryabarzan,
Minaei-Bidgoli & Teshnehlab, 2018;Deng, 2016). It prunes complete branches of the search
space rooted at promoted items (the frequent items in set S are known as promoted items).
The Algorithms 4 and 5 are modified versions of the Algorithms 3 and 4, respectively that
incorporate the promotion method in ProbDF algorithm. The changes in these algorithms
from their previous versions are highlighted in bold-face font. The promoted items in these
algorithms are stored in a new vector p items in every node.

Example: The ProbDF algorithm has been applied to the dataset shown in Table 2. This
dataset is passed as an argument to the main algorithm, probDFAlgo (Algorithm 2), along
with the support threshold of two transactions. For this support threshold, all items
present in the dataset are already frequent. The probDFAlgo first calls the

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 10/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Figure 1 ProbDF algorithm. (A) genFrequentItems routine (Algorithm 1) (B) the main algorithm ProbDF routing (Algorithm 2) (C) genFItemsets
routine (Algorithm 3). Full-size DOI: 10.7717/peerj-cs.2334/fig-1

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 11/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-1
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

getFrequentItems routine and receives in return the list of frequent items, arranged in
ascending support order, as F1. For the data in Table 2, the F1 is S;T;W;X;Y ;Zf g.

The probDFAlgo starts traversing the search space from line 5 to line 9, creating the
child nodes of the implicit root node for every frequent item in F1 as a frequent child. This
is shown in Fig. 3A. The support of the implicit root node is set at |Ɗ| because we use the
diffset support computations method (Zaki & Gouda, 2003). For the data in Table 2, |Ɗ| is
10. Every child node also has a vector to store support values of all its possible children, and
the probDFAlgo determines these values from the transactions database Ɗ from lines
10–19. Lines 22 and 23 perform further exploration of the nodes in Fig. 3A. The
probDFAlgo calls the genFItems routine for this purpose.

Algorithm 2

In Fig. 1B , the main algorithm ProbDF is presented. In order to create the list of frequent items (i.e., the F1), this algorithm first calls Algorithm 1.
Though the root node is not explicitly declared, it creates a vector to store support values of the frequent items as children of the implicit root node.
Every node stores the support of its children in such a vector and we will call it support vector from this point onward. It is important to note that, in
probDF algorithm, the frequent items are not directly stored in memory, rather implicitly represented by the indices of these vectors. This scheme is
adopted in order to make ProbDF time and space efficient. From line 5 to line 9, it creates a node for every frequent item in F1, assign it the item index,
and create a vector to store support values for all its possible children. From line 10 to line 15, it retrieves each transaction from Ɗ, deletes infrequent
items from this transaction, retrieves indices of the frequent items left, and sort these indices in ascending order. From line 16 to line 19, these indices
are used to increment the support values of appropriate 2-itemsets. It also creates a vector itemset. This vector stores every frequent k-itemset that is
generated by the algorithm and written to the disk. Lastly, it calls Algorithm 3 and passes it the nodes, one by one, that it has created for the frequent
items in F1. Algorithm 3 writes these nodes to disk and generates recursive calls to itself to create further children of these nodes.

Algorithm 3

This algorithm, presented in Fig. 1C, has a major share in the ProbDF algorithm. This algorithm first prints the node passed as parameter. If the node
represents k-itemset, it loads the node label as kth item on itemset vector (the k-1 items are already loaded on itemset). It also retrieves support of the
node from the support vector of its parent node and writes the itemset the node represents to disk along with its support. It is important to note that the
item whose support is stored at first location in the support vector, is named as offset (also s_offset and z_offset). For a node N, the offset � N:itemþ 1.
The offset ¼ N:itemþ 1 only if the item N:itemþ 1 is frequent, otherwise offset > N:itemþ 1. This is because storing supports of the starting items,
which are infrequent, is wastage of time and memory.

Algorithm 4

This algorithm, shown in Fig. 2A , is a modified version of the Algorithm 2 that incorporates new instructions, written in bold face, to introduce the
promotion pruning concept in ProbDF. Every node has now an extra p items vector to store promoted items. It creates a global stack data structure to
temporarily store promoted items of a node. From line 22 to line 28, it checks the children of every frequent child node of the root node for promotion.
If there are one or more children found as promoted items, they are pushed on the stack. The support count value of the promoted item is incremented
by the total transactions count |Ɗ|. The purpose of this incrementation is to differentiate the support count of promoted itemset from the other
frequent itemsets. This point is further explained in the next algorithm, the Algorithm 5. From line 29 to 31, the p items vector of the size of stack is
created and the stack is emptied into it.

Algorithm 1

This algorithm, presented in Fig. 1A, receives the transaction datasetƊ as input. This dataset has a total of |Ɗ| transactions, and every transaction t � I.
This algorithm reads every transaction t 2 Ɗ and every item i 2 t, and builds F1. The F1 is a collection of items, present in Ɗ, along with support of
these items. If the support of an item is less than the user-supplied support thresholdmin sup, it is deleted. That is, F1 is left with frequent items only. It
is worth noting that frequent items in F1 are sorted in support ascending order. This algorithm is called by Algorithm 2, which is the main algorithm
the ProbDF.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 12/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Figure 2 ProbDF algorithm with promotion pruning. (A) Algorithm 2 Extended (Algorithm 4) (B) Algorithm 3 Extended (Algorithm 5).
Full-size DOI: 10.7717/peerj-cs.2334/fig-2

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 13/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-2
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

The genFItems recursively explores the nodes it receives as arguments in depth-first
order. It creates a child node for frequent children only. The support of the children of the
top-level nodes (i.e., nodes listed in Fig. 3A) was calculated from the transaction database
by the calling routine probDFAlgo. Therefore, the top-level nodes and their children nodes
are shown as round nodes to indicate their support is calculated from the transaction
database. These nodes are shown in Fig. 3B. The later nodes down the tree, starting from
level-3, are shown as rectangular nodes to indicate their support is approximated using
PSPM. It is worth noting that the proposed algorithm creates children nodes of a parent
node in breadth-first order, but traverses these children nodes in depth-first order. This is
also evident from Figs. 3A and 3B. All the children nodes of the root node are created in
breadth-first order, as shown in Fig. 3A. Similarly, all the children nodes of the node S are
also created in breadth-first order in Fig. 3B.

The rectangular nodes start to generate when the genFItems call itself recursively for the
first time. This time, the nodes created have their support approximated in the previous
call to genFItems, which was made from probDFAlgo. However, the rectangular children
nodes of the round node SW, shown in Fig. 3C, are all infrequent, and the first recursive
call to genFItems returns without making any addition to the search space tree.

The second recursive call to the genFItems routine in Fig. 3D is made for the round
node SX. This call creates two rectangular children, SXY and SXZ. Both of these children
are frequent. Figure 3E shows that the third recursive call creates the rectangular node
SXYZ. The diagram of the complete search space is shown in Fig. 3F.

The support calculated using the PSPM is probabilistic; therefore, these values are
continuous. For example, to calculate the probabilistic support for the itemset S;W;Yf g
using Eq. (8), the following calculations are used:

support SWYð Þ ¼ S \Wj j � S \ Yj j � W \ Yj j � Uj j
Sj j � Wj j � Yj j

support FDBð Þ ¼ 2 � 3� 4� 10
4� 6� 8

¼ 1:25:

Algorithm 5

This algorithm, presented in Fig. 2B, is modified version of the algorithm 3. This algorithm also incorporates new instructions to bring the concept of
promotion into the ProbDF algorithm. These new instructions (or part of an instruction) are distinguished as boldface text. At line 8, the reference of
the current frequent node a node is stored in a new reference variable (pointer) because a nodekeeps advancing down the algorithm in tracking the
support of Z. The child item X or Y is not selected for candidate generation if its support is greater than |Ɗ|. This is because greater support than |Ɗ|
means the item is promoted and it is already stored in p items. This is according to plan as we discussed in the beginning of this section that the concept
of promotion prunes complete branches of the search space rooted at promoted items. The purpose of storing the support of promoted item is only to
determine the support of Z. From line 42 to 45, if the new frequent candidate is a promoted item, it is pushed on the stack and its support is stored in
the newly created support vector incremented by |Ɗ|. From 56 to 62, the p items vector of the new node is decided. If there is no new promoted item, i.
e., the stack is underflow, the parent vector of p items is passed as it is to the new node. Otherwise, a new vector is created to store the promoted items
of both the parent node as well as that of the new node.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 14/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Similarly, to calculate the support of SXYZ, put Pref ¼ S, A ¼ X, B ¼ Y and
C ¼ Z in Eq. (9), and the answer is 2.17 (the more precise answer is from ProbDF).

S \ X \ Y \ Zj j ¼ S \ X \ Yj j � S \ X \ Zj j � S \ Y \ Zj j � Sj j
S \ Xj j � S \ Yj j � S \ Zj j

Figure 3 ProbDF applied to data in Table 1. Full-size DOI: 10.7717/peerj-cs.2334/fig-3

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 15/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-3
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

support SXYZð Þ ¼ 2:01 � 3:33� 2:91� 4
3� 3� 4

¼ 2:164 	 2:17:

Complexity analysis of the ProbDF
The total runtime of the ProbDF algorithm comprises two distinct parts: the time required
for the support calculation of frequent itemsets of size 1 and 2, and the time required to
generate and evaluate candidate itemsets belong to the level 3 and beyond. Let n represent
the total number of frequent items and T represent the total number of transactions in a
given dataset. In the worst-case scenario, the support calculation for frequent itemsets of
size 1 and 2 assumes each frequent item is present in every transaction, resulting in a time
complexity of O n� Tð Þ. Generating all possible candidate itemsets is a combinatorial
problem that involves generating 2n subsets of the set of n frequent items, leading to a time
complexity of O 2nð Þ. Therefore, the total runtime of the ProbDF algorithm in the worst
case is O n� Tð Þ þ O 2nð Þ. When considering the average runtime complexity, replacing n
with the Average Transaction Length (ATL), we obtain O ATL� Tð Þ þ O 2nð Þ.

The space complexity of ProbDF can be determined by examining the example
presented in Fig. 3. The space required for the vectors, storing child itemsets support, at

level 1 is
nð Þ n� 1ð Þ

2
, at level 2 is

n� 1ð Þ n� 2ð Þ
2

, and so on. For the second-to-last level, it

is 1, and for the last level, it is 0. Let 4 represent the height of the frequent itemset tree (i.e.,
the length of the longest frequent itemset). Then the space complexity is

4
nð Þ n� 1ð Þ

2
þ n� 1ð Þ n� 2ð Þ

2
þ . . . þ 1 þ 0

� �
þ 4, which can be simplified to

O 4n2 þ 4ð Þ.

EXPERIMENTAL RESULTS
In this section, we present a comprehensive evaluation of the performance of the proposed
algorithm ProbDF. For this purpose, ProbDF has been implemented in Java version 8. The
operating system used was Windows 10, and the hardware platform was a 10th generation
Intel Core i5. The reason for selecting JAVA are the problems, regarding implementation
of the FIM algorithms, identified in Fournier-Viger et al. (2017), Luna, Fournier-Viger &
Ventura (2019). The author believes that the original versions of different FIM algorithms
have been implemented in different languages, and across diverse hardware platforms,
which greatly affect their performance. The worst is that some algorithms have no
implementation available whatsoever. To deal with these problems, the authors have
proposed an online Java based open source FIM library, called SPMF and accessible at
https://www.philippe-fournier-viger.com/spmf/v2/index.php. For a fear comparison, the
algorithms should not only have the same hardware and software platform, but should also
be implemented and tested in the same language and the same compiler. Due to this, four
state-of-the-art FIM algorithms–namely FP Growth (Grahne & Zhu, 2005), PrePost+
(Deng & Lv, 2015), dFIN (Deng, 2016) and negFIN (Aryabarzan, Minaei-Bidgoli &
Teshnehlab, 2018), have been selected from the SPMF library. However, all these

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 16/30

https://www.philippe-fournier-viger.com/spmf/v2/index.php
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

algorithms are the exact algorithms, i.e., they generate no false positive or false negative.
For a fair comparison, we have also selected three recently published approximate FIM
algorithms–namely ProbBF (Sadeequllah et al., 2024), HashEclat (Zhang et al., 2019), and
RSB-PFI (Valiullin et al., 2021). All these algorithms have been recodded in JAVA. While
the original version of ProbBF is implemented in C++ and uses a set enumeration tree to
store the discovered frequent items, the Java version uses a simple queue data structure to
conserve memory more efficiently. It is due to the fact that some FIM algorithms store the
discovered frequent itemsets in memory, while others write them to file. For uniform
comparison of bench mark algorithms in Sadeequllah et al. (2024), all the algorithms were
forced to store all of the discovered frequent itemsets in memory resident data structures.
However, to commpare only the frequent itemset generation capacity of these algorithms,
we force these algorithms to store these frequent itemsets neither in memory and nor write
them files, i.e., the discovered frequent itemsets are only counted and then discarded.
Moreover, the ProbDF will also be made available in the future distributions of SPMF
liberary.

To benchmark the performance of the ProbDF on dense data, we have selected five real-
world datasets. These datasets are the standard benchmarking datasets frequently present
in the frequent itemset mining literature. These datasets are Chess, Connect, Accidents,
Pumsb, and Pumsb_star, which are available for free downloads from the FIMI repository
(http://fimi.ua.ac.be). The input parameters for all eight algorithms included in this
comparison, along with their corresponding outcomes, are presented in Table 3.
Additionally, Table 4 presents a description of the various symbols and notations used
throughout this article.

In this section, we first evaluate the time and memory efficiency, respectively, of the
ProbDF algorithm compared to the seven benchmark algorithms selected for comparison.
Subsequently, analysis of our algorithm’s capability to generate all potential frequent
itemsets is presented.

Time efficiency of ProbDF
In Fig. 4A , the total runtime of the seven benchmark algorithms: NegFIN, dFIN, PrePost+,
FP-Growth, HashEclat, RSB-PFI, and ProbBF, has been compared against the run time of
the ProbDF algorithm. In this comparison, these algorithms have been applied to five
benchmark datasets: Chess, Connect, Accidents, Pumsb, and Pumsb_star, and the results
are shown in Fig. 4A.

As previously mentioned, the most processing-intensive operation is support discovery
in frequent itemset mining. This is because it requires to examine all the relevant
transactional data to be able to determine support of an itemset. Since the ProbDF does not
use any transactional data in the support finding operation, this fact makes it the most
efficient algorithm. This efficiency is visible in Fig. 4A across all the benchmark datasets
and against all seven state-of-the-art algorithms. As stated earlier, all these algorithms in
this comparison are configured in such a way that they discard frequent itemsets soon after
they are generated. That is, the frequent itemsets are neither stored in memory nor written
to disk. The reason for this setting is to strictly restrict the comparison to the very basic

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 17/30

http://fimi.ua.ac.be
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Table 3 Analysis of the input parameters of the algorithms selected for comparison and their
runtime values.

Support values (%)

Algorithm 50% 60% 70% 80% Dataset

NegFIN 0.146 0.054 0.029 0.024 Chess

dFIN 0.184 0.073 0.043 0.036

PrePost+ 0.246 0.097 0.044 0.036

FPGrowth 0.463 0.168 0.067 0.028

HashEclat 0.38 0.145 0.063 0.027

RSB-PFI 0.52 0.185 0.081 0.04

ProbBF 0.12 0.044 0.025 0.012

ProbDF 0.048 0.023 0.015 0.012

50% 60% 70% 80%

NegFIN 0.626 0.601 0.546 0.527 Connect

dFIN 0.993 0.715 0.576 0.546

PrePost+ 5.381 1.402 0.831 0.625

FPGrowth 10.865 3.064 1.645 0.787

HashEclat 8.83 2.537 1.256 0.663

RSB-PFI 13.52 4.59 1.94 0.821

ProbBF 0.75 0.62 0.5 0.4

ProbDF 0.432 0.4 0.372 0.357

50% 60% 70% 80%

NegFIN 27.183 3.071 1.146 0.734 PUMSB

dFIN 22.668 2.85 1.09 0.709

PrePost+ 40.21 6.267 1.552 0.729

FPGrowth 92.41 11.084 2.526 0.862

HashEclat 159.58 19.091 4.127 1.549

RSB-PFI 132.58 15.31 3.36 1.2

ProbBF 9.61 1.947 0.87 0.746

ProbDF 2.3 0.784 0.58 0.483

40% 50% 60% 70%

NegFIN 0.614 0.479 0.421 0.456 PUMSB_star

dFIN 0.61 0.495 0.451 0.434

PrePost+ 0.682 0.527 0.468 0.445

FPGrowth 0.877 0.575 0.475 0.453

HashEclat 1.27 0.7166 0.5676 0.5564

RSB-PFI 1.124 0.681 0.524 0.516

ProbBF 0.5148 0.4498 0.3896 0.377

ProbDF 0.371 0.329 0.306 0.289

40% 45% 50% 55%

NegFIN 3.359 2.972 2.468 2.35 Accidents

dFIN 2.679 2.569 2.425 2.359

PrePost+ 2.68 2.567 2.387 2.367

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 18/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Table 3 (continued)

Support values (%)

FPGrowth 3.789 3.184 2.725 2.519

HashEclat 4.81 4.24 3.476 3.32

RSB-PFI 5.51 4.75 3.82 3.5

ProbBF 2.4 2.2 1.9 1.8

ProbDF 1.502 1.47 1.436 1.417

Table 4 Notations table.

Symbol Description

AFIS Average frequent itemset size

ATL Average transaction length

Cf Correlation factor

Ɗ Transaction dataset

dFIN A FIM algorithm selected for comparison

F1 Collection of frequent items with their support counts

FIM Frequent Itemset Mining

HashEclat A FIM algorithm selected for comparison

I An item in the transaction t

K Size of the itemset

Lb Lower bound of support prediction

MFI Maximal Frequent Itemsets

min_sup Minimum support threshold

N Node in the set-enumeration tree

n Total number of frequent items

NegFIN A FIM algorithm selected for comparison

O Big-O notation for time complexity

P(A) Probability of the event A

P(X) Power set of set X

PEP Parent equivalence pruning

Pref Prefix itemset

PrePost+ A FIM algorithm selected for comparison

ProbBF Probabilistic breadth-first (algorithm)

ProbDF Probabilistic depth-first (algorithm)

PSPM Probabilistic support prediction model

RSB-PFI A FIM algorithm selected for comparison

SPMF Java based open source FIM algorithms and datasets online liberary at https://www.philippe-fournier-viger.com/spmf/v2/index.php

T A transaction in the dataset Ɗ

T Total number of transactions in the dataset Ɗ

U The universal set representing the set of all transactions in Ɗ

Ub Upper bound of support prediction

Θ Maximmumm error on predicted (approximated) support

σ(X) Support of itemset X

Φ Height of the frequent itemset tree (i.e., the length of the longest frequent itemset)

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 19/30

https://www.philippe-fournier-viger.com/spmf/v2/index.php
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

memory and computational requirements of the algorithms. We believe that the
computational gains of algorithms are diluted by including the writing time (the time it
takes to write the frequent itemsets to disk) in the total time the algorithms take to mine
the datasets. Similarly, storing frequent itemsets in memory will also thin-out memory
savings by the algorithms.

The ProbBF algorithm, as state earlier, has been recoded with queue data structure.
However, the unique requirements of Eqs. (8) and (9) enforce that this queue data
structure holds three recently traversed tree levels in memory. This contrasts with
conventional breadth-first algorithms, which hold only one level in memory. However, the

Figure 4 Evaluating efficiency of the ProbDF algorithm. (A) Runtime comparison; (B) memory comparison.
Full-size DOI: 10.7717/peerj-cs.2334/fig-4

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 20/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-4
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

memory footprint of the Java-coded ProbBF is significantly smaller than that of the
original version, as it utilizes a set enumeration tree to store all discovered frequent
itemsets. Nevertheless, the Java-coded ProbBF still exhibits slower performance than
NegFIN on the Connect dataset, which is notably dense. This discrepancy arises because
NegFIN consumes lower memory than ProbBF when it refrains from storing any frequent
itemsets in memory. Additionally, ProbBF is further disadvantaged by its lack of utilization
of the promotion pruning concept, a feature that NegFIN employs effectively.

The other two approximate algorithms, HashEclat and RSB-PFI, perform poorly on
dense datasets. As reported in Sadeequllah et al. (2024), their lack of effective compression
of transaction data makes them less suitable options for dense datasets, i.e., these
algorithms suit sparse data. On the other hand, ProbDF outperforms all seven algorithms
by significant margins due to its simple computations with zero transaction data, efficient
depth-first-based search strategy, and effective promotion pruning application.

Space efficiency of probDF
Since ProbBF and ProbDF algorithms do not calculate support from the transactional data
for frequent itemsets of size three or more (i.e., k ≥ 3), they delete all transaction data after
determining all frequent 2-itemsets. This characteristic results in very low memory
requirements for these two algorithms. However, ProbBF consumes more memory than
ProbDF because its queue data structure stores the three most recently traversed levels of
the search space tree. On the other hand, ProbDF’s newly proposed efficient depth-first
search strategy stores partial results of only a small number of candidate frequent itemsets
currently under consideration. Moreover, the application of promotion pruning further
reduces the memory requirements of this algorithm by avoiding the storage and
exploration of some branches of the search space. In conclusion, the combination of zero
transaction data, memory-efficient depth-first search strategy, and promotion pruning
renders ProbDF more memory-efficient than all other state-of-the-art FIM algorithms, as
shown in Fig. 4B. ProbDF consumes the lowest memory on all benchmark datasets when
compared to all competing FIM algorithms.

Analysis of the real frequent itemsets generation
Since ProbDF is a probabilistic algorithm, the frequent itemsets it generates could be
classified as true positive, false negative and false positive. In this subsection, we analyze the
strength of the ProbDF algorithm to generate the wanted true positive frequent itemsets,
the unwanted false positive frequent itemsets and the missed frequent patterns (i.e., the
false negative frequent itemsets). Let us call a frequent itemset as real frequent itemset (i.e.,
true positive) if its support count is above the min_supp threshold when calculated from
the transactional data. Also, call the frequent itemset the ProbDF generates using PSPM be
a probabilistic frequent itemset. This analysis has been done on all five selected benchmark
datasets. Every dataset has been evaluated for a specific support threshold value, written in
parenthesis along the dataset name in the diagrams. For example, in Fig. 5A, the ProbDF
has been run on the Chess dataset for a support threshold of 0.4. This figure shows strength
of the ProbDF to generate true positive frequent itemsets. For example, the red bar shows

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 21/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

the real frequent itemsets for the chess dataset for the support value of 0.4 are 6,438,989.
From these, the ProbDF has successfully generated 6,398,631, which are 99.4% of real
frequent itemsets. These true positive frequent itesets for the Chess dataset are shown with
blue bar in the figure. The remaining real frequent itemsets, which stands at 0.6%, have also
been generated by ProbDF, but with one item missing from these itemsets. These itemsets
have been shown with the brown bar along with the label 0.6%. The results of the other
datasets are not very different than that of the Chess except the Connect. The results for the
Connect dataset are unique in that non of the real frequent itemset has been missed by the
ProbDF algorithm. This figure clearly shows that the true positive frequent itemsets
generated by ProbDF are very close in numbers to the real frequent itemsets. In other
words, ProbDF successfully generates majority of the frequent itemsets.

The analysis of the false positive frequent itemsets generated by the ProbDF is presented
in Fig. 5B. In this figure, the blue bar represents the total real frequent itemsets for a given
dataset. Similarly, the brown bar represents the total false positive frequent itemsets
generated by the ProbDF for the given dataset and the mentioned support. These false
positive frequent itemset are also represented by the green bar but with different metric,
i.e., in percentage. The green bar shows what percent the false positive frequent itemsets
are of the real frequent itemsets. This percentage value is written on top of the green bar.
The blue bar and the brown bar are also labeled with the number of itemsets they
represent. The lowest number of false positive itemsets is recorded for the Connect dataset,
while the highest number of false positive itemsets is shown for the Pumsb_star dataset. A
reason for this is the density of the database. As mentioned earlier, the Connect dataset is
very dense, but the PUMSB_star database is low in density, as this dataset is derived from
the PUMSB dataset by deleting all those frequent items whose support is 80% or above.
These results clearly indicate that the more the dataset is dense and the support threshold
is high, the PSPM produces better results.

Figure 5 Evaluating quality of the output of ProbDF. (A) True positive analysis. (B) False positive analysis.
Full-size DOI: 10.7717/peerj-cs.2334/fig-5

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 22/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-5
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

In another figure, in Fig. 6A, all of the false positive frequent itemsets generated by the
ProbDF have been shown with the real support. This figure also shows the average real
support of these false positive frequent itemsets. Since these itemsets are not frequent, their
support is less than the minimum support threshold (i.e., minimum support count in the
figure). The average support of the Chess, Connect, Pumsb, Pumsb_star, and Accidents
datasets (which are mined for the support threshold of 0.5, 0.7, 0.7, 0.4, and 0.4,
respectively) are 0.491, 0.699, 0.692, 0.391, and 0.39, respectively. This figure clearly
indicates that these false positive frequent itemsets are closely located on the outer sphere
of the frequent itemset boundary.

Lastly, we apply two widely used measures in the data mining literature, recall and
precision, to evaluate the effectiveness of the ProbDF algorithm in successfully
approximating all frequent itemsets. Recall represents the percentage of all true positive

Figure 6 Further analysis of the quality of the output of ProbDF. (A) False positive position below frequent itemsets boundary. (B) Precision and
Recall for ProbBF. Full-size DOI: 10.7717/peerj-cs.2334/fig-6

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 23/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-6
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

frequent itemsets that are successfully predicted by ProbDF, while precision represents the
percentage of probabilistic frequent itemsets generated by ProbDF that are true positive.
This analysis is depicted in Fig. 6B for all four approximate algorithms compared in this
study.

Two observations can be drawn from the results shown in Fig. 6B. Firstly, there are no
significant differences in the quality of the results of ProbDF and ProbBF because they use
the same PSPMmodel for their predictions. Secondly, the results of this figure closely align
with those reported in Sadeequllah et al. (2024). This ensures that the quality of the
predictions of ProbDF is the same as that of ProbBF, albeit with more time and memory
efficiency.

Discussion of ProbDF algorithm outcomes and implications
The above findings reinforce the observations made in Sadeequllah et al. (2024). It was
noted in Sadeequllah et al. (2024) that the PSPM technique produces accurate predictions,
especially when the dataset is dense and the support threshold is high. This fact is further
corroborated by the results shown in Figs. 5A and 5B, which depict the outcomes of
mining the Connect and PUMSB_star datasets in this study. The Connect dataset, being
highly dense and mined at a support of 0.7, exhibits significantly superior results compared
to the less dense PUMSB_star dataset, which is mined at a lower support of 0.4.

Additionally, Fig. 6A illustrates that false negative itemsets have probabilistic support
just below the minimum support threshold. This observation aligns with the results in
Fig. 5A, where most false negative frequent itemsets are included in the probabilistic
frequent itemset but with one item missing.

Moreover, the results shown in this section clearly indicate that the quality of ProbDF’s
output deteriorates as the support threshold values are lowered. This decline is due to the
scalability of the proposed methodology. As the size of the frequent itemsets increases
down the search space, the error compounds, and the possibility of false outcomes rises.
This compound error is also significantly influenced by the density of the dataset.

Figure 7 displays the densities of different datasets by dividing the average transaction
length (after deleting the infrequent items) by the total number of frequent items. This
figure shows that the Connect dataset has the highest density, while PUMSB_star has the
lowest. Various studies (Burdick et al., 2005; Gouda & Zaki, 2005) report that the Average
Frequent Itemset Size (AFIS) for the Connect dataset is double that of the AFIS for the
PUMSB dataset at the same support threshold values. The PUMSB and Chess datasets
have nearly identical AFIS, while the AFIS of the PUMSB_star dataset falls between those
of PUMSB and Connect.

However, Figs. 5A, 5B, and 6B show that the quality of ProbDF’s output is highest for
the Connect dataset, followed by somewhat identical performances on Chess and PUMSB
datasets, while the quality for PUMSB_star is the lowest. This is attributed to the highest
density of the Connect dataset, followed by Chess, PUMSB, and PUMSB_star. These
findings highlight the significant role that dataset density plays in the successful
application of the ProbDF algorithm. Additionally, the results do not indicate that ProbDF
is affected by the number of frequent items or the number of frequent itemsets in a dataset.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 24/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

To summarize the above discussion, the ProbDF algorithm is most effective with dense
datasets, yielding higher-quality output when relatively high support threshold values are
used. Additionally, ProbDF is valuable in FIM domains where some loss of quality is
acceptable in exchange for increased efficiency. This is particularly advantageous in real-
time environments where fast response times are prioritized over the highest quality
responses. Based on the findings in this section, it is reasonable to conclude that ProbDF
offers high runtime and memory efficiency with only a marginal loss in quality.

FUTURE WORK
An important future direction is to enhance the performance of the ProbDF algorithm on
certain datasets, such as PUMSB_star, where ProbDF does not perform optimally, by
incorporating other approximate techniques. Another significant direction involves
applying the ProbDF algorithm in real-time decision-making domains. For instance, this
algorithm could be utilized in real-time business decision-making and real-time intrusion
detection, where sub-optimal but rapid reponse is required. Additionally, the ProbDF
algorithm could be tested on large, dense data streams where the results of other FIM
algorithms designed for data streams are also approximate. ProbDF has the potential to
produce more accurate results by considering all transactions and incrementally storing
the support of only frequent 2-itemsets.

Furthermore, ProbDF could be extended to design a fast maximal frequent itemset
mining algorithm that skips most of the computations by utilizing the PSPM model.
ProbDF could also be adapted to other FIM domains, such as sequential, high-utility,
parallel, and distributed FIM algorithms, to mitigate the impact of heavy computations and
improve the overall efficiency of these algorithms.

CONCLUSIONS
In summary, this article introduces ProbDF, a novel approximate frequent itemset mining
algorithm designed to predict the support of itemsets. Using the PSPM technique tailored

Figure 7 Densities of the five datasets used in comparison.
Full-size DOI: 10.7717/peerj-cs.2334/fig-7

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 25/30

http://dx.doi.org/10.7717/peerj-cs.2334/fig-7
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

for dense data, ProbDF efficiently forecasts the support of itemsets of size 3 or greater.
Notably, ProbDF outperforms its predecessor, ProbBF, in efficiency by adopting a depth-
first search strategy, significantly reducing memory usage compared to ProbBF’s breadth-
first search approach. This improved memory efficiency directly contributes to enhanced
runtime efficiency. Additionally, ProbDF leverages promotion pruning to further optimize
both memory and runtime efficiency. Furthermore, similar to its predecessor, ProbDF
utilizes zero transaction data beyond two-size frequent itemsets.

ProbDF’s performance was rigorously evaluated across five commonly used real-world
benchmark dense datasets, where it was compared against seven state-of-the-art
algorithms, including its predecessor ProbBF. Across all datasets, ProbDF consistently
outperformed the competing algorithms by a significant margin, showcasing its superior
efficiency. Due to its probabilistic nature, ProbDF’s performance was also scrutinized
regarding the quality of the results it produces. Remarkably, no significant discrepancies
were observed between ProbDF and its predecessor ProbBF in terms of output quality.
This investigation confirms that ProbDF achieves comparable result accuracy to ProbBF
while demonstrating enhanced efficiency in both memory usage and runtime.

However, the primary limitation of the ProbDF algorithm is its dependency on the
dataset’s density: higher dataset density results in greater accuracy of ProbDF’s outcomes.
Additionally, the quality of ProbDF’s output diminishes when very low support threshold
values are used. To address this limitation, one potential improvement is to apply an
alternative approximation method in situations where the proposed methodology
produces suboptimal results. This hybrid approach could enhance the overall quality of the
outcomes in scenarios where the ProbDF algorithm alone is insufficient.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
There is no external funding support for this article.

Competing Interests
All authors of this article have no competing interests.

Author Contributions
. Muhammad Sadeequllah conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

. Azhar Rauf performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.

. Saif Ur Rehman performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Noha Alnazzawi analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 26/30

http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The complete JAVA source code of the proposed algorithm ProbDF is available in the
Supplemental File.

The Frequent Itemset Mining Implementations Repository is available at http://fimi.ua.
ac.be.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2334#supplemental-information.

REFERENCES
Abbasi S, Moieni A. 2021. BloomEclat: efficient eclat algorithm based on bloom filter. Journal of

Algorithms and Computation 53:197–208 DOI 10.22059/jac.2021.81890.

Aggarwal CC, Han J. 2014. Frequent pattern mining. DOI 10.1007/978-3-319-07821-2.

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI. 1996. Fast discovery of association
rules. Advances in knowledge Discovery and Data Mining 12:307–328.

Aryabarzan N, Minaei-Bidgoli B, Teshnehlab M. 2018. negFIN: an efficient algorithm for fast
mining frequent itemsets. Expert Systems with Applications 105(2):129–143
DOI 10.1016/j.eswa.2018.03.041.

Bai A, Dhabu M, Jagtap V, Deshpande PS. 2019. An efficient approach based on selective
partitioning for maximal frequent itemsets mining. Sadhana 44(8):5754
DOI 10.1007/s12046-019-1158-1.

Bashir S, Lai DTC. 2021. Mining approximate frequent itemsets using pattern growth approach.
Information Technology and Control 50(4):627–644 DOI 10.5755/j01.itc.50.4.29060.

Bayardo RJ Jr. 1998. Efficiently mining long patterns from databases. In: Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data.

Bera D, Pratap R. 2016. Frequent-itemset mining using locality-sensitive hashing. In:
International Computing and Combinatorics Conference.

Burdick D, Calimlim M, Flannick J, Gehrke J, Yiu T. 2005. MAFIA: a maximal frequent itemset
algorithm. IEEE Transactions on Knowledge and Data Engineering 17(11):1490–1504
DOI 10.1109/TKDE.2005.183.

Cohen E, Datar M, Fujiwara S, Gionis A, Indyk P, Motwani R, Ullman JD, Yang C. 2001.
Finding interesting associations without support pruning. IEEE Transactions on Knowledge and
Data Engineering 13:64–78 DOI 10.1109/69.908981.

Dasu T, Johnson T, Muthukrishnan S, Shkapenyuk V. 2002. Mining database structure; or, how
to build a data quality browser. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data.

Deng ZH. 2016. DiffNodesets: an efficient structure for fast mining frequent itemsets. Applied Soft
Computing 41(8):214–223 DOI 10.1016/j.asoc.2016.01.010.

Deng ZH, Lv SL. 2015. PrePost+: an efficient N-lists-based algorithm for mining frequent itemsets
via Children-Parent Equivalence pruning. Expert Systems with Applications 42(13):5424–5432
DOI 10.1016/j.eswa.2015.03.004.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 27/30

http://dx.doi.org/10.7717/peerj-cs.2334#supplemental-information
http://fimi.ua.ac.be
http://fimi.ua.ac.be
http://dx.doi.org/10.7717/peerj-cs.2334#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2334#supplemental-information
http://dx.doi.org/10.22059/jac.2021.81890
http://dx.doi.org/10.1007/978-3-319-07821-2
http://dx.doi.org/10.1016/j.eswa.2018.03.041
http://dx.doi.org/10.1007/s12046-019-1158-1
http://dx.doi.org/10.5755/j01.itc.50.4.29060
http://dx.doi.org/10.1109/TKDE.2005.183
http://dx.doi.org/10.1109/69.908981
http://dx.doi.org/10.1016/j.asoc.2016.01.010
http://dx.doi.org/10.1016/j.eswa.2015.03.004
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Fang W, Li C, Zhang Q, Zhang X, Lin JCW. 2023. An efficient biobjective evolutionary algorithm
for mining frequent and high utility itemsets. Applied Soft Computing 140(2):110233
DOI 10.1016/j.asoc.2023.110233.

Fatemi SM, Hosseini SM, Kamandi A, Shabankhah M. 2021. CL-MAX: a clustering-based
approximation algorithm for mining maximal frequent itemsets. International Journal of
Machine Learning and Cybernetics 12(2):365–383 DOI 10.1007/s13042-020-01177-5.

Fournier-Viger P, Lin JCW, Vo B, Chi TT, Zhang J, Le HB. 2017. A survey of itemset mining.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7(4):e1207
DOI 10.1002/widm.1207.

Ghosh M, Roy A, Sil P, Mondal KC. 2023. Frequent itemset mining using FP-tree: a CLA-based
approach and its extended application in biodiversity data. Innovations in Systems and Software
Engineering 19(3):283–301 DOI 10.1007/s11334-022-00500-3.

Gouda K, Zaki MJ. 2005. Genmax: an efficient algorithm for mining maximal frequent itemsets.
Data Mining and Knowledge Discovery 11(3):223–242 DOI 10.1007/s10618-005-0002-x.

Grahne G, Zhu J. 2005. Fast algorithms for frequent itemset mining using fp-trees. IEEE
Transactions on Knowledge and Data Engineering 17(10):1347–1362
DOI 10.1109/TKDE.2005.166.

Halim Z, Ali O, Khan G. 2020. On the efficient representation of datasets as graphs to mine
maximal frequent itemsets. IEEE Transactions on Knowledge and Data Engineering 33(4):1674–
1691 DOI 10.1109/TKDE.2019.2945573.

Hung NM, Tung NT, Vo B. 2021. A general method for mining high-utility itemsets with
correlated measures. Journal of Information and Telecommunication 5(4):536–549
DOI 10.1080/24751839.2021.1937465.

Jamsheela O, Raju G. 2023. An improved frequent pattern tree: the child structured frequent
pattern tree CSFP-tree. Pattern Analysis and Applications 26(2):437–454
DOI 10.1007/s10044-022-01111-1.

Kumar R, Singh K. 2023. High utility itemsets mining from transactional databases: a survey.
Applied Intelligence 53(22):27655–27703 DOI 10.1007/s10489-023-04853-5.

Ledmi M, Zidat S, Hamdi-Cherif A. 2021. GrAFCI+ A fast generator-based algorithm for mining
frequent closed itemsets. Knowledge and Information Systems 63(7):1873–1908
DOI 10.1007/s10115-021-01575-3.

Li H, Zhang Y, Zhang N, Jia H. 2016. A heuristic rule based approximate frequent itemset mining
algorithm. Procedia Computer Science 91:324–333 DOI 10.1016/j.procs.2016.07.087.

Lin MY, Fu CT, Hsueh SC. 2022. Interactive mining of probabilistic frequent patterns in uncertain
databases. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
30(02):263–283 DOI 10.1142/S0218488522500118.

Lu X, Jin S, Wang X, Yuan J, Fu K, Yang K. 2020. Amining frequent itemsets algorithm in stream
data based on sliding time decay window. In: Proceedings of the 2020 3rd International
Conference on Artificial Intelligence and Pattern Recognition.

Lu J, Xu W, Zhou K, Guo Z. 2023. Frequent itemset mining algorithm based on linear table.
Journal of Database Management (JDM) 34:1–21 DOI 10.4018/JDM.

Luna JM, Fournier-Viger P, Ventura S. 2019. Frequent itemset mining: a 25 years review. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9(6):e1329
DOI 10.1002/widm.1329.

Nguyen LBQ, Zelinka I, Snasel V, Nguyen LTT, Vo B. 2022. Subgraph mining in a large graph: a
review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12(4):e1454
DOI 10.1002/widm.1454.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 28/30

http://dx.doi.org/10.1016/j.asoc.2023.110233
http://dx.doi.org/10.1007/s13042-020-01177-5
http://dx.doi.org/10.1002/widm.1207
http://dx.doi.org/10.1007/s11334-022-00500-3
http://dx.doi.org/10.1007/s10618-005-0002-x
http://dx.doi.org/10.1109/TKDE.2005.166
http://dx.doi.org/10.1109/TKDE.2019.2945573
http://dx.doi.org/10.1080/24751839.2021.1937465
http://dx.doi.org/10.1007/s10044-022-01111-1
http://dx.doi.org/10.1007/s10489-023-04853-5
http://dx.doi.org/10.1007/s10115-021-01575-3
http://dx.doi.org/10.1016/j.procs.2016.07.087
http://dx.doi.org/10.1142/S0218488522500118
http://dx.doi.org/10.4018/JDM
http://dx.doi.org/10.1002/widm.1329
http://dx.doi.org/10.1002/widm.1454
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Ordonez C. 2009.Models for association rules based on clustering and correlation. Intelligent Data
Analysis 13(2):337–358 DOI 10.3233/IDA-2009-0369.

Pagh R, Stöckel M, Woodruff DP. 2014. Is min-wise hashing optimal for summarizing set
intersection? In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, 109–120 DOI 10.1145/2594538.2594554.

Preti G, Morales GDF, Riondato M. 2023. Maniacs: approximate mining of frequent subgraph
patterns through sampling. ACM Transactions on Intelligent Systems and Technology 14(3):1–29
DOI 10.1145/3587254.

Qu JF, Hang B, Wu Z, Wu Z, Gu Q, Tang B. 2020. Efficient mining of frequent itemsets using
only one dynamic prefix tree. IEEE Access 8:183722–183735
DOI 10.1109/ACCESS.2020.3029302.

Riondato M, Upfal E. 2015. Mining frequent itemsets through progressive sampling with
Rademacher averages. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1005–1014 DOI 10.1145/2783258.2783265.

Rymon R. 1992. Search through systematic set enumeration. In: International Conference on
Principles of Knowledge Representation and Reasoning. Available at https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=f4ddb0f01cbe452401bc19200b809f161f132e5b.

Sadeequllah M, Rauf A, Rehman SU, Alnazzawi N. 2024. Probabilistic support prediction: fast
frequent itemset mining in dense data. IEEE Access 12:39330–39350
DOI 10.1109/ACCESS.2024.3376477.

Song W, Ye W, Fournier-Viger P. 2022.Mining sequential patterns with flexible constraints from
MOOC data. Applied Intelligence 52(14):16458–16474 DOI 10.1007/s10489-021-03122-7.

Tang H, Wang L, Liu Y, Qian J, Ali G. 2022. Discovering significant sequential patterns in data
stream by an efficient two-phase procedure. Mathematical Problems in Engineering
2022(1):1–23 DOI 10.1155/2022/5379086.

Toivonen H. 1996. Sampling large databases for association rules. In: VLDB '96: Proceedings of the
22th International Conference on Very Large Data Bases. 134–145.

Uno T, Kiyomi M, Arimura H. 2004. LCM ver. 2: efficient mining algorithms for frequent/closed/
maximal itemsets. In: Fimi.

Valiullin T, Huang ZJ, Wei C, Yin J, Wu D, Egorova I. 2021. A new approximate method for
mining frequent itemsets from big data. Computer Science and Information Systems
18(3):641–656 DOI 10.2298/CSIS200124015V.

Wu X, Fan W, Peng J, Zhang K, Yu Y. 2015. Iterative sampling based frequent itemset mining for
big data. International Journal of Machine Learning and Cybernetics 6(6):875–882
DOI 10.1007/s13042-015-0345-6.

Xiao W, Hu J. 2020. SWEclat: a frequent itemset mining algorithm over streaming data using
Spark Streaming. The Journal of Supercomputing 76(10):7619–7634
DOI 10.1007/s11227-020-03190-5.

Xun Y, Zhang J, Yang H, Qin X. 2021. HBPFP-DC: a parallel frequent itemset mining using
Spark. Parallel Computing 101:102738 DOI 10.1016/j.parco.2020.102738.

Zaki MJ, Gouda K. 2003. Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

Zhang Z, Pedrycz W, Huang J. 2017. Efficient frequent itemsets mining through sampling and
information granulation. Engineering Applications of Artificial Intelligence 65(3):119–136
DOI 10.1016/j.engappai.2017.07.016.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 29/30

http://dx.doi.org/10.3233/IDA-2009-0369
http://dx.doi.org/10.1145/2594538.2594554
http://dx.doi.org/10.1145/3587254
http://dx.doi.org/10.1109/ACCESS.2020.3029302
http://dx.doi.org/10.1145/2783258.2783265
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f4ddb0f01cbe452401bc19200b809f161f132e5b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f4ddb0f01cbe452401bc19200b809f161f132e5b
http://dx.doi.org/10.1109/ACCESS.2024.3376477
http://dx.doi.org/10.1007/s10489-021-03122-7
http://dx.doi.org/10.1155/2022/5379086
http://dx.doi.org/10.2298/CSIS200124015V
http://dx.doi.org/10.1007/s13042-015-0345-6
http://dx.doi.org/10.1007/s11227-020-03190-5
http://dx.doi.org/10.1016/j.parco.2020.102738
http://dx.doi.org/10.1016/j.engappai.2017.07.016
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

Zhang C, Tian P, Zhang X, Jiang ZL, Yao L, Wang X. 2018. Fast eclat algorithms based on
minwise hashing for large scale transactions. IEEE Internet of Things Journal 6(2):3948–3961
DOI 10.1109/JIOT.2018.2885851.

Zhang C, Tian P, Zhang X, Liao Q, Jiang ZL, Wang X. 2019. HashEclat: an efficient frequent
itemset algorithm. International Journal of Machine Learning and Cybernetics 10(11):3003–3016
DOI 10.1007/s13042-018-00918-x.

Sadeequllah et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2334 30/30

http://dx.doi.org/10.1109/JIOT.2018.2885851
http://dx.doi.org/10.1007/s13042-018-00918-x
http://dx.doi.org/10.7717/peerj-cs.2334
https://peerj.com/computer-science/

	Quick mining in dense data: applying probabilistic support prediction in depth-first order
	Introduction
	Related work
	Problem setting and preliminaries
	Probabilistic support prediction model
	The proposed algorithm, probdp
	Experimental results
	Future work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

