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ABSTRACT
Cervical cancer is the fourth leading cause of cancer-related deaths in women, especially
in low to middle-income countries. Despite the outburst of recent scientific advances,
there is no totally effective treatment, especially when diagnosed in an advanced stage.
Screening tests, such as cytology or colposcopy, have been responsible for a substantial
decrease in cervical cancer deaths. Cervical cancer automatic screening via Pap smear is a
highly valuable cell imaging-based detection tool, where cells must be classified as being
within one of a multitude of ordinal classes, ranging from abnormal to normal. Current
approaches to ordinal inference for neural networks are found to not sufficiently take
advantage of the ordinal problem or to be too uncompromising. A non-parametric
ordinal loss for neuronal networks is proposed that promotes the output probabilities
to follow a unimodal distribution. This is done by imposing a set of different constraints
over all pairs of consecutive labels which allows for a more flexible decision boundary
relative to approaches from the literature. Our proposed loss is contrasted against other
methods from the literature by using a plethora of deep architectures. A first conclusion
is the benefit of using non-parametric ordinal losses against parametric losses in cervical
cancer risk prediction. Additionally, the proposed loss is found to be the top-performer
in several cases. The best performingmodel scores an accuracy of 75.6% for seven classes
and 81.3% for four classes.

Subjects Computer Vision, Data Mining and Machine Learning
Keywords Cervical cytology, Convolutional Neural networks, Deep learning, Ordinal
classification, Pap smear

INTRODUCTION
The survival rate for women with cervical cancer is disturbing–in the USA, the 5-year
survival rate for all women with cervical cancer is just 66% and is responsible for around 10
deaths perweek inwomen aged 20 to 39 years (Siegel, Miller & Jemal, 2020). Themain factor
for the high mortality rate is the asymptomatic characteristic of cervical cancer in its initial
stages, which justifies the need for early diagnosis. Screening tests have been responsible
for a strong decrease in cervical cancer deaths. The screening programs are implemented in
most developed countries and the process includes the human papillomavirus (HPV) test,
the cytology test (or Pap smear), colposcopy, and biopsy (WHO, 2019). HPV is a group of
viruses known to influence the risk of cervical cancer–some types of HPV viruses produce
dysplastic changes in cells that can progressively lead to the development of cancer (WHO,
2019).
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A cervical cytology test is used to detect potentially abnormal cells from the uterine
cervix. These premalignant dysplastic changes of cells are classified in progressive stages:
seven stages by the World Health Organization classification (WHO) system or four stages
by The Bethesda classification system (TBS) (DeMay, 2007).

The risk of developing cancer is especially pronounced for the later stages. Therefore,
distinguishing between the stages can be crucial for diagnosis. Yet, most of the literature
focuses on binary classification (normal or abnormal), ignoring the fine-grained
classification of cervical cells into different stages.

The classification of observations into naturally ordered classes, as the stages of the
premalignant dysplastic changes, are traditionally handled by conventional methods
intended to classify nominal classes where the order relation is ignored. This paper
introduces a new machine learning paradigm intended for multi-class classification
problemswhere the classes are ordered. A non-parametric loss for ordinal data classification
is proposed whose goal is to promote unimodality in the prediction distributions produced
by the neural network; e.g., it would be inconsistent to predict that stage 1 and stage 3
are both more likely than stage 2. Yet, this loss is more flexible than other losses from
the literature that force a binomial distribution in the output (Costa & Cardoso, 2005).
This loss is also contrasted with the standard cross-entropy loss and networks that predict
classes in the form of an ordinal encoding (Cheng, Wang & Pollastri, 2008). The Herlev
dataset, which comprises 917 images of individual cervical cells in different stages of the
disease, is used in the experiments (Jantzen & Dounias, 2006) together with a plethora of
CNN architectures.

In the next section, the problem and dataset at hand are presented. Other work for Pap
smear cell classification is then reviewed in the ‘‘Related Work’’ section. The proposed
loss is elaborated on the ‘‘Proposal’’ section, and the experimental details are described in
‘‘Experiments’’ with results and discussion presented in ‘‘Results’’. The study finished with
a ‘‘Conclusion’’ section.

BACKGROUND
According to the WHO classification system, there are seven different types of Pap smear
cells in cervical cancer progression. This system assumes the existence of three different
types of normal cells and four different types of abnormal cells. From suspicious cells
to carcinoma in situ (CIS), the premalignant dysplastic changes of cells include four
stages, which are mild, moderate, severe dysplasia, and carcinoma in situ (Suhrland, 2000).
However, nowadays, the most used classification system is the TBS classification system,
which is widely accepted by the medical society. According to the TBS system, the Pap
smear cells can be divided into four classes: normal, Low-grade Squamous Intraepithelial
Lesion (LSIL), High-grade Squamous Intraepithelial Lesion (HSIL), and Carcinoma in situ
(Nayar & Wilbur, 2017).

The different stages of cervical cytology abnormalities are associated with different
morphological changes in the cells including the cytoplasm and nucleus. However, the
small visual differences between some stages of cervical cells make the construction of a
multi-class autonomous classification system a real challenge.
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Table 1 The seven different Pap smear classes in the Herlev dataset.

WHO TBS Type of cell Quantity

1 1 Superficial squamous epithelial 74 cells
2 1 Intermediate squamous epithelial 70 cellsNormal
3 1 Columnar epithelial 98 cells
4 2 Mild squamous non-keratinizing dysplasia 182 cells
5 3 Moderate squamous non-keratinizing dysplasia 146 cells
6 3 Severe squamous non-keratinizing dysplasia 197 cells

Abnormal

7 4 Squamous cell carcinoma in situ intermediate 150 cells

Table 2 Image examples of the seven different Pap smear classes in the Herlev dataset.

The dataset used in this work is the Herlev Dataset, which is a publicly available
dataset (http://mde-lab.aegean.gr/index.php/downloads) collected at the Herlev University
Hospital (Denmark) using a digital camera and microscope with an image resolution of
0.201 µm per pixel (Jantzen & Dounias, 2006). The preparation of the specimens followed
the traditional Pap smear and Pap staining. To amplify the certainty of diagnosis, two
cytotechnicians and a doctor characterized the cervical images in the Herlev dataset into
seven classes. The Herlev dataset is composed of a total of 917 images of individual cervical
cells. Each image contains ground truth segmentation and classification label. Table 1
shows the nomenclature of the seven different classes from the dataset, wherein classes 1–3
correspond to types of normal cells and classes 4–7 to different levels of abnormal cells.
Illustrations of these classes are then displayed in Table 2.

In most cases, the abnormal cells present a nucleus size bigger than healthy cells.
However, the difference between the normal columnar nucleus and severe and/or
carcinoma nucleus is not easy to differen tiate, which makes the classification between
these different types of cells a challenge.

There is some imbalance in the class distribution of the dataset: 8%, 7%, 11%, 19%,
16%, 22%, and 17%, whereas 14% would be expected if the distribution was uniform.

RELATED WORK
In most literature, the classification of Pap smear images consists of a binary separation
between normal and abnormal cell (two classes), using different methodologies such
as Support Vector Machines (SVM) (Chen et al., 2014; Chankong, Theera-Umpon &
Auephanwiriyakul, 2014; Kashyap et al., 2016; Bora et al., 2017), k-Nearest Neighbours

Albuquerque et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.457 3/21

https://peerj.com
http://mde-lab.aegean.gr/index.php/downloads
http://dx.doi.org/10.7717/peerj-cs.457


(kNN) (Chankong, Theera-Umpon & Auephanwiriyakul, 2014; Bora et al., 2017;Marinakis,
Dounias & Jantzen, 2009; Fekri Ershad, 2019), Fuzzy c-Means Algorithm (FCM) (Chankong,
Theera-Umpon & Auephanwiriyakul, 2014;William et al., 2019), k-Means clustering (Paul,
Bhowmik & Bhattacharjee, 2015), Artificial Neural Networks (ANN) (Chankong, Theera-
Umpon & Auephanwiriyakul, 2014), and, more recently, Convolutional Neural Networks
(CNN) (Zhang et al., 2017; Lin et al., 2019; Kurnianingsih et al., 2019).

However, all this work consists of binary classification, which is useful for screening, but
not enough for a confident diagnosis. Fewer works explore the multi-class classification of
cervical cells on the Herlev dataset (Chankong, Theera-Umpon & Auephanwiriyakul, 2014).
proposed a multi-class automatic cervical cancer cell classification system using different
classifiers, such as FCM, ANN, and kNN. However, this system is based only on 9 cell-based
features. The approach applies feature extraction from the nucleus and cytoplasm in each
image and requires manual selection of the best threshold to minimize the error when
applying the classifier to construct the cell mask. More recently (Kurnianingsih et al., 2019),
perform feature extraction in a more autonomous way using a CNN. The use of a CNN
simplifies the pre-processing steps that were necessary for the approach by Chankong et al.
Ghoneim, Muhammad & Hossain (2019) proposed a new approach for multi-class cervical
cancer cell detection and classification, using in the first step, CNNs to extract deep-learned
features and in the second step, extreme learningmachine (ELM)-based classifiers to classify
the input cell images. Lin et al. (2019) proposed a new CNN-based method that combines
cell image appearance with cell morphology for multi-class classification of cervical cells in
the Herlev dataset. In all these cases, cross-entropy is adopted for ordinal data classification.

Assume that examples in a classification problem come from one of K classes, labelled
from C(1) to C(K ), corresponding to their natural order in ordinal classes, and arbitrarily
for nominal classes.
Cross-Entropy (CE): Traditionally, a CNN would perform multi-class classification by
minimizing cross-entropy, averaged over the training set,

CE(yn,ŷn)=−
∑K

k=1ynk log(ŷnk),
where yn = [yn1 ···ynk ···ynK ] ∈ R

K represents the one-hot encoding of the class of
the n-th observation and ŷn = [ŷn1 ···ŷnk ···ŷnK ] ∈ R

K is the output probability vector
given by the neural network for observation n. Note that ynk ∈ {0,1}, ŷnk ∈ [0,1] and∑K

k=1ynk =
∑K

k=1ŷnk = 1.
However, CE has limitations when applied to ordinal data. Defining k?n ∈ {1,··· ,K } as

the index of the true class of observation xn (the position where ynk = 1), it is then clear
that

CE(yn,ŷn)=−log(ŷnk?n ).

Intuitively, CE is just trying to maximize the probability in the output corresponding to
the true class, ignoring all the other probabilities. For this loss, an error between classes
C(1) and C(2) is treated as the same as an error between C(1) and C(K ), which is undesirable
for ordinal problems.
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Figure 1 Probabilities produced by two different models for observation n. (A) Biomodal distribution.
(B) Unimodal distribution. CE is unable to distinguish both scenarios, setting the same loss for both. For
ordinal problems, a unimodal distribution, peaking in the true class, is, arguably, preferable. In this exam-
ple, k?n = 3 is the assumed true class.

Full-size DOI: 10.7717/peerjcs.457/fig-1

Furthermore, the loss does not constrain the model to produce unimodal probabilities,
so inconsistencies can be produced such as ŷnj > ŷn`< ŷni, even when 1≤ j <`< i≤K . It
would be preferable for output probabilities to follow a unimodal distribution, as depicted
by Fig. 1.

Cross-entropy is a fair approach for nominal data, where no additional information
is available. However, for ordinal data, the order can be explored to further regularize
learning.
Ordinal encoding (OE): Amodel agnostic way to introduce ordinality is by training binary
classifiers, in the form of an ensemble, where each classifier tries to distinguish between
each pair of adjacent classes, C(i) and C(i+1) (Frank & Hall, 2001). An adaptation for neural
networks consists of training a single neural network to produce K−1 outputs, where each
output makes a binary decision between each pair of adjacent classes. The information on
the ordinal distribution can, therefore, be encoded in the y labels themselves (Cheng, Wang
& Pollastri, 2008).

In traditional one-hot encoding, classes are encoded using the indicator function
1(k = k?), so that ynm is represented by 1 if k = k?n and 0 otherwise. In ordinal encoding,
classes are encoded using a cumulative distribution –the indicator function used is
1(k< k?) so that ynm is represented by 1 if k< k?n and 0 otherwise. Each output represents
the incremental neighbor probability, and the inverse operation (during inference) is
performed by summing up these outputs, pnk =

∑K−1
m=1ynm.

Unimodal (U): Another method to promote ordinality in classification problems consists
of constraining discrete ordinal probability distributions to be unimodal using binomial
or Poisson probability distributions:

–> Binomial Unimodal (BU): One approach is to constrain the output of the network
directly, approaching the problem under a regression setting. Instead of several outputs,
the output predicts a single output representing the probability along the classes, with
yn = 0 representing k?n = 1 and yn = 1 representing k?n = K (Costa & Cardoso, 2005;
Beckham & Pal, 2017). Thus, this model has only one output unit as the final layer.
The model’s sigmoid output is converted into class probabilities using the Binomial
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probability mass function. The goal of this approach is to maintain the ordinality of the
classes by applying a parametric model for the output probabilities.

–> Poisson Unimodal (PU): The Poisson probability mass function (PMF) is used to
enforce a discrete unimodal probability distribution (Beckham & Pal, 2017). As a final
layer, the log Poisson PMF transform is applied together with a softmax to normalize
the output as a probability distribution.

The major difference between Costa & Cardoso (2005) and Beckham & Pal (2017) is
that explore Binomial/Poisson distributions in the context of deep learning (rather than
classical machine learning approaches), Beckham & Pal (2017) also propose the use of a
learnable softmax temperature term to control the variance of the distribution. In the
experiments, the temperature term (τ ) was used as a constant value of 1.

These parametric approaches sometimes sacrifice accuracy to ensure the ordinality
assumption. This sacrifice might sometimes prove too much, especially given the fact that
modern deep learning datasets are massive and have a significant number of mislabeled
examples. A loss is now proposed to stimulate a unimodal output without modifying the
network architecture.

PROPOSAL
As already explored, CE presents drawbacks when applied to ordinal data. By focusing only
on the mode of the distribution and ignoring all the other values in the output probability
vector, one is not leveraging the ordinal information intrinsic to the data.

Fixing CE with an ordinal loss term
A possible fix for CE is to add a regularization term that penalizes the deviations from the
unimodal setting. Defining 1(x) as the indicator function of x and ReLU(x)= x1(x > 0)=
max(0,x), a tentative solution for an order-aware loss could be

CO(yn,ŷn)=CE(yn,ŷn)+λ
K−1∑
k=1

1(k ≥ k?n)ReLU(ŷn(k+1)− ŷn(k))

+λ

K−1∑
k=1

1(k ≤ k?n)ReLU(ŷn(k)− ŷn(k+1)), (1)

where λ≥ 0 controls the relative importance of the extra terms favoring unimodal
distributions. Predicted probability values are expected to decrease monotonously as we
depart left and right from the true class. The added terms penalize any deviation from
this expected unimodal distribution, with a penalty proportional to the difference of the
consecutive probabilities. The additional terms, although promoting uni-modality, still
allow flat distributions. A generalization of the previous idea is to add a margin of δ > 0 to
the ReLU, imposing that the difference between consecutive probabilities is at least δ. This
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leads us to a second CE loss, CO2, suitable for ordinal classes:

CO2(yn,ŷn)=CE(yn,ŷn)+λ
K−1∑
k=1

1(k ≥ k?n)ReLU(δ+ ŷn(k+1)− ŷn(k))

+λ

K−1∑
k=1

1(k ≤ k?n)ReLU(δ+ ŷn(k)− ŷn(k+1)). (2)

A value of δ= 0.05 has been empirically found to provide a sensible margin. This loss is
aligned with the proposal present in Belharbi et al. (2019).

Beyond CO2: ordinal entropy loss function
In CO2, the CE term by itself is only trying to maximize the probability estimated in
the true output class (while ignoring the remaining probabilities); the ordinal terms are
promoting unimodality but not penalizing (almost) flat distributions. This also explains
why the ordinal terms by themselves (especially the version withoutmargin) are not enough
to promote strong learning: the model could converge to solutions where the predicted
probability in the true class is only slightly above the neighbouring probabilities, which will
not, most likely, provide a strong generalization for new observations.

However, the extreme nature of CE, ignoring almost everything in the predicted
distribution ŷn is equivalent to assuming that the perfect probability distribution is one on
the true class and zero everywhere else. This assumes a strong belief and dependence on
the chosen one-hot encoding, which is often a crude approximation to the true probability
class distribution. Seldom, for a fixed observation xn, the class is deterministically known;
rather, we expect a class distribution with a few non-zero values. This is particularly true
for observations close to the boundaries between classes. A softer assumption is that the
distribution should have a low entropy, only.

This leads us to propose the ordinal entropy loss, HO2, for ordinal data as

HO2(yn,ŷn)=H(ŷn)+λ
K−1∑
k=1

1(k ≥ k?n)ReLU(δ+ ŷn(k+1)− ŷn(k))

+λ

K−1∑
k=1

1(k ≤ k?n)ReLU(δ+ ŷn(k)− ŷn(k+1)), (3)

where H(p) denotes the entropy of the distribution p.

EXPERIMENTS
Several neural network architectures are now trained using the aforementioned
losses for the dataset at hand. In this work, it was also evaluated the performance
differences between parametric and non-parametric losses for ordinal classification
(Fig. 2). All the experiments are implemented in PyTorch and are available online
(https://github.com/tomealbuquerque/ordinal-losses).
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Figure 2 Schematic representation of the used and proposed ordinal losses.
Full-size DOI: 10.7717/peerjcs.457/fig-2

A B C D

Figure 3 Examples of data augmentation on the Herlev database. The original zero-padding image (A)
and random transformations (B–D).

Full-size DOI: 10.7717/peerjcs.457/fig-3

Data pre-processing
Given that all images from the Herlev dataset are of different sizes, all images were resized to
224×224 pixels; however, before the resize of cytological images, a zero-padding must be
done to avoid the loss of essential information regarding cells shape. The last pre-processing
step was to apply the same normalization as used by ImageNet (Simonyan & Zisserman,
2014).

Since the Herlev database has a relatively small number of observations (917), the
training dataset was augmented by a series of random transformations: 10% of width
and height shift, 10% of zoom, image rotation, horizontal and vertical flips, and color
saturation. These transformations are illustrated in Fig. 3.

Convolutional neural networks
A convolutional neural network (CNN) is a neural network that successively applies
convolutions of filters to the image. These filters are learned and consist of quadrilateral
patches that are convolved across the whole input image—unlike previous fully-connected
networks, only local inputs are connected at each layer. Typically, each convolution is
intertwined with downsampling operations, such as max-pooling, that successively reduce
the size of the original image.

The final layers are fully-connected and then the final output is processed by a soft-max
for multi-class problems or a logistic function for binary classification. Dropout was used
to reduce overfitting by constraining these fully-connected layers (Srivastava et al., 2014).
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Figure 4 Schematic representation of the model used for multi-class classification of Pap smear cells.
Full-size DOI: 10.7717/peerjcs.457/fig-4

Network architectures
Two different models were trained and tested in this work for multi-class (4-class
and 7-class) classification of Pap smear cells images (Fig. 4). Both models were
trained and tested with nine different convolutional network architectures: AlexNet
(Krizhevsky, Sutskever & Hinton, 2012), GoogLeNet (Szegedy et al., 2015), MobileNet_V2
(Howard et al., 2017), ResNet18 (He et al., 2016), ResNeXt50_32X4D (Xie et al., 2017),
ShuffleNet_V2_X1_0 (Zhang et al., 2017), SqueezeNet1_0 (Iandola et al., 2016), VGG-16
(Simonyan & Zisserman, 2014), and Wide_ResNet50_2 (Zagoruyko & Komodakis, 2016).
The goal of testing these different architectures is to evaluate how well the proposed
loss behaves in a wide range of architectures. These nine different architectures were
chosen as they are often used in the literature and came pre-trained with PyTorch on
ImageNet (https://pytorch.org/docs/stable/torchvision/models.html). The last block of
each architecture was replaced by the following layers: dropout with p= 20%, 512-unit
dense layer with ReLU, dropout with p= 20%, a 256-wide dense layer with ReLU, followed
by K output neurons.

A brief introduction of each architecture is now presented. AlexNet, based on
LeNet, formalized the Convolutional Neural Network (CNN) as is known today: a
series of convolutions intertwined by downsampling blocks. Max-pooling was used for
downsampling and ReLUwas used as the activation function. It became famous for winning
ImageNet, the first CNN to do so (Krizhevsky, Sutskever & Hinton, 2012). The following
ImageNet competitions were also won by other CNNs–VGG and GoogLeNet–which were
evolutions on top of AlexNet that consist mostly of a much higher number of parameters
(Simonyan & Zisserman, 2014; Szegedy et al., 2015). Then, MobileNet (Howard et al.,
2017) introduced hyperparameters to help the user choose between latency and accuracy
trade-offs. An attempt was thenmade at curbing the number of parameters with ShuffleNet
(Zhang et al., 2018) by approximating convolution operators using fewer parameters.
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Finally, an attempt was made at curbing the number of parameters, which had been
exploding, while keeping the accuracy of these early CNNs with SqueezeNet (Iandola et al.,
2016).

In another line of research, ResNet (He et al., 2016) introduced residual blocks whose
goal was to make the optimization process easier for gradient descent. Each residual block
learns a= f (x)+x instead of a= f (x). Given that weights are initialized randomly around
zero and most activation functions are also centred in zero (an exception would be the
logistic activation function), then, in expectation, all neurons output zero before any
training. Therefore, when using residual blocks, at time = 0, a= x , i.e., activations produce
the identity function. This greatly helps gradient descent focus on finding improvements
(residuals) on top of the identity function. While this model allowed for deeper neural
networks, each per cent of improved accuracy required nearly doubling the number of
layers, which motivated WideResNet (Zagoruyko & Komodakis, 2016) and ResNeXt (Xie et
al., 2017) to improve the residual architecture to improve learning time.

Training
Theweights of the architectures previouslymentioned are already initialized by pre-training
on ImageNet. Adam was used as the optimizer and started with a learning rate of 10−4. The
learning rate is reduced by 10% whenever the loss is stagnant for 10 epochs. The training
process is completed after 100 epochs.

The dataset was divided into 10 different folds using stratified cross-validation, in order
to maintain the class ratios. Therefore, the results are the average and deviation of these
10 folds. In the case of the proposed loss, the hyperparameter λ is tuned by doing nested
k-fold cross-validating using the training set (with k = 5) in order to create an unbiased
validation set.

Evaluation metrics
The most popular classification metric is accuracy (Acc). For N observations, taking
ki and k̂i to be the label and prediction of the n-th observation, respectively, then
Acc= 1

N
∑N

n=11(k̂
?
n = k?n), where 1 is the indicator function.

However, this metric treats all class errors as the same, whether the error is between
adjacent classes or between classes in the extreme. If we have K classes represented by a set
C = {C(1),C(2),...,C(K )

}, then accuracy will treat an error between C(1) and C(2) with the
samemagnitude as an error between C(1) and C(K ) which is clearly worse. As an illustration,
in a medical setting, a misdiagnosis between Stage II and Stage III of a disease, while bad,
is not as bad as a misdiagnosis between Healthy and Stage III. For that reason, a popular
metric for ordinal classification is the Mean Absolute Error (MAE), MAE= 1

N
∑

i|k
?
i − k̂

?
i |.

This metric is not perfect since it treats an ordinal variable as a cardinal variable. An error
between classes C(1) and C(3) will be treated as two times worse than an error between
classes C(1) and C(2). Naturally, the assumption of cardinality is not always warranted.

To evaluate the models’ performance, we also used a metric specific for ordinal
classification, Uniform Ordinal Classification Index (UOC) which considers accuracy
and ranking in the performance assessment and is also robust against imbalanced classes
(Silva, Pinto & Cardoso, 2018). The better the performance, the lower the UOC.
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By combining a quality assessment (accuracy) with a quantity assessment (MAE) and
also with a specific metric for ordinality (UOC) we hope to provide a balanced view of the
performance of the methods.

The two other metrics used are the AUC of ROC or AUROC (Area Under the Receiver
Operating Characteristic) and Kendall’s τ rank correlation coefficient. AUROC measures
how well-calibrated are the probabilities produced by the model. This first metric is used in
the binary classification context (two classes) and is extended for multi-class by comparing
each class against the rest (one vs rest strategy) and performing an overall average, known
as macro averaging. On the other hand, Kendall’s Tau is a non-parametric evaluation of
relationships between columns of ranked data, so it is a measure of ordinal association
between data. The τ correlation coefficient returns a value that ranges from −1 to 1, with
0 being no correlation and 1 perfect correlation.

RESULTS
The average performance for the 10-folds of nine different architectures are presented in
Tables 3–8 and A1 and A2, for both the 7-class and 4-class classification problems, with
the seven different learning losses –conventional Cross-Entropy (CE), Binomial Unimodal
(BU) (Costa & Cardoso, 2005), Poisson Unimodal (PU) (Beckham & Pal, 2017), Ordinal
Encoding (OE) (Cheng, Wang & Pollastri, 2008) and our proposed losses (CO, CO2 and
HO2), as measured by MAE, accuracy, UOC index and Kendall’s coefficient detailed in
the previous section. The best models are shown in bold, while italic is used to check for
statistical similarity between the other models and the best one. A p-value of 0.1 is used
with a two-sided paired t -test due to the small sample size (10 folds).

For the 7-class classification problem, Table 3 shows the results for MAE, which confirm
the influence of ordinal losses in promoting ordinality when comparing to nominal loss
(CE). OE loss achieved the best performance across the different architectures but it is
also notable the good performance of our loss: in 67% of cases, the models trained with
our proposed loss provide better MAE results. The MAE results present in Table 3 for
7-class classification are consistent with the 4-class Table 6, with ordinal losses winning
over nominal CE.

Tables 4 and 7 present the accuracy results for 7-class and 4-class classification problems,
respectively. Regarding this metric, the results between nominal and ordinal losses aremore
balanced. CE loss performance is above ordinal losses in 11% for the 7-class problem and
is tied for the 4-class problem. This can be explained by the lower role of ordinality in
the CE loss, as also confirmed by the MAE results. This means that when misclassification
occurs, ordinal losses tend to classify Pap smear images as being closer to the real class.
Results for UOC index (Tables 5 and 8) are also consistent with the MAE metric, with 78%
of the models presenting a lowest UOC index when using the ordinal losses. Tables A1 and
A2 in the appendix present the results for Kendall’s τ coefficient test in 4-class and 7-class
classification problems. These results are also aligned with the results of MAE and UOC
metrics: the ordinal losses perform better advantage when comparing with nominal CE.
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Table 3 Results in terms of Mean Absolute Error (MAE) for seven class problem, averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 0.46 ± 0.08 0.52 ± 0.09 0.50 ± 0.09 0.44± 0.08 0.90 ± 0.19 0.41 ± 0.08 0.45 ± 0.10
GoogLeNet 0.39± 0.05 0.41 ± 0.07 0.42 ± 0.08 0.38± 0.09 0.53 ± 0.10 0.37± 0.07 0.36 ± 0.06
MobileNet_v2 0.34 ± 0.05 0.36 ± 0.04 0.31 ± 0.04 0.33± 0.05 0.52 ± 0.26 0.34 ± 0.06 0.34± 0.05
ResNet18 0.34± 0.09 0.36± 0.06 0.35± 0.06 0.35± 0.10 0.49 ± 0.11 0.34 ± 0.07 0.35± 0.10
ResNeXt50_32x4d 0.34 ± 0.07 0.33± 0.05 0.33± 0.03 0.34 ± 0.06 0.41 ± 0.08 0.33± 0.06 0.31 ± 0.07
ShuffleNet_v2_x1_0 0.41 ± 0.07 0.49 ± 0.07 0.41± 0.05 0.38± 0.07 0.47 ± 0.08 0.40± 0.05 0.38 ± 0.06
SqueezeNet1_0 0.38 ± 0.07 0.45 ± 0.05 0.46 ± 0.07 0.40± 0.09 0.97 ± 0.31 0.41 ± 0.08 0.45 ± 0.09
VGG16 0.37± 0.09 0.44 ± 0.05 0.44 ± 0.10 0.37± 0.06 0.67 ± 0.15 0.36± 0.06 0.36 ± 0.07
Wide_ResNet50_2 0.33 ± 0.06 0.37 ± 0.05 0.32 ± 0.06 0.30 ± 0.04 0.45 ± 0.13 0.33 ± 0.06 0.35 ± 0.09
Avg 0.37 0.41 0.39 0.36 0.60 0.37 0.37
Winners 1 0 1 1 0 2 4

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).

Table 4 Results in terms of accuracy for seven class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 71.1 ± 5.1 60.6 ± 3.7 64.8 ± 5.4 70.1± 5.1 44.2 ± 7.6 70.8± 5.1 67.9 ± 5.4
GoogLeNet 72.5 ± 3.7 66.1 ± 4.3 68.5 ± 4.5 71.5± 5.3 59.7 ± 8.2 72.4± 4.9 72.4± 3.7
MobileNet_v2 75.0 ± 4.4 69.0 ± 3.5 74.2± 2.8 74.4± 3.8 64.4 ± 16.5 73.1 ± 3.7 74.1± 3.9
ResNet18 74.4 ± 6.1 69.5 ± 3.7 73.3± 4.3 73.6± 6.4 64.6 ± 6.5 73.3± 4.5 73.3± 6.4
ResNeXt50_32x4d 74.4± 3.7 72.4 ± 4.3 72.8 ± 2.8 74.0± 4.2 68.0 ± 5.9 75.5± 3.5 75.7 ± 5.3
ShuffleNet_v2_x1_0 71.9 ± 5.5 61.0 ± 4.5 67.7 ± 4.6 70.7 ± 4.9 65.5 ± 4.5 70.7± 3.1 71.3± 3.7
SqueezeNet1_0 73.0 ± 4.3 63.3 ± 2.4 67.3 ± 3.6 71.8± 5.3 40.5 ± 13.3 70.8 ± 4.5 67.1 ± 5.0
VGG16 73.1 ± 4.7 63.9 ± 4.6 67.6 ± 6.2 72.6± 3.8 54.4 ± 8.5 71.8± 3.3 72.0± 3.7
Wide_ResNet50_2 75.7± 3.2 69.7 ± 3.1 74.5 ± 4.3 76.8 ± 1.9 66.1 ± 7.8 75.6± 4.0 74.3 ± 5.7
Avg 73.4 66.2 70.1 72.8 58.6 72.6 72.0
Winners 7 0 0 1 0 0 1

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).

Adding the margin (CO→ CO2) influences positively most of the metrics for 7 and 4
classes. Using entropy (CO2 or HO2), instead of cross-entropy, promotes better results on
themetrics intrinsically connected with ordinality (MAE, UOC andKendall’s τ coefficient).

The average results for all losses across the nine different architectures forMAE, accuracy,
UOC, AUROC, Kendall’s τ coefficient and Gini index metrics are present Tables A3 and
A4 in the appendix for 7 and 4 class classification respectively. Both tables present the
results using the classical mode (softmax) to aggregate the probabilities and also using
mean (expectation trick) (Beckham & Pal, 2017).

On average, in most metrics, non-parametric losses outperformed parametric losses.
This difference can be justified with the greater flexibility in boundary decisions provided
by non-parametric losses. OE, CO2 and HO2 provided better results across the different
metrics when comparing to BU and PU.
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Table 5 Results in terms of the UniformOrdinal Classification Index (UOC) for seven class problem, averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 45.1± 6.5 51.7 ± 5.7 49.8 ± 6.6 44.0± 6.9 70.3 ± 7.8 42.8 ± 7.3 46.4 ± 7.8
GoogLeNet 38.9± 6.0 44.2 ± 5.7 44.6 ± 7.3 39.0± 7.2 51.3 ± 9.1 38.8± 6.9 38.1 ± 4.7
MobileNet_v2 36.0 ± 5.7 39.7 ± 4.9 33.6 ± 4.5 35.4 ± 5.6 46.7 ± 15.0 36.2 ± 6.4 36.2 ± 6.1
ResNet18 36.2 ± 9.3 40.1 ± 5.7 37.2± 6.3 37.3± 9.1 46.9 ± 6.8 37.1± 7.6 37.8± 8.7
ResNeXt50_32x4d 36.9 ± 6.8 37.0± 5.2 37.6 ± 4.6 36.8 ± 6.1 42.2 ± 6.7 35.3± 6.7 34.0 ± 7.2
ShuffleNet_v2_x1_0 41.8 ± 7.1 49.6 ± 6.4 43.6 ± 4.9 40.3 ± 6.3 46.3 ± 6.0 42.4 ± 4.1 40.3± 4.9
SqueezeNet1_0 40.4 ± 6.0 47.9 ± 3.8 47.5 ± 4.8 42.4± 8.1 73.6 ± 13.6 42.7 ± 7.4 46.8 ± 7.0
VGG16 38.5 ± 8.2 47.2 ± 4.9 45.5 ± 8.6 39.0± 6.4 60.3 ± 10.0 40.2± 6.1 39.6± 6.8
Wide_ResNet50_2 35.7 ± 5.2 40.8 ± 5.4 35.6 ± 6.3 33.5 ± 4.5 44.2 ± 9.1 34.8± 6.5 36.6 ± 8.4
Avg 38.8 44.2 41.7 38.6 53.5 39.0 39.5
Winners 3 0 1 2 0 1 2

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).

Table 6 Results in terms of the UniformOrdinal Classification Index (UOC) for four class problem, averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 0.31 ± 0.06 0.32 ± 0.04 0.28 ± 0.04 0.29± 0.06 0.47 ± 0.19 0.29± 0.05 0.31± 0.06
GoogLeNet 0.24± 0.04 0.25 ± 0.03 0.25 ± 0.05 0.24± 0.05 0.38 ± 0.17 0.22 ± 0.05 0.25 ± 0.06
MobileNet_v2 0.22± 0.06 0.21 ± 0.03 0.24 ± 0.05 0.22± 0.06 0.23± 0.04 0.24 ± 0.05 0.22± 0.05
ResNet18 0.24 ± 0.03 0.26 ± 0.05 0.24± 0.05 0.22 ± 0.04 0.29 ± 0.11 0.22± 0.04 0.26 ± 0.06
ResNeXt50_32x4d 0.21± 0.03 0.22 ± 0.04 0.23 ± 0.03 0.20 ± 0.04 0.28 ± 0.07 0.21± 0.03 0.22 ± 0.05
ShuffleNet_v2_x1_0 0.28± 0.05 0.33 ± 0.05 0.27 ± 0.05 0.31 ± 0.06 0.36 ± 0.09 0.28± 0.06 0.28± 0.04
SqueezeNet1_0 0.28± 0.06 0.30 ± 0.05 0.30 ± 0.06 0.27 ± 0.07 0.66 ± 0.17 0.29± 0.04 0.31 ± 0.05
VGG16 0.27 ± 0.06 0.28 ± 0.06 0.26± 0.05 0.24 ± 0.03 0.53 ± 0.18 0.26 ± 0.05 0.27 ± 0.05
Wide_ResNet50_2 0.23 ± 0.05 0.22 ± 0.04 0.20 ± 0.06 0.22± 0.05 0.43 ± 0.22 0.21± 0.05 0.22 ± 0.03
Avg 0.25 0.27 0.25 0.24 0.40 0.25 0.26
Winners 0 1 3 4 0 1 0

Notes.
Bold, best model, italic: statistically similar to best (paired t -test).

Most work from the literature concerns the binary case using the Herlev dataset (normal
vs abnormal); only a couple concern themselves with the 7-class and 4-class ordinal
classification problem. Table 9 contrasts the best performing models from two recent
works against the proposed method. In our case, the non-parametric loss (CO2) was able
to beat the state-of-the-art nominal-class approaches by 11.1% (7 classes) and by 10% (4
classes) in the accuracy metric. Furthermore, the confusion matrices in Fig. 5 contrast the
proposal against (Lin et al., 2019).

There are classes of cells easier to classify than others, as shown by the confusion matrix
in Fig. 5B. Columnar cells are sometimes inappropriately classified as severe dysplasia cells
since severe dysplasia cells have similar characteristics in appearance and morphology with
columnar cells (e.g., small cytoplasm, dark nuclei).

The main challenge occurs in the classification of abnormal cells (i.e., mild dysplasia,
moderate dysplasia, severe dysplasia, and carcinoma) where the characteristics of these
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Table 7 Results in terms of accuracy for four class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 76.1± 3.8 72.8 ± 2.7 75.7± 4.0 76.8 ± 3.6 63.9 ± 12.5 75.9± 3.5 74.9 ± 3.9
GoogLeNet 79.9± 1.8 78.3± 2.6 77.3 ± 3.1 79.2± 4.0 69.4 ± 12.0 80.0 ± 3.8 78.4± 4.0
MobileNet_v2 81.8 ± 4.3 80.7± 2.5 78.8 ± 3.4 81.2± 4.9 79.8± 3.7 79.2 ± 3.2 80.8± 3.7
ResNet18 79.8± 2.6 77.2 ± 2.3 78.5± 4.1 80.7 ± 4.1 75.2 ± 8.4 80.4± 3.8 78.0 ± 4.3
ResNeXt50_32x4d 82.0± 3.1 80.0 ± 3.5 79.5 ± 3.2 82.3 ± 4.3 76.2 ± 5.1 80.8 ± 2.8 79.9 ± 3.9
ShuffleNet_v2_x1_0 77.1 ± 3.7 72.1 ± 3.5 76.1± 3.5 75.0 ± 4.4 70.4 ± 6.6 76.9± 3.9 76.2± 2.3
SqueezeNet1_0 77.2± 4.2 73.5 ± 3.1 74.9 ± 5.1 77.3 ± 5.3 49.9 ± 12.2 75.5 ± 3.3 74.3 ± 4.5
VGG16 77.9± 4.8 74.4 ± 4.7 77.5± 3.8 79.4 ± 2.5 58.1 ± 11.8 77.0 ± 3.9 77.4± 3.7
Wide_ResNet50_2 80.8 ± 3.2 79.3 ± 3.3 82.2 ± 4.2 81.0± 3.9 64.0 ± 15.3 81.3± 4.2 80.6 ± 2.6
Avg 79.2 76.5 77.8 79.2 67.4 78.5 77.8
Winners 2 0 1 5 0 1 0

Notes.
Bold, best model, italic: statistically similar to best (paired t -test).

Table 8 Results in terms of the UniformOrdinal Classification Index (UOC) for four class problem, averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 38.2± 5.1 39.5 ± 3.4 37.1± 4.3 37.0 ± 4.9 52.7 ± 14.2 37.4± 5.8 38.9± 5.8
GoogLeNet 31.6± 3.1 31.7± 3.6 34.4 ± 5.6 32.5± 5.7 44.7 ± 14.6 30.8 ± 5.5 32.9± 6.3
MobileNet_v2 30.1± 6.9 29.2 ± 3.7 32.8 ± 5.2 30.6± 7.5 31.0± 4.8 32.5 ± 5.5 30.5± 5.4
ResNet18 31.4 ± 4.6 33.1 ± 3.7 32.3± 5.5 29.4 ± 6.0 36.7 ± 11.0 30.3± 4.1 33.2 ± 6.7
ResNeXt50_32x4d 28.7± 4.7 29.8± 4.9 32.0 ± 3.9 27.5 ± 5.3 35.9 ± 4.8 28.8± 4.6 31.0 ± 5.2
ShuffleNet_v2_x1_0 35.8 ± 5.3 38.6 ± 4.7 36.7± 4.4 39.0 ± 6.5 43.5 ± 9.0 36.4± 6.9 35.9± 4.7
SqueezeNet1_0 36.6± 5.8 37.3± 4.3 38.2 ± 6.8 35.3 ± 6.9 65.1 ± 9.4 37.6 ± 4.1 39.6 ± 4.6
VGG16 35.3 ± 6.4 36.2 ± 6.4 34.6± 4.7 32.3 ± 3.8 55.1 ± 10.5 34.7 ± 5.5 35.1 ± 6.0
Wide_ResNet50_2 30.2 ± 5.7 29.9± 4.9 28.2 ± 5.0 30.5± 6.2 47.7 ± 14.4 29.1± 5.6 30.7 ± 4.3
Avg 33.1 33.9 34.0 32.7 45.8 33.1 34.2
Winners 1 1 1 5 0 1 0

Notes.
Bold, best model, italic: statistically similar to best (paired t -test).

Table 9 Accuracy comparison of different models with literature for seven and four classes.

7 classes 4 classes
Accuracy (%) Accuracy (%)

Jantzen et al. 61.1 –
Lin et al. 64.5 71.3
Proposal 75.6 81.3

kinds of cells are very similar. The fact is that the abnormal classes correspond to different
levels of evolution of structures, with a progressive change in their characteristics which
leads them to present characteristics common to two levels, being a hard task even for
cytopathologists to classify them correctly. Thus, the right multi-class classification of
abnormal cells is highly desirable and with substantial clinical value.
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Figure 5 Comparison of state-of-the-art confusionmatrix (seven classes) againstWideResNet50
trained using the HO2 loss. (A) Lin et al. (2019); (B) proposal.

Full-size DOI: 10.7717/peerjcs.457/fig-5

Figure 6 Probability distribution forWideResNet50 contrasting losses CE (solid line) and HO2
(dashed line). (A) True k= 1; (B) True k= 3.

Full-size DOI: 10.7717/peerjcs.457/fig-6

Finally, the influence of the losses on the output probabilities is illustrated in Fig. 6 when
predicting two classes for the 7-class case. Contrasting this to Fig. 1, it is clear that the
proposed loss tends to promote a unimodal distribution of probabilities relative to the CE
loss, which tends to maximize the probability in the output corresponding to the true class
and ignore all the other probabilities distribution, and even in contrast to OE. Concerning
the sparsity of the prediction probabilities, as measured by the Gini index, it is notable
that, as the loss is made more ordinal-aware, the predicted probabilities tend to be more
spread across the classes. This can also be seen in Fig. 6. Interestingly, the OE distribution is
almost identical to the CE distribution and has been omitted from the figure for legibility.

CONCLUSION
Comparing ordinal deep learning approaches on cervical cancer data, non-parametric
losses achieved better results when comparing with parametric losses. This type of loss does
not limit the learned representation to a specific parametric model, which allows, during
the training, to explore different and larger spaces of solutions avoiding ad hoc choices.

A new non-parametric loss is proposed formulti-class Pap smear cell-classification based
on convolutional neural networks. This new loss demonstrated to be competitive with state-
of-the-art results and more flexible than existing deep ordinal classification techniques
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that impose uni-modality in the probability distribution. The use of the proposed loss
in training popular architectures from the literature outperforms the state-of-the-art
nominal-class approaches by over 10%.

Furthermore, the proposed loss is a convenient way of introducing ordinality to the
optimization problem without the major changes in architecture or data format required
by other techniques from the literature. On the other hand, the proposed loss requires two
new hyperparameters. However, the suggested values have been found to be robust. While
motivated by this dataset, the proposed loss could potentially be used by other applications
of ordinal classification.

In any case, there is a lot to improve in the multi-class classification of cervical cells to
achieve better accuracy since results are still short of 75.6% accuracy. The Herlev data set
is mainly composed of expert-selected ‘‘typical’’ cells, however, in real-life circumstances,
data is more complex because a cytology image contains lots of cells and not only a single
cropped cell, so further work is needed before moving the results of this work to practice.
Another important detail is the effect of overlapping nuclei and cell clumps, which has not
been taken into account in this work. The presence of artefacts on the images also interferes
with classification accuracy.
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APPENDIX
Some extra results are made available in this appendix.

Table A1 Results in terms of Kendall’s τ for seven class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 75.9 ± 4.1 76.9 ± 4.8 74.5 ± 5.8 77.9± 4.8 57.3 ± 9.3 79.9 ± 4.7 77.5 ± 5.5
GoogLeNet 80.9± 2.7 81.9± 4.1 79.3 ± 4.4 81.9± 4.3 76.9 ± 4.0 81.7± 4.2 82.8 ± 3.7
MobileNet_v2 83.2 ± 2.9 84.5 ± 1.9 85.6 ± 2.5 84.4± 2.1 75.6 ± 11.5 83.7 ± 3.2 83.8 ± 3.0
ResNet18 83.1± 5.1 84.7 ± 3.1 83.4± 3.0 83.5± 4.9 76.9 ± 5.1 83.8± 4.0 83.4± 5.1
ResNeXt50_32x4d 83.2 ± 4.5 85.2± 2.8 84.7± 1.4 83.2 ± 3.6 81.5 ± 3.4 84.0± 3.6 85.4 ± 3.1
ShuffleNet_v2_x1_0 78.8 ± 4.0 78.9 ± 3.6 80.9± 2.4 81.7 ± 3.1 77.8 ± 4.5 80.1 ± 2.6 81.6± 3.4
SqueezeNet1_0 81.0 ± 3.9 80.4± 2.6 77.0 ± 4.0 79.6± 5.1 54.1 ± 14.6 79.4± 4.1 78.1 ± 4.8
VGG16 81.6± 5.1 81.3± 2.2 78.3 ± 6.4 81.9± 3.5 68.8 ± 6.9 82.6± 3.2 82.8 ± 4.6
Wide_ResNet50_2 83.4 ± 3.1 83.8 ± 2.8 84.9 ± 3.4 85.9 ± 2.7 79.8 ± 6.1 84.1 ± 3.6 82.7 ± 4.3
Avg 81.2 82.0 80.9 82.2 72.1 82.2 82.0
Winners 1 1 1 2 0 1 3

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).
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Table A2 Results in terms of Kendall’s τ for 4 class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 73.9 ± 6.3 75.4 ± 4.0 77.4 ± 3.8 76.0± 5.7 58.7 ± 19.3 76.5± 5.7 75.0 ± 5.9
GoogLeNet 80.3 ± 4.2 81.3± 3.0 80.4± 4.9 81.2± 4.4 70.1 ± 14.2 82.5 ± 4.2 80.2 ± 5.1
MobileNet_v2 81.3 ± 5.1 83.9 ± 2.0 81.3 ± 3.7 81.8± 6.2 82.3± 3.7 80.4 ± 4.3 82.3 ± 4.4
ResNet18 81.0 ± 2.7 80.3 ± 4.4 81.2± 4.4 82.8 ± 3.5 77.5 ± 7.7 82.5± 3.2 79.5 ± 5.1
ResNeXt50_32x4d 83.2± 3.1 83.2± 2.9 81.8 ± 2.8 84.3 ± 3.4 78.1 ± 5.1 83.9± 2.4 82.3 ± 3.9
ShuffleNet_v2_x1_0 77.1 ± 4.7 76.1 ± 3.7 78.8 ± 4.1 74.8 ± 6.2 71.1 ± 9.1 77.3± 5.6 78.0± 4.5
SqueezeNet1_0 76.2± 5.2 77.5± 4.5 75.8± 5.6 78.2 ± 5.9 48.5 ± 11.0 76.6± 3.8 74.8 ± 3.8
VGG16 77.9 ± 5.4 79.2± 4.5 80.0± 4.4 81.0 ± 2.4 63.2 ± 10.3 79.2 ± 4.2 78.3 ± 5.4
Wide_ResNet50_2 81.7 ± 4.6 83.4± 2.8 84.4 ± 4.6 82.2± 5.1 67.8 ± 18.6 83.2± 4.3 82.6± 2.8
Avg 79.2 80.0 80.1 80.2 68.6 80.3 79.2
Winners 0 1 3 4 0 1 0

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).

Table A3 Aggregate results for 7 class problem, averaged for 10 folds.

CE BU PU OE CO CO2 HO2

Mode
UOC 38.8± 7.5 44.2 ± 7.2 41.1 ± 7.7 38.6 ± 7.5 53.5 ± 14.7 39.0± 7.3 39.5 ± 8.1
MAE 0.37 ± 0.08 0.41 ± 0.09 0.40 ± 0.10 0.36 ± 0.08 0.60 ± 0.26 0.37± 0.07 0.37± 0.09
Accuracy 73.4 ± 4.8 66.2 ± 5.5 71.5 ± 4.9 72.8 ± 5.1 58.6 ± 13.4 72.6 ± 4.5 72.0 ± 5.6
Kendall’s τ 81.2 ± 4.7 82.0± 4.2 80.0 ± 5.8 82.2 ± 4.5 72.1 ± 12.4 82.2± 4.2 82.0± 4.9
ROC AUC 95.9 ± 1.4 93.0 ± 2.2 95.5 ± 1.4 95.5 ± 1.5 82.3 ± 9.9 94.5 ± 1.8 93.9 ± 1.9
Gini 85.1 ± 0.2 64.0 ± 1.6 84.8 ± 0.5 84.8 ± 0.4 28.2 ± 33.3 50.1 ± 6.3 45.0 ± 4.2

Mean
UOC 39.2 ± 7.4 42.1 ± 7.5 41.7 ± 8.2 39.7± 7.4 75.9 ± 20.6 79.8 ± 4.9 83.7 ± 1.7
MAE 0.37± 0.08 0.39 ± 0.08 0.39 ± 0.09 0.37 ± 0.08 1.17 ± 0.50 0.91 ± 0.13 1.03 ± 0.04
Accuracy 72.1 ± 5.1 67.7 ± 5.8 70.1 ± 5.6 71.6± 5.1 33.6 ± 19.9 28.3 ± 5.4 25.0 ± 3.1
Kendall’s τ 82.3± 4.3 82.5± 4.1 80.9 ± 5.5 82.6 ± 4.3 nan ± nan 78.3 ± 3.6 76.0 ± 3.2
ROC AUC 95.9 ± 1.4 93.0 ± 2.2 95.5 ± 1.4 95.5 ± 1.5 82.3 ± 9.9 94.5 ± 1.8 93.9 ± 1.9
Gini 85.1 ± 0.2 64.0 ± 1.6 84.8 ± 0.5 84.8 ± 0.4 28.2 ± 33.3 50.1 ± 6.3 45.0 ± 4.2

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).

Table A4 Aggregate results for 4 class problem, averaged for 10 folds.

CE BU PU OE CO CO2 HO2

Mode
UOC 33.1± 6.3 33.9 ± 5.9 33.6 ± 5.7 32.7 ± 7.0 45.8 ± 14.9 33.1± 6.3 34.2 ± 6.4
MAE 0.25 ± 0.06 0.27 ± 0.06 0.25± 0.06 0.24 ± 0.06 0.40 ± 0.20 0.25± 0.06 0.26 ± 0.06
Accuracy 79.2± 4.1 76.5 ± 4.5 78.7± 4.0 79.2 ± 4.8 67.4 ± 13.7 78.5 ± 4.2 77.8 ± 4.3
Kendall’s τ 79.2 ± 5.5 80.0± 4.7 79.7± 5.4 80.2± 5.8 68.6 ± 15.7 80.3 ± 5.1 79.2 ± 5.4
ROC AUC 94.5± 1.7 92.7 ± 1.9 94.6 ± 1.5 94.5± 1.7 83.5 ± 10.5 93.2 ± 2.1 92.9 ± 2.0
Gini 74.3 ± 0.3 58.4 ± 2.0 74.2 ± 0.4 74.2 ± 0.3 31.5 ± 31.4 44.5 ± 16.3 36.6 ± 11.2

(continued on next page)
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Table A4 (continued)

CE BU PU OE CO CO2 HO2

Mean
UOC 33.4± 6.3 34.2 ± 5.8 34.0± 5.9 33.2 ± 7.1 57.0 ± 17.3 52.2 ± 13.5 58.4 ± 8.5
MAE 0.25± 0.06 0.26 ± 0.05 0.25± 0.06 0.25 ± 0.07 0.50 ± 0.20 0.42 ± 0.14 0.47 ± 0.09
Accuracy 78.5 ± 4.4 77.0 ± 4.2 77.8 ± 4.4 78.4± 5.1 54.7 ± 17.8 60.1 ± 13.4 54.6 ± 9.3
Kendall’s τ 79.7 ± 5.1 80.4± 4.6 80.1± 4.9 80.5 ± 5.8 63.8 ± 16.6 73.4 ± 7.3 70.5 ± 5.6
ROC AUC 94.5± 1.7 92.7 ± 1.9 94.6 ± 1.5 94.5± 1.7 83.5 ± 10.5 93.2 ± 2.1 92.9 ± 2.0
Gini 74.3 ± 0.3 58.4 ± 2.0 74.2 ± 0.4 74.2 ± 0.3 31.5 ± 31.4 44.5 ± 16.3 36.6 ± 11.2

Notes.
Bold: best model, italic: statistically similar to best (paired t -test).
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