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ABSTRACT

Feature selection techniques are very useful approaches for dimensionality reduction
in data analysis. They provide interpretable results by reducing the dimensions of the
data to a subset of the original set of features. When the data lack annotations,
unsupervised feature selectors are required for their analysis. Several algorithms for
this aim exist in the literature, but despite their large applicability, they can be very
inaccessible or cumbersome to use, mainly due to the need for tuning non-intuitive
parameters and the high computational demands. In this work, a publicly available
ready-to-use unsupervised feature selector is proposed, with comparable results to
the state-of-the-art at a much lower computational cost. The suggested approach
belongs to the methods known as spectral feature selectors. These methods generally
consist of two stages: manifold learning and subset selection. In the first stage, the
underlying structures in the high-dimensional data are extracted, while in the second
stage a subset of the features is selected to replicate these structures. This paper
suggests two contributions to this field, related to each of the stages involved. In the
manifold learning stage, the effect of non-linearities in the data is explored, making
use of a radial basis function (RBF) kernel, for which an alternative solution for
the estimation of the kernel parameter is presented for cases with high-dimensional
data. Additionally, the use of a backwards greedy approach based on the least-squares
utility metric for the subset selection stage is proposed. The combination of these new
ingredients results in the utility metric for unsupervised feature selection U2FS
algorithm. The proposed U2FS algorithm succeeds in selecting the correct features in
a simulation environment. In addition, the performance of the method on
benchmark datasets is comparable to the state-of-the-art, while requiring less
computational time. Moreover, unlike the state-of-the-art, U2FS does not require any
tuning of parameters.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science

Keywords Unsupervised feature selection, Dimensionality reduction, Manifold learning,
Kernel methods

INTRODUCTION

Many applications of data science require the study of highly multi-dimensional data.
A high number of dimensions implies a high computational cost as well as a large amount
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of memory required. Furthermore, this often leads to problems related to the curse of
dimensionality (Verleysen ¢ Francois, 2005) and thus, to irrelevant and redundant data for
machine learning algorithms (Maindonald, 2007). Therefore, it is crucial to perform
dimensionality reduction before analyzing the data.

There are two types of dimensionality reduction techniques. So-called feature selection
techniques directly select a subset of the original features. On the other hand,
transformation techniques compute a new (smaller) set of features, each of which are
derived from all features of the original set. Some examples of these are Principal
Component Analysis (PCA) (Wold, Esbensen & Geladi, 1987), Independent Component
Analysis (ICA) (Jiang et al., 2006) or the Extended Sammon Projection (ESP) (Ahmad
et al., 2019). While these methods lead to a reduction in the number of dimensions,
results are less interpretable, since their direct relationship with the original set of features
is lost.

In this work, the focus is on unsupervised feature selectors. Since these methods
do not rely on the availability of labels or annotations in the data, the information
comes from the learning of the underlying structure of the data. Despite this challenge, the
generalization capabilities of these methods are typically better than for supervised or
semi-supervised methods (Guyon ¢ Elisseeff, 2003). Within unsupervised feature
selectors, sparse learning based methods have gained attention in the last 20 years (Li
et al., 2017). These methods rely on graph theory and manifold learning to learn the
underlying structures of the data (Lunga et al., 2013), and they apply sparsity inducing
techniques to perform subset selection. However, to the best of our knowledge, none
explores specifically the behavior of these methods with data presenting non-linear
relationships between the features (i.e., dimensions). While the graph definition step can
make use of kernels to tackle non-linearities, these can be heavily affected by the curse of
dimensionality, since they are often based on a distance metric (Aggarwal, Hinneburg ¢
Keim, 2001).

After the manifold learning stage, sparse regression is applied to score the relevance of
the features in the structures present in the graph. These formulations make use of
sparsity-inducing regularization techniques to provide the final subset of features selected,
and thus, they are highly computationally expensive. These methods are often referred
to as structured sparsity-inducing feature selectors (SSES), or sparse learning based
methods (Gui et al., 2016; Li et al., 2017).

Despite the large amount of unsupervised SSES algorithms described in the
literature, these methods are cumbersome to use for a novice user. This is not
only due to the codes not being publicly available, but also due to the algorithms
requiring regularization parameters which are difficult to tune, in particular in
unsupervised settings.

In this work, an efficient unsupervised feature selector based on the utility metric
(U2ES) is proposed. U2FS is a ready-to-use, publicly available unsupervised sparsity-
inducing feature selector designed to be robust for data containing non-linearities.
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The code is available here: https://github.com/avillago/u2fs, where all functions and
example codes are published. The main contributions of this work are:

o The definition of a new method to automatically approximate the radial-basis function
(RBF) kernel parameter without the need for a user-defined tuning parameter. This
method is used to tackle the curse of dimensionality when embedding the data taking
non-linearities into account.

o The suggestion of a backwards greedy approach for the stage of subset selection, based
on the utility metric for the least-squares problem. The utility metric was proposed
in the framework of supervised learning (Bertrand, 2018), and has been used for channel
selection in applications such as electroencephalography (EEG) (Narayanan &
Bertrand, 2020), sensor networks (Szurley et al., 2014), and microphone arrays (Szurley,
Bertrand ¢ Moonen, 2012). Nevertheless, this is the first work in which this type of
approach is proposed for the sparsity-inducing stage of feature selection.

e Propose a non-parametric and efficient unsupervised SSFS algorithm. This work
analyzes the proposed method U2EFS in terms of its complexity, and of its performance
on simulated and benchmark data. The goal is to reduce the computational cost
while maintaining a comparable performance with respect to the state-of-the-art.

In order to prove this, U2FS is compared to three related state-of-the-art algorithms
in terms of accuracy of the features selected, and computational complexity of the
algorithm.

The rest of the paper is structured as follows. In Related Work, previous algorithms on
SSES are summarized. In Methods, the proposed U2FS method is described: first the
manifold learning stage, together with the algorithm proposed for the selection of the
kernel parameter; and further on, the utility metric is discussed and adapted to feature
selection. The experiments performed in simulations and benchmark databases, as well as
the results obtained are described in the Results and Discussion sections. Finally, the last

section provides some conclusions.

RELATED WORK

Sparsity-inducing feature selection methods have become widely used in unsupervised
learning applications for high-dimensional data. This is due to two reasons. On the one
hand, the use of manifold learning guarantees the preservation of local structures
present in the high-dimensional data. Additionally, its combination with feature selection
techniques not only reduces the dimensionality of the data, but also guarantees
interpretability.

Sparsity-inducing feature selectors learn the structures present in the data via
connectivity graphs obtained in the high-dimensional space (Yan et al., 2006). The
combination of manifold learning and regularization techniques to impose sparsity, allows
to select a subset of features from the original dataset that are able to describe these
structures in a smaller dimensional space.
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These algorithms make use of sparsity-inducing regularization approaches to stress
those features that are more relevant for data separation. The sparsity of these approaches
is controlled by different statistical norms (/. ,-norms), which contribute to the
generalization capability of the methods, adapting them to binary or multi-class problems
(Gui et al., 2016). One drawback of these sparse regression techniques is that generally,
they rely on optimization methods, which are computationally expensive.

The Laplacian Score (He, Cai ¢» Niyogi, 2006) was the first method to perform spectral
feature selection in an unsupervised way. Based on the Laplacian obtained from the
spectral embedding of the data, it obtains a score based on locality preservation. SPEC
(Zhao & Liu, 2007) is a framework that contains this previous approach, but it additionally
allows for both supervised or unsupervised learning, including other similarity metrics, as
well as other ranking functions. These approaches evaluate each feature independently,
without considering feature interactions. These interactions are, however, taken into
account in Multi-Cluster Feature Selection (MCEFS) (Cai, Zhang ¢ He, 2010), where a
multi-cluster approach is defined based on the eigendecomposition of a similarity matrix.
The subset selection is performed applying an /;-norm regularizer to approximate the
eigenvectors obtained from the spectral embedding of the data inducing sparsity. In UDFS
(Yang et al., 2011) the I;-norm regularizer is substituted by a , ;-norm to apply
sample and feature-wise constraints, and a discriminative analysis is added in the graph
description. In NDFS (Li et al., 2012), the use of the I, ;-norm is preserved, but a
non-negative constraint is added to the spectral clustering stage. Additionally, this
algorithm performs feature selection and spectral clustering simultaneously.

The aforementioned algorithms perform manifold learning and subset selection in a
sequential way. However, other methods tackle these simultaneously, in order to
adaptively change the similarity metric or the selection criteria regarding the error
obtained between the original data and the new representation. Examples of these
algorithms are JELSR (Hou et al., 2013), SOGEFS (Nie, Zhu ¢ Li, 2019), (R)JGSC (Zhu et al.,
2016) and DSRMR (Tang et al., 2018), and all make use of an I, ;-norm. Most recently,
the SAMMS-FS algorithm was proposed (Zhang et al., 2019), where a combination of
similarity measures is used to build the similarity graph, and the I, ,-norm is used for
regression. This group of algorithms are currently the ones achieving the best results, at the
cost of using complex optimization techniques to adaptively tune both stages of the feature
selection process. While this can lead to good results, it comes with a high computation
cost, which might hamper the tuning process, or might simply not be worthy for some
applications. SAMM-FS and SOGES are the ones that more specifically suggest new
approaches to perform the embedding stage, by optimally creating the graph (Nie, Zhu &
Li, 2019) or deriving it from a combination of different similarity metrics (Zhang et al,
2019). Again, both approaches require computationally expensive optimization techniques
to select a subset of features.

In summary, even if SSFS methods are getting more sophisticated and accurate, this
results in algorithms becoming more complex in terms of computational time, and in the
ease of use. The use of advanced numerical optimization techniques to improve results
makes algorithms more complex, and requires regularization parameters which are not
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easy to tune. In this work, the combination of a new approach to estimate the graph
connectivity based on the RBF kernel, together with the use of the utility metric for subset
selection, results in an efficient SSFS algorithm, which is easy to use and with lower
complexity than the state-of-the-art. This efficient implementation is competitive with
state-of-the-art methods in terms of performance, while using a simpler strategy, which is
faster to compute and easier to use.

METHODS

This section describes the proposed U2FS algorithm, which focuses on selecting the
relevant features in an unsupervised way, at a relatively small computational cost. The
method is divided in three parts. Firstly, the suggested manifold learning approach is
explained, where an embedding based on binary weighting and the RBF kernel are used.
Then a method to select the kernel parameter of the RBF kernel is proposed, specially
designed for high-dimensional data. Once the manifold learning stage is explained, the
Utility metric is proposed as a new approach for subset selection.

Manifold learning considering non-linearities

Given is a data matrix X € RN, with X = [x;;%y; ... ;Xn), X; = [xi(l),xi(z)7 . ,xi(d>],
i=1,...,N, N the number of data points, and d the number of features (i.e., dimensions)
in the data. The aim is to learn the structure hidden in the d-dimensional data and
approximate it with only a subset of the original features. In this paper, this structure will
be identified by means of clustering, where the dataset is assumed to be characterized by
¢ clusters.

In spectral clustering, the clustering structure of this data can be obtained by studying
the eigenvectors derived from a Laplacian built from the original data (Von Luxburg
(2007), Biggs, Biggs & Norman (1993)). The data is represented using a graph G = (77, &).
" is the set of vertices v;, i = 1,...,Nwherev,=x;. § = {eij} withi=1,...,Nj=1,...,Nis the
set of edges between the vertices where {¢;} denotes the edge between vertices v; and v;.
The weight of these edges is determined by the entries w;; > 0 of a similarity matrix W.
We define the graph as undirected. Therefore, the similarity matrix W, is symmetric
(since wj; = wj;, with the diagonal set to w;; = 0).

Typically, W is computed after coding the pairwise distances between all N data points.
There are several ways of doing this, such as calculating the k-nearest neighbours (KNN)
for each point, or choosing the e-neighbors below a certain distance (Belkin ¢ Niyogi,
2002).

In this paper, two similarity matrices are adopted inspired by the work in (Cai, Zhang &
He, 2010), namely a binary one and one based on an RBF kernel. The binary weighting
is based on KNN, being w;; = 1 if and only if vertex i is within the K closest points to
vertex j. Being a non-parametric approach, the binary embedding allows to simply
characterize the connectivity of the data.

Additionally, the use of the RBF kernel is considered, which is well suited for
non-linearities and allows to characterize complex and sparse structures (Von Luxburg,
2007). The RBF kernel is defined as K(x;,x;) = exp(—||x; — xj||2/202 ). The selection of the
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kernel parameter o is a long-standing challenge in machine learning. For instance, in
Cai, Zhang ¢ He (2010), o” is defined as the mean of all the distances between the data
points. Alternatively, a rule of thumb, uses the sum of the standard deviations of the data
along each dimension (Varon, Alzate ¢ Suykens, 2015). However, the estimation of this
parameter is highly influenced by the amount of features or dimensions in the data,
making it less robust to noise and irrelevant features. In the next section, a new and better
informed method to approximate the kernel parameter is proposed.

The graph G, defined by the similarity matrix W, can be partitioned into multiple
disjoint sets. Given the focus on multi-cluster data of our approach, the k-Way Normalized
Cut (NCut) Relaxation is used, as proposed in Ng, Jordan ¢» Weiss (2002). In order to
obtain this partition, the degree matrix D of W must be calculated. D is a diagonal matrix
for which each element on the diagonal is calculated as D;; = Zj Wi,. The normalized
Laplacian L is then obtained as L = D™*WD ™", as suggested in Von Luxburg (2007). The
vectors y embedding the data in L can be extracted from the eigenvalue problem (Chung ¢
Graham, 1997):

Ly = \y (1)

Given the use of a normalized Laplacian for the data embedding, the vectors y must be
adjusted using the degree matrix D:

o« = D'y, 2)

which means that « is the solution of the generalized eigenvalue problem of the pair
W and D. These eigenvectors « are a new representation of the data, that gathers the
most relevant information about the structures appearing in the high-dimensional space.
The ¢ eigenvectors, corresponding to the ¢ highest eigenvalues (after excluding the largest
one), can be used to characterize the data in a lower dimensional space (Ng, Jordan ¢
Weiss, 2002). Thus, the matrix E = [0y, a2, . . ., o] containing column-wise the ¢ selected
eigenvectors, will be the low-dimensional representation of the data to be mimicked using
a subset of the original features, as suggested in Cai, Zhang ¢ He (2010).

Kernel parameter approximation for high-dimensional data

One of the most used similarity functions is the RBF kernel, which allows to explore
non-linearities in the data. Nevertheless, the kernel parameter o® must be selected
correctly, to avoid overfitting or the allocation of all data points to the same cluster.
This work proposes a new approach to approximate this kernel parameter, which will be
denoted by 62 when derived from our method. This method takes into account the curse of
dimensionality and the potential irrelevant features or dimensions in the data.

As a rule of thumb, o” is approximated as the sum of the standard deviation of the data
along each dimension (Varon, Alzate ¢ Suykens, 2015). This approximation grows with
the number of features (i.e., dimensions) of the data, and thus, it is not able to capture
its underlying structures in high-dimensional spaces. Nevertheless, this ¢” is commonly
used as an initialization value, around which a search is performed, considering some
objective function (Alzate & Suykens, 2008; Varon, Alzate & Suykens, 2015).
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The MCFS algorithm skips the search around an initialization of the o* value by
substituting the sum of the standard deviations by the mean of these (Cai, Zhang ¢ He,
2010). By doing so, the value of ¢ does not overly grow. This estimation of o” suggested in
Cai, Zhang ¢ He (2010) will be referred to as 7. A drawback of this approximation in
high-dimensional spaces is that it treats all dimensions as equally relevant for the final
estimation of %, regardless of the amount of information that they actually contain.

The aim of the proposed approach is to provide a functional value of ¢* that does not
require any additional search, while being robust to high-dimensional data. Therefore, this
work proposes an approximation technique based on two factors: the distances between
the points, and the number of features or dimensions in the data.

The most commonly used distance metric is the euclidean distance. However, it is very
sensitive to high-dimensional data, deriving unsubstantial distances when a high number
of features is involved in the calculation (Aggarwal, Hinneburg ¢» Keim, 2001). In this
work, the use of the Manhattan or taxicab distance (Reynolds, 1980) is proposed, given its
robustness when applied to high-dimensional data (Aggarwal, Hinneburg ¢» Keim, 2001).
For each feature [, the Manhattan distance §; is calculated as:

N
o = %Z it — x;1| (3)
ij=1

Additionally, in order to reduce the impact of irrelevant or redundant features, a system
of weights is added to the approximation of 2. The goal is to only take into account the
distances associated to features that contain relevant information about the structure of
the data. To calculate these weights, the probability density function (PDF) of each feature
is compared with a Gaussian distribution. Higher weights are assigned to the features with
less Gaussian behavior, i.e., those the PDF of which differs the most from a Gaussian
distribution. By doing so, these will influence more the final 6> value, since they allow a
better separation of the structures present in the data.

Figure 1 shows a graphical representation of this estimation. The dataset in the example
has 3 dimensions or features: f}, f, and f. f; and f, contain the main clustering information,
as it can be observed in Fig. 1A, while f; is a noisy version of f;, derived as f; = f; + 1.5n,
where 1 is drawn from a normal distribution N (0, 1). Figs. 1B, 1C and 1D show in a
continuous black line the PDFs derived from the data, and in a grey dash line their fitted
Gaussian, in dimensions f;, f, and f; respectively. This fitted Gaussian was derived using the
Curve Fitting toolbox of Matlab™. As it can be observed, the matching of a Gaussian
with an irrelevant feature is almost perfect, while those features that contain more
information, like f; and f,, deviate much more from a normal distribution.

Making use of these differences, an error, denoted ¢;, for each feature [, where
I=1,...,4d, is calculated as:

1 & 5
bi=5> (bi—g) (4)
i=1
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Figure 1 Weight system for relevance estimation. In (A), f; and f, can be seen. (B, C and D) show in
black the PDFs p; of f;, f, and f; respectively, and in grey dotted line their fitted Gaussian g;.
Full-size K&l DOT: 10.7717/peerj-cs.477/fig-1

where H is the number of bins in which the range of the data is divided to estimate the
PDF (p), and g is the fitted Gaussian. The number of bins in this work is set to 100 for
standardization purposes. Equation (4) corresponds to the mean-squared error (MSE)
between the PDF of the data over feature / and its fitted Gaussian. From these ¢,, the final
weights b; are calculated as:

&,
b — (5)
Y e

Therefore, combining (3) and (5), the proposed approximation, denoted 62, is

derived as:
d

& =Y bo, (6)
=1

which gathers the distances present in the most relevant features, giving less importance
to the dimensions that do not contribute to describe the structure of the data. The complete
algorithm to calculate 62 is described in Algorithm 1.
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Algorithm 1 Kernel parameter approximation for high-dimensional data.

Input: Data X € RN,
Output: Sigma parameter G2

1: Calculate the Manhattan distances between the datapoints using Equation (3): vector of distances per
feature 9;.

2: Obtain the weights for each of the features using Equations (4) and (5): weights b;.

3: Calculate 62 using Equation (6).

Utility metric for feature subset selection
In the manifold learning stage, a new representation E of the data based on the
eigenvectors was built, which described the main structures present in the original
high-dimensional data. The goal is to select a subset of the features which best
approximates the data in this new representation. In the literature, this feature selection
problem is formulated using a graph-based loss function and a sparse regularizer of the
coefficients is used to select a subset of features, as explained in Zhu et al. (2016). The main
idea of these approaches is to regress the data to its low dimensional embedding along
with some sparse regularization. The use of such regularization techniques reduces
overfitting and achieves dimensionality reduction. This regression is generally formulated
as a least squares (LS) problem, and in many of these cases, the metric that is used for
feature selection is the magnitude of their corresponding weights in the least squares
solution (Cai, Zhang & He, 2010; Gui et al., 2016). However, the optimized weights do not
necessarily reflect the importance of the corresponding feature as it is scaling dependent
and it does not properly take interactions across features into account (Bertrand, 2018).
Instead, the importance of a feature can be quantified using the increase in least-squared
error (LSE) if that feature was to be removed and the weights were re-optimized. This
increase in LSE, called the ‘utility’ of the feature can be efficiently computed (Bertrand,
2018) and can be used as an informative metric for a greedy backwards feature selection
procedure (Bertrand, 2018; Narayanan & Bertrand, 2020; Szurley et al., 2014), as an
alternative for (group-) LASSO based techniques. Under some technical conditions, a
greedy selection based on this utility metric can even be shown to lead to the optimal
subset (Couvreur ¢ Bresler, 2000).

After representing the dataset using the matrix E € RY* containing the c eigenvectors,
the following LS optimization problem finds the weights p that best approximate the data
X in the ¢-dimensional representation in E:

o1 2
] = umNHXP —E[f ()

where ] is the cost or the LSE and ||.||r denotes the Frobenius norm.
If X is a full rank matrix and if N > d, the LS solution p of (7) is

P = RyxRxe, (8)

1 1
with Rxx = NXTX and Rxg = NXTE.
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The goal of this feature selection method is to select the subset of s(<d) features that
best represents E. This feature selection problem can be reduced to the selection of the
best s(<d) columns of X which minimize (7). However, this is inherently a combinatorial
problem and is computationally unfeasible to solve. Nevertheless, several greedy and
approximative methods have been proposed (Gui et al., 2016; Nie, Zhu & Li, 2019;
Narayanan ¢ Bertrand, 2020). In the current work, the use of the utility metric for subset
selection is proposed to select these best s columns.

The utility of a feature [ of X, in an LS problem like (7), is defined as the increase in
the LSE ] when the column corresponding to the I-th feature in X is removed from the
problem and the new optimal weight matrix, p_;, is re-computed similar to (8).
Consider the new LSE after the removal of feature [ and the re-computation of the weight
matrix p_; to be J_;, defined as:

1 N
Jo=|Xp — Ell; (9)

where X_; denotes the matrix X with the column corresponding to I-th feature removed.
Then according to the definition, the utility of feature [, U is:

U=Ja—-] (10)

A straightforward computation of U; would be computationally heavy due to the fact
that the computation of p, requires a matrix inversion of X_; X, which has to be repeated
for each feature L.

However, it can be shown that the utility of the I-th feature of X in (10) can be computed
efficiently without the explicit recomputation of p_; by using the following expression
(Bertrand, 2018):

1,
Ur=—Ipill,, (11)
a

where g; is the I-th diagonal element of Rx and p; is the I-th row in p, corresponding to
the I-th feature. The mathematical proof of (11) can be found in Bertrand (2018). Note that
R 'xx is already known from the computation of p such that no additional matrix
inversion is required.

However, since the data matrix X can contain redundant features or features that
are linear combinations of each other in its columns, it cannot be guaranteed that the
matrix X in (7) is full-rank. In this case, the removal of a redundant column from X will
not lead to an increase in the LS cost of (7). Moreover, R 'xx, used to find the solution
of (7) in (8), will not exist in this case since the matrix X is rank deficient. A similar
problem appears if N < d, which can happen in case of very high-dimensional data.
To overcome this problem, the definition of utility generalized to a minimum -norm
selection (Bertrand, 2018) is used in this work. This approach eliminates the feature
yielding the smallest increase in the ,-norm of the weight matrix when the column
corresponding to that feature were to be removed and the weight matrix would be
re-optimized. Moreover, minimizing the /,-norm of the weights further reduces the risk of
overfitting.
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This generalization is achieved by first adding an ,-norm penalty 8 to the cost function
that is minimized in (7):

!
]:rrgnEHXp—EH?:‘i‘ﬁHPH; (12)

where 0 < 8 p with y equal to the smallest non-zero eigenvalue of Rxx in order to ensure
that the bias added due to the penalty term in (12) is negligible. The minimizer of (12) is:

p= R)_Ql(/}RXE = (Rxx + fI) 'Rxg (13)

It is noted that (13) reduces to Rkx Rxg when f§ — 0, where Rkx denotes the Moore-
Penrose pseudo-inverse. This solution corresponds to the minimum norm solution of (7)
when X contains linearly dependent columns or rows. The utility U; of the /-th column in
X based on (12) is (Bertrand, 2018):

U = (IX-p, N E||; ~ IXp— E[|3)
+B(Ipll; — Hf)\lz)2 ) (14)
= (= 0)+ B(IIp-ll5 = |Iplly)

Note that if column [ in X is linearly independent from the other columns, (14) closely
approximates to the original utility definition in (10) as the first term dominates over the
second. However, if column [ is linearly dependent, the first term vanishes and the second
term will dominate. In this case, the utility quantifies the increase in ,-norm after
removing the I-th feature.

To select the best s features of X, a greedy selection based on the iterative elimination of
the features with the least utility is carried out. After the elimination of each feature, a re-
estimation of the weights p is carried out and the process of elimination is repeated, until s
features remain.

Note that the value of f depends on the smallest non-zero eigenvalue of Rxx. Since Rxx
has to be recomputed every time when a feature is removed, also its eigenvalues change
along the way. In practice, the value of f3 is selected only once and fixed for the remainder
of the algorithm, as smaller than the smallest non-zero eigenvalue of Rxx before any of the
features are eliminated (Narayanan & Bertrand, 2020). This value of  will be smaller than
all the non-zero eigenvalues of any principal submatrix of Rxx using the Cauchy’s interlace
theorem (Hwang, 2004).

The summary of the utility subset selection is described in Algorithm 2. Algorithm 3
outlines the complete U2FS algorithm proposed in this paper.

As it has been stated before, one of the most remarkable aspects of the U2FS algorithm is
the use of a greedy technique to solve the subset selection problem. The use of this type
of method reduces the computational cost of the algorithm. This can be confirmed
analyzing the computational complexity of U2FS, where the most demanding steps are the
eigendecomposition of the Laplacian matrix (step 2 of Algortihm 4), which has a cost of O
(N?) (Tsironis et al., 2013), and the subset selection stage in step 3 of Algorithm 4. Contrary
to the state-of-the-art, the complexity of U2FS being a greedy method depends on the
number of features to select. The most computationally expensive step of the subset
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Algorithm 2 Utility metric algorithm for subset selection.

Input: Data X, Eigenvectors E, Number of features s to select

Output: s features selected

—

: Calculate Rxx and Rxg as described in Equation (8).

: Calculate f3 as the smallest non-zero eigenvalue of Rxx

: while Number of features remaining is > s do

: Compute Ri,lq, and P as described in (13).

: Calculate the utility of the remaining features using (11)

: Remove the feature f; with the lowest utility.

: Update Rxx and Rxg by removing the rows and columns related to that feature f;.

: end while

0 N N s W

Algorithm 3 Unsupervised feature selector based on the utility metric (U2FS).

Input: Data X, Number of clusters ¢, Number of features s to select

Output: s features selected

1: Construct the similarity graph W as described in Section selecting one of the weightings:
* Binary

« RBF kernel, using o2

o RBF kernel, using 62 based on Algorithm 1

2: Calculate the normalized Laplacian L and the eigenvectors a derived from Equation (2). Keep the ¢
eigenvectors corresponding to the highest eigenvalues, excluding the first one.

3: Apply the backward greedy utility algorithm 2.

4: Return the s features remaining from the backward greedy utility approach.

selection in U2FS is the calculation of the matrix R;Ql(, which has a computational cost of
O(d®). In addition, this matrix needs to be updated d — s times. This update can be

done efficiently using a recursive updating equation from Bertrand (2018) with a cost of O(£*),
with ¢ the number of features remaining in the dataset, i.e., t = d — s. Since ¢ < d, the cost for
performing d — s iterations will be O((d - s)d%), which depends on the number of features
s to be selected. Note that the cost of computing the least squares solution p_, for each /in (14)
is eliminated using the efficient Eq. (11), bringing down the cost for computing the utility
from O(t*) to O(t) in each iteration. This vanishes with respect to the O(d’) term (remember
that t < d). Therefore, the total asymptotic complexity of U2FS is ON® + &).

RESULTS

The aim of the following experiments is to evaluate the U2FS algorithm based on

multiple criteria. With the focus on the new estimation of the embedding proposed, the
proposed RBF kernel approach using the estimated 6% is compared to the ¢} parameter
proposed in Cai, Zhang ¢ He (2010), and to the binary KNN graph commonly used in
Gui et al. (2016). On the other hand, the utility metric for subset selection is compared
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! The codes used to generate these datasets
are available in https://github.com/
avillago/u2fs.

Table 1 Methods compared in the experiments.

Similarity measure Subset selection
KNN3, +1; — norm KNN + binary weighting l;-norm
RBF,: + I, — norm RBF kernel, o% l,-norm
KNNp;, + Utility KNN + binary weighting Utility metric
RBF,: + Utility RBF kernel, o3 Utility metric
RBF,. + Utility RBF kernel, 62 Utility metric

to other sparsity-inducing techniques, based on [, — norm regularizations. In these
experiments, this is evaluated using the /; — norm. The outline of the different combinations
considered in this work summarized in Table 1. The last method, RBF,. + Utility, would be
the one referred to as U2FS, combining the novelties suggested in this work.
These novelties are evaluated in two different scenarios, namely a simulation study, and
in the application of the methods on benchmark datasets. In particular for the latter, the
methods are not only evaluated in terms of accuracy, but also regarding computational
cost. Additionally, U2FS is compared with 3 representative state-of-the-art algorithms
from the general family of unsupervised sparsity-inducing feature selection algorithms:

o MCEFS (Cai, Zhang & He, 2010) (http://www.cad.zju.edu.cn/home/dengcai/Data/MCEFS.
html). This algorithm served as inspiration to create U2FS, and therefore, it is added to
the set of comparison algorithms as baseline reference. MCFS performs spectral
embedding and /;-norm regularization sequentially, and which served as inspiration to
create U2FS.

e NDEFS (Li et al., 2012) (http://www.cs.cmu.edu/yiyang/Publications.html), which
performs nonnegative spectral analysis with J, ;-norm regularization. This algorithm is
added to the experiments since it is an improvement of MCFS, while being the first
algorithm simultaneously adapting both stages of manifold learning and subset
selection. Therefore, NDFS represents the transition to these adaptive optimization-
based feature selection algorithms.

e RJGSC (Zhu et al., 2016) optimally derives the embedding of the data by adapting the
results with /,,1-norm regularization. This algorithm is taken as a reference for the large
class of adaptive sparsity-inducing feature selection algorithms, which are much more
complex than U2FS, since they apply optimization to recursively adapt the embedding
and feature selection stages of the methods. RJGSC was already compared to several
feature selectors in Zhu et al. (2016), and therefore, it is taken here as upper-bound
threshold in performance.

Simulations
A set of nonlinear toy examples typically used in clustering problems are proposed to test
the different feature selection methods. In these experiments, the goal was to verify the
correct selection of the original set of features. Figure 2 shows the toy examples
considered', which are described by features f; and f,, and the final description of the
datasets can be seen in Table 2.

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477

13/26


http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html
http://www.cs.cmu.edu/yiyang/Publications.html
https://github.com/avillago/u2fs
https://github.com/avillago/u2fs
http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

-0.5 0 0.5 1

/i

Figure 2 Toy examples used for simulations: Clouds (A), Moons (B), Spirals (C), Corners (D), Half-Kernel (E), Crescent Moon (F).
Full-size Kal DOL: 10.7717/peerj-cs.477/fig-2

Table 2 Description of the toy example datasets.

#samples #classes
Clouds 9,000 3
Moons 10,000 2
Spirals 10,000 2
Corners 10,000 4
Half-Kernel 10,000 2
Crescent-Moon 10,000 2

All these problems are balanced, except for the last dataset Cres-Moon, for which the
data is divided 25% to 75% between the two clusters. Five extra features in addition to the
original f; and f, were added to each of the datasets in order to include redundant or
irrelevant information:

e f1 and f5: random values extracted from two Pearson distributions characterized by the
same higher-order statistics as f; and f, respectively.

e f3and f4: Original f; and f, contaminated with Gaussian noise (vA/(0, 1)), with v = 1.5.

e f5: Constant feature of value 0.
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Table 3 Results feature selection for toy examples. The results in bold correspond to the correct subset
selection: f1 and f2.

Method Utility metric I — norm

Embedding KNNj;, RBE,: RBF,. KNNj;, RBF,:
Clouds 12 f1,f4 iR f1, 12 f1,f2
Moons 1,12 f3, /4 1,12 f1,13 11,13
Spirals L e L2 212 252
Corners /12 fL 12 iR 2,12 2,12
Half-Kernel 12 22,13 i f, 13 1,13
Cres-Moon 1,2 f1, /4 1,12 2,11 12,12

The first step in the preprocessing of the features was to standardize the data using
z-score to reduce the impact of differences in scaling and noise. In order to confirm the
robustness of the feature selection techniques, the methods were applied using 10-fold
cross-validation on the standardized data. For each fold a training set was selected using
m-medoids, setting m to 2,000 and using the centers of the clusters found as training
samples. By doing so, the generalization ability of the methods can be guaranteed (Varon,
Alzate & Suykens, 2015). On each of the 10 training sets, the features were selected
applying the 5 methods mentioned in Table 1. For each of the methods, the number of
clusters ¢ was introduced as the number of classes presented in Table 2. Since these
experiments aim to evaluate the correct selection of the features, and the original features f;
and f, are known, the number of features s to be selected was set to 2.

Regarding the parameter settings within the embedding methods, the binary was
obtained setting k in the kNN approach to 5. For the RBF kernel embedding, oj was set to
the mean of the standard deviation along each dimension, as done in Cai, Zhang ¢» He
(2010). When using 6, its value was obtained by applying the method described in
Algorithm 1.

In terms of subset selection approaches, the method based on the I; — norm automatically
sets the value of the regularization parameter required for the LARS implementation, as
described in (Cai & Chiyuan Zhang, 2020). For the utility metric, f was automatically set to
the smallest non-zero eigenvalue of the matrix Rxx as described in Algorithm 2.

The performance of the algorithm is evaluated comparing the original set of features f;
and f, to those selected by the algorithm. In these experiments, the evaluation of the
selection results is binary: either the feature set selected is correct or not, regardless of the
additional features f7, for i = 1,2,...,5, selected.

In Table 3 the most common results obtained in the 10 folds are shown. The utility-
based approaches always obtained the same results for all 10 folds of the experiments. On
the contrary, the I; — norm methods provided different results for different folds of the
experiment. For these cases, Table 3 shows the most common feature pair for each
experiment, occurring at least 3 times.

As shown in Table 3, the methods that always obtain the adequate set of features are
based on utility, both with the binary weighting and with the RBF kernel and the suggested
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2 All datasets downloaded from http://
featureselection.asu.edu/datasets.php.

Table 4 Description of the benchmark databases.

Data type Samples Features Classes
USPS Images 9,298 256 10
Isolet Audio 1,560 617 26
ORL Images 400 1,024 40
COIL20 Images 1,440 1,024 20
PCMAC Text 1,943 3,289 2
BASEHOCK Text 1,993 4,862 2

62. Since these results were obtained for the 10 folds, they confirm both the robustness and
the consistency of the U2FS algorithm.

Benchmark datasets

Additionally, the proposed methods were evaluated using 6 well-known benchmark
databases. The databases considered represent image (USPS, ORL, COIL20), audio
(ISOLET) and text data (PCMAC, BASEHOCK)®, proposing examples with more samples
than features, and vice versa. The description of these databases is detailed in Table 4. All
these datasets are balanced, except USPS.

In these datasets, the relevant features are unknown. Therefore, the common practice in
the literature to evaluate feature selectors consists of applying the algorithms, taking from
10% to 80% of the original set of features, and evaluating the accuracy of a classifier
when trained and evaluated with the selected feature set (Zhu et al., 2016). The classifier
used for this aim in other papers is k-Nearest Neighbors (KNN), setting the number of
neighbors to 5.

These accuracy results are computed using 10-fold cross-validation to confirm the
generalization capabilities of the algorithm. By setting m to 90% of the number of samples
available in each benchmark dataset, m-medoids is used to select the m centroids of the
clusters and use them as training set. Feature selection and the training of the KNN
classifier are performed in these 9 folds of the standardized data, and the accuracy of the
KNN is evaluated in the remaining 10% for testing. Exclusively for USPS, given the size of
the dataset, 2,000 samples were used for training and the remaining data was used for
testing. These 2,000 samples were also selected using m-medoids. Since PCMAC and
BASEHOCK consist of binary data, these datasets were not standardized.

The parameters required for the binary and RBF embeddings, as well as 8 for the utility
algorithm, are automatically set as detailed in “Discussion”.

Figure 3 shows the median accuracy obtained for each of the 5 methods. The shadows
along the lines correspond to the 25 and 75 percentile of the 10 folds. As a reference,
the accuracy of the classifier without using feature selection is shown in black for each of
the datasets. Additionally, Fig. 4 shows the computation time for both the utility metric
and the [; — norm applied on a binary weighting embedding. In this manner, the subset
selection techniques can be evaluated regardless of the code efficiency of the embedding
stage. Similarly to Fig. 3, the computation time plots show in bold the median running time
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Figure 3 Accuracy results for the benchmark databases, for selecting from 10% to 80% of the original number of features. The thick lines
represent the median accuracy of the 10-fold cross-validation, and the shadows, the 25 and 75 percentile. USPS (A), Isolet (B), ORL (C),
COIL20 (D), PCMAC (E), BASEHOCK (F). Full-size Ea] DOI: 10.7717/peerj-cs.477/fig-3

for each of the subset selection techniques, and the 25 and 75 percentiles around it
obtained from the 10-fold cross-validation.

The difference in the trends of the /; — norm and utility in terms of computation time is
due to their formulation. Feature selection based on I; — norm regularization, solved using
the LARS algorithm in this case, requires the same computation time regardless of the
number of features aimed to select. All features are evaluated together, and later on, an
MCEFS score obtained from the regression problem is assigned to them (Cai, Zhang ¢» He,
2010). The features with the higher scores are the ones selected. On the other hand,
since the utility metric is applied in a backward greedy trend, the computation times
change for different number of features selected. The lower the number of features selected
compared to the original set, the higher the computation time. This is aligned with the
computational complexity of the algorithm, described in “Related Work”. In spite of this, it
can be seen that even the highest computation time for utility is lower than the time
taken using I; — norm regularization. The experiments were performed with 2x Intel Xeon
E5-2640 @ 2.5 GHz processors and 64GB of working memory.

Finally, the experiments in benchmark databases are extended to compare U2FES to
other key algorithms in the state-of-the-art. As it was mentioned at the beginning of this
section, the selected algorithms are MCFS, NDEFS, and RJGSC, which represent,

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 17/26


http://dx.doi.org/10.7717/peerj-cs.477/fig-3
http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

A B C
4t - 4 35
— Utility
35f 1 -norm | 35 3f
—~ 1 —_ —_
v w 3t 5]
N 3 F N N
[} 5 o 25
E o5} E2s £
= ~— - 2
g ol g 2 o
= = g5l
o ] L o
O 15 O 1.5 O
1t 1 1 1 T
o5t ‘ ‘ , ) ‘ 05— ] o — , ; ]
10% 20% 30% 40% 50% 60% 70% 80% 10% 20% 30% 40% 50% 60% 70% 80% 10% 20% 30% 40% 50% 60% 70% 80%
Percentage of features used Percentage of features used Percentage of features used
D E F
‘ : ‘ ‘ w0l ‘ ‘ : - ‘ ] 1200 - ‘ ‘
35¢
350 1000 -
o ° o 800f
2 25f € 250 g
. ol . . 600 |
g g g
S 5 z
5f 400
Q @] O
T 200
05F :
10% 20% 30% 40% 50% 60% 70% 80% 10% 20% 30% 40% 50% 60% 70% 80% 10% 20% 30% 40% 50% 60% 70% 80%
Percentage of features used Percentage of features used Percentage of features used

Figure 4 Computation time for extracting from 10% to 80% of the original number of features for each of the benchmark databases. USPS (A),
Isolet (B), ORL (C), COIL20 (D), PCMAC (E), BASEHOCK (F). Full-size kal DOI: 10.7717/peerj-cs.477/fig-4

respectively, the precursor of U2FS, an improved version of MCEFS, and an example from
the class of adaptive algorithms which recursively optimize the objective function
proposed. NDFS and RJGSC require the tuning of their regularization parameters, for
which the indications in their corresponding articles were followed. For NDES, the value of
y was set to 10%, and « and 8 were selected from the values {10 ~ %,10 ~ *,...,10°} applying
grid search. The matrix F was initialized with the results of spectral clustering using all
the features. For RJGSC, the results described in Zhu et al. (2016) for the BASEHOCK and
PCMAC datasets are taken as a reference. In MCES, the embedding is done using

KNN and binary weighting, and the /; — norm is used for subset selection. U2FS, on the
other hand, results from the combination of the RBF kernel with 62 and the utility metric.
Table 5 summarizes the results by showing the KNN accuracy (ACC) for 10% of the
features used, and the maximum ACC achieved among the percentages of features
considered, for the BASEHOCK and PCMAC datasets.

DISCUSSION

The results obtained in the experiments suggest that the proposed U2FS algorithm obtains
comparable results to the state-of-the-art in all the applications suggested, taking less
computational time. Nevertheless, the performance of the utility metric for feature
selection varies for the different experiments presented and requires a detailed analysis.
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Table 5 Comparison of classification accuracy (ACC) with the state-of-the-art for PCMAC and
BASEHOCK datasets.

Dataset Method ACC at 10% features % features at Max ACC Max ACC [b]
PCMAC U2ES 0.785 60% 0.83

MCES 0.67 20% 0.697

NDES 0.73 40% 0.83

RJGSC 0.805 60% 0.83
BASEHOCK U2ES 0.87 50% 0.925

MCES 0.815 80% 0.84

NDEFS 0.76 20% 0.794

RJGSC 0.902 80% 0.917

From Table 3, in “Discussion”, it can be concluded that the utility metric is able to select
the correct features in an artificially contaminated dataset. Both the binary embedding
and the RBF kernel with 62 select the original set of features for the 10 folds of the
experiment. The stability in the results also applies for the RBF embedding with 62, which
always selected the same feature pair for all 10 folds even though they are only correct for
the spirals problem.

Therefore, considering the stability of the results, it can be concluded that the proposed
approach is more robust in the selection of results than that based on the I, — norm.

On the other hand, when considering the suitability of the features selected, two
observations can be made. First of all, it can be seen that the lack of consistency in the
I} — norm approaches discards the selection of the correct set of features. Moreover, the
wrong results obtained with both /; — norm and utility methods for the RBF embedding
using o3 reveal the drawback of applying this approximation of ¢ in presence of
redundant or irrelevant features. Since this value is calculated as the mean of the standard
deviation of all the dimensions in the data, this measure can be strongly affected by
irrelevant data, that could be very noisy and enlarge this sigma, leading to the allocation of
all the samples to a mega-cluster.

While the use of the proposed approximation for 6% achieves better results than a2,
these are comparable to the ones obtained with the KNN binary embedding when using
the utility metric. The use of KNN to build graphs is a well-known practice, very robust
for dense clusters, as it is the case in these examples. The definition of a specific field
where each of the embeddings would be superior is beyond the scope of this paper.
However, the excellence of both methods when combined with the proposed subset
selection method only confirms the robustness of the utility metric, irrespective of the
embedding considered.

For standardization purposes, the performance of the method was evaluated in
benchmark databases. As it can be observed, in terms of the accuracy obtained for each
experiment, U2FS achieves comparable results to the I; — norm methods for most of the
datasets considered, despite its condition of greedy method.
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In spite of this, some differences in performance can be observed in the different
datasets. The different ranking of the methods, as well as the accuracy obtained for each of
the databases can be explained taking into account the type of data under study and the
ratio between samples and dimensions.

With regard to the type of data represented by each test, it can be observed that for the
ISOLET dataset, containing sound information, two groups of results are distinguishable.
The group of the utility metric results outperforms those derived from the I; — norm,
which only reach comparable results for 60% of the features selected. These two groups of
results are caused by the subset selection method applied, and not for the embedding,
among which the differences are not remarkable.

In a similar way, for the case of the image datasets USPS, ORL and COIL20, the results
derived from utility are slightly better than those coming from the [, — norm. In these
datasets, similarly to the performance observed in ISOLET, accuracy increases with the
number of features selected.

Regarding the differences between the proposed embeddings, it can be observed that the
results obtained are comparable for all of them. Nonetheless, Fig. 3 shows that there is a
slight improvement in the aforementioned datasets for the RBF kernel with 62, but the
results are still comparable to those obtained with other embeddings. Moreover, this
similarity in the binary and RBF results holds for the I, — norm methods, for which the
accuracy results almost overlap in Fig. 3. This can be explained by the relation between the
features considered. Since for these datasets the samples correspond to pixels, and the
features to the color codes, a simple neighboring method such as the binary weighting is
able to code the connectivity of pixels of similar colors.

The text datasets, PCMAC and BASEHOCK, are the ones that show bigger differences
between the results obtained with utility and those obtained with the I; — norm. This can
be explained by the amount of zeros present in the data, with which the utility metric
is able to cope slightly better. The sparsity of the data leads to more error in the I; — norm
results, since more features end up having the same MCES score, and among those, the
order for selection comes at random. The results obtained with the utility metric are
more stable, in particular for the BASEHOCK dataset. For this dataset, U2FS even
outperforms the results without feature selection if at least 40% of the features are kept.

In all the datasets proposed, the results obtained with the I; — norm show greater
variability, i.e., larger percentiles. This is aligned with the results obtained in the
simulations. The results for the I; — norm are not necessarily reproducible in different runs,
since the algorithm is too sensitive to the training set selected. The variability of the utility
methods is greater for the approaches based on the RBF kernel. This is due to the
selection of the ¢® parameter, which also depends on the training set. The tuning of this
parameter is still very sensitive to high-dimensional and large-scale data, posing a
continuous challenge for the machine learning community (Yin ¢ Yin, 2016; Tharwat,
Hassanien ¢ Elnaghi, 2017).

Despite it being a greedy method, the utility metric proves to be applicable to feature
selection approaches and to strongly outperform the [; — norm in terms of computational
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time, without significant reduction in accuracy. U2FS proves to be effective both in
cases with more samples than features and vice versa. The reduction in computation time
is clear, for all the benchmark databases described, and is particularly attractive for
high-dimensional datasets. Altogether, our feature selection approach U2FS, based on the
utility metric, and with the binary or the RBF kernel with 62 is recommended due to its fast
performance and its interpretability.

Additionally, the performance of U2FS is comparable to the state-of-the-art, as shown
in Table 5. In this table, the performance of U2FS (RBF kernel and 62, with the utility
metric) is compared to that of MCFES, NDFS and RJGSC. For MCES, it can be seen that, as
expected, U2FS appears as an improvement of this algorithm, achieving better results
for both datasets. For NDFS, the results are slightly worse than for U2FS, most probably
due to problems in the tuning of regularization parameters. Given the consistent good
results for different datasets of RJGSC when compared against the state-of-the-art, and its
condition of simultaneously adapting the spectral embedding and subset selection stages,
this algorithm is taken as example of the most complex SSFS algorithms (SAMM-FS,
SOGEFS or DSRMR). These algorithms perform manifold learning and feature selection
simultaneously, iteratively adapting both steps to achieve optimal results.

It is clear that in terms of accuracy, both for 10% of the features and for the maximal
value of achieved, U2FS obtains similar results to RJGSC, while at the same time having
a much smaller computational complexity. Furthermore, while RJGSC requires the
manual tuning of extra parameters, similarly to other algorithms in the state-of-the-art,
U2FS tunes its parameters automatically. Hence, the application of the method is
straightforward for the users. The stages of higher complexity in U2FS, previously defined
as O(N° + d°), are shared by most of the algorithms in the state-of-the-art. However, on top
of these eigendecompositions and matrix inversions, the algorithms in the literature
require a number of iterations in the optimization process that U2FS avoids. Additionally,
U2FS is the only algorithm for which the computation time scales linearly with the amount
of features selected.

The current state-of-the-art of unsupervised spectral feature selectors applies the stages
of manifold learning and subset selection simultaneously, which can lead to optimal
results. In a field that gets more and more complex and goes far from applicability, U2FS is
presented as a quick solution for a sequential implementation of both stages of SSFS
algorithms, yet achieving comparable results to the state-of-the-art. Being a greedy
method, the utility metric cannot be applied simultaneously to the manifold learning and
subset selection stages. However, other sequential algorithms from the state-of-the-art
could consider the use of utility for subset selection, instead of the current sparsity-
inducing techniques. One of the most direct applications could be the substitution of
group-LASSO for group-utility, in order to perform selections of groups of features as
proposed by Bertrand (2018). This can be of interest in cases where the relations between
features are known, such as in channel selection (Narayanan ¢ Bertrand, 2020) or in
multi-modal applications (Zhao, Hu ¢ Wang, 2015).
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CONCLUSION

This work presents a new method for unsupervised feature selection based on manifold
learning and sparse regression. The main contribution of this paper is the formulation
of the utility metric in the field of spectral feature selection, substituting other sparse
regression methods that require more computational resources. This method, being a
backward greedy approach, has been proven to obtain comparable results to the
state-of-the-art methods with analogous embedding approaches, yet at considerably
reduced computational load. The method shows consistently good results in different
applications, from images to text and sound data; and it is broadly applicable to problems
of any size: using more features than samples or vice versa.

Furthermore, aiming to show the applicability of U2FS to data presenting
non-linearities, the proposed approach has been evaluated in simulated data, considering
both a binary and an RBF kernel embedding. Given the sensitivity of the RBF kernel
to high-dimensional spaces, a new approximation of the RBF kernel parameter was
proposed, which does not require further tuning around the value obtained. The proposed
approximation outperforms the rule-of-thumb widely used in the literature in most of the
scenarios presented. Nevertheless, in terms of feature selection, the utility metric is
robust against the embedding.

U2ES is proposed as a non-parametric efficient algorithm, which does not require any
manual tuning or special knowledge from the user. Its simplicity, robustness and accuracy
open a new path for structure sparsity-inducing feature selection methods, which can
benefit from this quick and efficient technique.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work received funding from FWO project GOA4918N. This project received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 802895). This research received
funding from the Flemish Government (AI Research Program). This work was supported
by Bijzonder Onderzoeksfonds KU Leuven (BOF): The effect of perinatal stress on the later
outcome in preterm babies: C24/15/036, Prevalentie van epilepsie en slaapstoornissen in
de ziekte van Alzheimer: C24/18/097. Agentschap Innoveren en Ondernemen (VLAIO)
150466: OSA+ and O\& O HBC 2016 0184 eWatch. KU Leuven Stadius acknowledges the
financial support of imec, and EU H2020 MSCA-ITN-2018: INtegrating Magnetic
Resonance SPectroscopy and Multimodal Imaging for Research and Education in
MEDicine (INSPiRE-MED), funded by the European Commission under Grant
Agreement no. 813120. EU H2020 MSCA-ITN-2018: ‘INtegrating Functional Assessment
measures for Neonatal Safeguard (INFANS)’, funded by the European Commission under
Grant Agreement no. 813483. EIT 19263-Seizel T2: Discreet Personalized Epileptic Seizure
Detection Device. The resources and services used in the experiments of this work were
provided by the VSC (Flemish Supercomputer Center), funded by the Research
Foundation—Flanders (FWQO) and the Flemish Government. There was no additional

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 22/26


http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

external funding received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

FWO project: GOA4918N.

European Research Council (ERC): 802895.

Flemish Government: AI Research Program.

Bijzonder Onderzoeksfonds KU Leuven (BOF): C24/15/036 and C24/18/097.
Agentschap Innoveren en Ondernemen (VLAIO): 150466.

European Commission: 813120 and 813483.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Amalia Villa conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

o Abhijith Mundanad Narayanan performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

e Sabine Van Hulffel conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

e Alexander Bertrand conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

e Carolina Varon conceived and designed the experiments, analyzed the data, performed

the computation work, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

We provide the code of the U2FS algorithm, which includes a code for approximating
the RBF kernel parameter, and the utility metric for subset selection. Additionally,
a code to generate our simulated data is provided, as well as an example script on how to
use the codes.

The codes can be accessed at GitHub: https://github.com/avillago/u2fs.

REFERENCES

Aggarwal CC, Hinneburg A, Keim DA. 2001. On the surprising behavior of distance metrics
in high dimensional space. In: International Conference on Database Theory. Cham: Springer,
420-434.

Ahmad M, Khan AM, Mazzara M, Distefano S, Ali A, Tufail A. 2019. Extended sammon
projection and wavelet kernel extreme learning machine for gait-based legitimate user

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 23/26


https://github.com/avillago/u2fs
http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

identification. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
New York: ACM, 1216-12109.

Alzate C, Suykens JA. 2008. Multiway spectral clustering with out-of-sample extensions through
weighted kernel pca. IEEE transactions on pattern analysis and machine intelligence 32(2):335-
347 DOI 10.1109/TPAMI.2008.292.

Belkin M, Niyogi P. 2002. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In: Advances in Neural Information Processing Systems, 585-591.

Bertrand A. 2018. Utility metrics for assessment and subset selection of input variables for linear
estimation [tips & tricks]. IEEE Signal Processing Magazine 35(6):93-99
DOI 10.1109/MSP.2018.2856632.

Biggs N, Biggs NL, Norman B. 1993. Algebraic graph theory. Vol. 67. Cambridge: Cambridge
University Press.

Cai D, Zhang C, He X. 2010. Unsupervised feature selection for multi-cluster data. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
New York: ACM, 333-342.

Chung FR, Graham FC. 1997. Spectral graph theory. Vol. 92. Rhode Island: American
Mathematical Soc.

Couvreur C, Bresler Y. 2000. On the optimality of the backward greedy algorithm for the subset
selection problem. SIAM Journal on Matrix Analysis and Applications 21(3):797-808
DOI 10.1137/50895479898332928.

Cai D, Chiyuan Zhang XH. 2020. Supervised/Unsupervised/Semi-supervised feature selection for
multi-cluster/class data. Available at http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html.

Gui J, Sun Z, Ji S, Tao D, Tan T. 2016. Feature selection based on structured sparsity: a
comprehensive study. IEEE Transactions on Neural Networks and Learning Systems 28(7):1490-
1507 DOI 10.1109/TNNLS.2016.2551724.

Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. Journal of Machine
Learning Research 3(Mar):1157-1182.

He X, Cai D, Niyogi P. 2006. Laplacian score for feature selection. In: Advances in Neural
Information Processing Systems, 507-514.

Hou C, Nie F, Li X, Yi D, Wu Y. 2013. Joint embedding learning and sparse regression: a
framework for unsupervised feature selection. IEEE Transactions on Cybernetics 44(6):793-804.

Hwang S-G. 2004. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The American
Mathematical Monthly 111(2):157-159 DOI 10.1080/00029890.2004.11920060.

Jiang X, Zhang L, Zhao Q, Albayrak S. 2006. Ecg arrhythmias recognition system based on
independent component analysis feature extraction. In: TENCON 2006-2006 IEEE Region 10
Conference. Piscataway: IEEE, 1-4.

LiJ, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H. 2017. Feature selection: a data
perspective. ACM Computing Surveys 50(6):1-45.

Li Z, Yang Y, Liu J, Zhou X, Lu H. 2012. Unsupervised feature selection using nonnegative
spectral analysis. In: Twenty-Sixth AAAI Conference on Artificial Intelligence.

Lunga D, Prasad S, Crawford MM, Ersoy O. 2013. Manifold-learning-based feature extraction for
classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal
Processing Magazine 31(1):55-66 DOI 10.1109/MSP.2013.2279894.

Maindonald J. 2007. Pattern recognition and machine learning. Journal of Statistical Software
17(1):1-3 DOI 10.18637/jss.v017.b05.

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 24/26


http://dx.doi.org/10.1109/TPAMI.2008.292
http://dx.doi.org/10.1109/MSP.2018.2856632
http://dx.doi.org/10.1137/S0895479898332928
http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html
http://dx.doi.org/10.1109/TNNLS.2016.2551724
http://dx.doi.org/10.1080/00029890.2004.11920060
http://dx.doi.org/10.1109/MSP.2013.2279894
http://dx.doi.org/10.18637/jss.v017.b05
http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

Narayanan AM, Bertrand A. 2020. Analysis of miniaturization effects and channel selection
strategies for eeg sensor networks with application to auditory attention detection. IEEE
Transactions on Biomedical Engineering 67(1):234-244 DOI 10.1109/TBME.2019.2911728.

Ng AY, Jordan MI, Weiss Y. 2002. On spectral clustering: Analysis and an algorithm. In: Advances
in Neural Information Processing Systems, 849-856.

Nie F, Zhu W, Li X. 2019. Structured graph optimization for unsupervised feature selection. In:
IEEE Transactions on Knowledge and Data Engineering. Piscataway: IEEE.

Reynolds BE. 1980. Taxicab geometry. Pi Mu Epsilon Journal 7(2):77-88.

Szurley J, Bertrand A, Moonen M. 2012. Efficient computation of microphone utility in a wireless
acoustic sensor network with multi-channel wiener filter based noise reduction. In: 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2657-2660.

Szurley J, Bertrand A, Ruckebusch P, Moerman I, Moonen M. 2014. Greedy distributed node
selection for node-specific signal estimation in wireless sensor networks. Signal Processing
94:57-73 DOI 10.1016/j.sigpro.2013.06.010.

Tang C, Liu X, Li M, Wang P, Chen J, Wang L, Li W. 2018. Robust unsupervised feature selection
via dual self-representation and manifold regularization. Knowledge-Based Systems
145(10):109-120 DOI 10.1016/j.knosys.2018.01.009.

Tharwat A, Hassanien AE, Elnaghi BE. 2017. A ba-based algorithm for parameter optimization of
support vector machine. Pattern Recognition Letters 93(10):13-22
DOI 10.1016/j.patrec.2016.10.007.

Tsironis S, Sozio M, Vazirgiannis M, Poltechnique L. 2013. Accurate spectral clustering for
community detection in mapreduce. In: Advances in Neural Information Processing Systems
(NIPS) Workshops.

Varon C, Alzate C, Suykens JA. 2015. Noise level estimation for model selection in kernel pca
denoising. IEEE Transactions on Neural Networks and Learning Systems 26(11):2650-2663
DOI 10.1109/TNNLS.2015.2388696.

Verleysen M, Fran¢ois D. 2005. The curse of dimensionality in data mining and time series
prediction. In: International Work-Conference on Artificial Neural Networks. Cham: Springer,
758-770.

Von Luxburg U. 2007. A tutorial on spectral clustering. Statistics and Computing 17(4):395-416
DOI 10.1007/s11222-007-9033-z.

Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemometrics and Intelligent
Laboratory Systems 2(1-3):37-52 DOI 10.1016/0169-7439(87)80084-9.

Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S. 2006. Graph embedding and extensions: a
general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(1):40-51 DOI 10.1109/TPAMI.2007.250598.

Yang Y, Shen HT, Ma Z, Huang Z, Zhou X. 2011. L2, 1-norm regularized discriminative feature
selection for unsupervised. In: Twenty-Second International Joint Conference on Artificial
Intelligence.

Yin S, Yin J. 2016. Tuning kernel parameters for svm based on expected square distance ratio.
Information Sciences 370(12):92-102 DOI 10.1016/j.ins.2016.07.047.

Zhang R, Nie F, Wang Y, Li X. 2019. Unsupervised feature selection via adaptive multimeasure
fusion. IEEE Transactions on Neural Networks and Learning Systems 30(9):2886-2892
DOI 10.1109/TNNLS.2018.2884487.

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 25/26


http://dx.doi.org/10.1109/TBME.2019.2911728
http://dx.doi.org/10.1016/j.sigpro.2013.06.010
http://dx.doi.org/10.1016/j.knosys.2018.01.009
http://dx.doi.org/10.1016/j.patrec.2016.10.007
http://dx.doi.org/10.1109/TNNLS.2015.2388696
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1109/TPAMI.2007.250598
http://dx.doi.org/10.1016/j.ins.2016.07.047
http://dx.doi.org/10.1109/TNNLS.2018.2884487
http://dx.doi.org/10.7717/peerj-cs.477
https://peerj.com/computer-science/

PeerJ Computer Science

Zhao L, Hu Q, Wang W. 2015. Heterogeneous feature selection with multi-modal deep neural
networks and sparse group lasso. IEEE Transactions on Multimedia 17(11):1936-1948
DOI 10.1109/TMM.2015.2477058.

Zhao Z, Liu H. 2007. Spectral feature selection for supervised and unsupervised learning. In:
Proceedings of the 24th International Conference on Machine Learning, 1151-1157.

Zhu X, Li X, Zhang S, Ju C, Wu X. 2016. Robust joint graph sparse coding for unsupervised

spectral feature selection. IEEE Transactions on Neural Networks and Learning Systems
28(6):1263-1275 DOI 10.1109/TNNLS.2016.2521602.

Villa et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.477 26/26


http://dx.doi.org/10.1109/TMM.2015.2477058
http://dx.doi.org/10.1109/TNNLS.2016.2521602
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.477

	Utility metric for unsupervised feature selection
	Introduction
	Related work
	Methods
	Results
	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


