Submitted 23 November 2020
Accepted 11 May 2021
Published 27 May 2021

Corresponding author
Juan Carlos Seck-Tuoh-Mora,
jseck@uaeh.edu.mx

Academic editor
Jin-Kao Hao

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.574

() Copyright
2021 Escamilla Serna et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A global-local neighborhood search
algorithm and tabu search for flexible job
shop scheduling problem

Nayeli Jazmin Escamilla Serna, Juan Carlos Seck-Tuoh-Mora,
Joselito Medina-Marin, Norberto Hernandez-Romero,
Irving Barragan-Vite and Jose Ramon Corona Armenta

AAIyA-ICBI-UAEH., Mineral de la Reforma, Hidalgo, Mexico

ABSTRACT

The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that
continues to be studied extensively due to its practical implications in manufacturing
systems and emerging new variants, in order to model and optimize more
complex situations that reflect the current needs of the industry better. This work
presents a new metaheuristic algorithm called the global-local neighborhood search
algorithm (GLNSA), in which the neighborhood concepts of a cellular automaton
are used, so that a set of leading solutions called smart-cells generates and shares
information that helps to optimize instances of the FJSP. The GLNSA algorithm is
accompanied by a tabu search that implements a simplified version of the Noptl
neighborhood defined in Mastrolilli & Gambardella (2000) to complement the
optimization task. The experiments carried out show a satisfactory performance of
the proposed algorithm, compared with other results published in recent algorithms,
using four benchmark sets and 101 test problems.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Algorithms and
Analysis of Algorithms, Optimization Theory and Computation

Keywords Job shop scheduling, Cellular automata, Local search, Simplified neighborhood,

Tabu search

INTRODUCTION

The scheduling of jobs and resource assignments in a production system includes a series
of combinatorial problems that continue to be widely investigated today to propose and
test new metaheuristic algorithms.

One of these problems is the Flexible Job Shop Scheduling Problem (FJSP), an extension
of the Job Shop Scheduling Problem (JSP). This problem consists of assigning a set of
jobs to be processed on multiple machines. Each job consists of several operations that
must be processed sequentially. Operations of different jobs can be interlarded in the
scheduling. The system’s flexibility is given with the possibility that each operation
(perhaps all of them) of a given set can be processed in several machines.

Thus, the FJSP aims to find the best possible machine assignment and the best possible
scheduling of operations; classically, the objective is to find the shortest possible time (or
makespan) to process all the jobs.

The FJSP continues to be a very active subject of research, since its first definition in
Brucker ¢ Schlie (1990). Many of the latest works have focused on presenting hybrid

How to cite this article Escamilla Serna NJ, Seck-Tuoh-Mora JC, Medina-Marin J, Hernandez-Romero N, Barragan-Vite I, Corona
Armenta JR. 2021. A global-local neighborhood search algorithm and tabu search for flexible job shop scheduling problem. Peer] Comput.
Sci. 7:¢574 DOI 10.7717/peerj-cs.574

http://dx.doi.org/10.7717/peerj-cs.574
mailto:jseck@�uaeh.�edu.�mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.574
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

techniques for better results. For example, an algorithm has been proposed in which
genetic operators and the tabu search (TS) interact (Li ¢ Gao, 2016). Another work
combines discrete bee colony operators with the TS to optimize classic problems and
problems with job cancellation and machine breakdowns (Li et al., 2017). Other recent
work uses discrete particle swarm operators with hill climbing and random restart to
optimize well-known test problems (Kato, de Aguiar Aranha ¢ Tsunaki, 2018). These
references are just a small sample of the works that develop hybrid techniques of discrete
operators and local searches to propose new algorithms that improve the makespan’s
calculation in FJSP instances.

Within the metaheuristic algorithms, a new optimization strategy has been proposed
using concepts of cellular automata. Relevant work is proposed in Shi et al. (2011), where
different types of cellular automaton-like neighborhoods are used in conjunction with
particle swarm operations for continuous global optimization.

Other related work using cellular automaton-like neighborhoods to design IIR filters
can be consulted in Lagos-Eulogio et al. (2017). Recently, another discrete optimization
algorithm has been presented for the concurrent layout scheduling problem in the job-
shop environment (Herndndez-Gress et al., 2020), where the idea of cellular automata
inspires the neighborhood strategy used by the proposed algorithm.

The idea that a solution can be improved by developing a neighborhood with new
solutions generated by small changes in its current information and by sharing
information with other solutions is the inspiration behind these algorithms, like the
evolution rule of a cellular automaton (McIntosh, 2009).

Following this trend developed in previous studies, this work proposes that the
application of this neighborhood idea will optimize instances of the FJSP. Specifically, an
algorithm is proposed that uses a set of leading solutions called smart-cells. In each
iteration of the algorithm, the population of smart-cells is selected using elitism and
tournament selection.

With this selected population, each smart-cell generates a neighborhood of new
solutions using classical operators of combinatorial problems (insertion, swapping, and
path relinking (PR)). The best one is selected from this neighborhood, which updates the
smart-cell value.

The neighborhood-based optimization of each smart-cell is complemented by a TS
using a simplified version of the Noptl neighborhood proposed in Mastrolilli &
Gambardella (2000). In this neighborhood, a random critical path is selected, and a better
solution is sought, perhaps a machine minimizing the makespan for each operation on the
critical path but without changing its position in the current array of operations.

This neighborhood management of each smart-cell and the simplified neighborhood
Noptl allows us to obtain an algorithm of less complexity than those previously proposed,
which can adequately solve the test problems commonly used in the specialized literature.
In particular, for instances of FJSP with high flexibility (where more machines can
perform the same operation), two solutions are presented with better makespan values
compared to the algorithms reported in this manuscript.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 2/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

The structure of the paper is as follows. “State of the art of FJSP” presents a state of the
art of the FJSP. “Problem formulation” describes the FJSP formulation. “Global-local
neighborhood search algorithm for the FJSP” explains the strategy and operators used for
global and local searches that define the global-local neighborhood search algorithm
(GLNSA). “Experimental results” shows the experimental results obtained when the
GLNSA is applied to instances of the FJSP with high flexibility. The last section provides
the conclusions of the article and prospects for future work.

STATE OF THE ART OF FJSP

As mentioned, the FJSP is an extension of the classic JSP. The classic problem seeks to find
the assignment of operations in a set of predefined machines, while the flexible case
consists of a sequence of operations, where each operation can be performed on several
available machines, possibly with different processing times. To solve an instance of the
FJSP, one must consider two sub-problems: assignment and scheduling (Brandimarte,
1993). For each operation, the first assigns a machine from a set of available ones. The
second is in charge of sequencing the operations assigned to each machine to obtain a
feasible schedule to minimize the objective function (Li, Pan ¢ Tasgetiren, 2014).

The problem definition was introduced by Brucker ¢» Schlie (1990), who proposed a
polynomial-graphical algorithm to solve a problem with only two jobs, concluding that
FJSP belongs to the category of NP-hard problems for which there are no algorithms that
can bring optimal solutions in polynomial time.

One of the first works to address the FJSP with a heuristic approach is Brandimarte
(1993), which uses dispatch rules and a hierarchical TS algorithm to solve the problem and
introduce 15 instances.

Since then, many investigations have addressed the FJSP and applied different
approaches and methods to solve it. For example, Mastrolilli ¢» Gambardella (2000)
introduces two neighborhood functions to use local search techniques by proposing a TS
procedure.

A practical hierarchical solution approach is proposed in Xia ¢» Wu (2005) to solve
multiple targets for the FJSP. The proposed approach uses particle swarm optimization
(PSO) to assign operations in machines and the simulated annealing (SA) algorithm to
each machine’s program operations. The objective is to minimize the makespan
(maximum completion time), the total machine workload, and the critical machine
workload.

A genetic algorithm (GA) to be applied to the FJSP is proposed in Pezzella, Morganti &
Ciaschetti (2008). The developed algorithms integrate different selection and reproduction
strategies and show that an efficient algorithm is developed when different rules to find
the initial population, selection, and reproduction operators are combined. Another
hybridized GA (HGA) is described in Gao, Sun ¢ Gen (2008), which strengthens the
search for individuals and is improved with the variable neighborhood descent (VND)
variable; since it is a multi-objective problem, HGA seeks the minimum makespan,
maximum workload, and minimum total workload. Two local search procedures are used,
the first for a moving operation and the second for two moving operations.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 3/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Hybridization of two algorithms, PSO and TS, are combined in Zhang et al. (2009)
to solve a multi-objective problem, that is, several conflicting objectives, mainly in
large-scale problems, where the PSO has a high search efficiency combining local and
global searches and TS is used to find a near-optimal solution.

In Amiri et al. (2010), a variable neighborhood search (VNS) algorithm applied to the
FJSP is proposed, and its objective function is the makespan. Several types of
neighborhoods are presented, where assignment and sequence problems are used to
generate neighboring solutions. Another hybrid algorithm (HA) using TS and VNS is
presented in Li, Pan ¢» Liang (2010), which considers three minimization objectives,
produces neighboring solutions in the machine assignment module, and performs local
searches in the operation scheduling.

An algorithm that considers parallel machines and maintenance costs in the FJSP is
exposed in Dalfard & Mohammadi (2012), which proposes a new mathematical model that
applies the HGA and the SA algorithm, obtaining satisfactory results in 12 experiments
using multiple jobs.

The work in Yuan, Xu & Yang (2013) adapts the harmony search algorithm (HS) in the
FJSP. They developed techniques to convert the continuous harmony vector into two
vectors, and these vectors are decoded to reduce the search space applied to an FJSP.
Finally, they introduce an initialization scheme by combining heuristic and random
techniques and incorporating the local search in the HS, in order to speed up the local
search process in the neighborhood.

Another discrete algorithm based on an artificial-bee colony, called DABC, is presented
in Li, Pan ¢ Tasgetiren (2014). They take three objectives as their criteria, where they adopt
a self-adaptive strategy, represented by two discrete vectors and a TS, demonstrating
that its algorithm is efficient and effective with high performance.

A GA that incorporates the Taguchi method in its coding to increase its effectiveness is
exposed in Chang et al. (2015) and it evaluates the performance of the proposed algorithm
using the results of Brandimarte (1993). A hybrid evolutionary algorithm based on the
PSO and the Bayesian optimization algorithm (BOA) is developed in Sun et al. (2015) and
used to determine the relationship between the variables and its objective to minimize the
processing time and improve the solutions and robustness of the process.

A multi-objective methodology is described in Ahmadi et al. (2016) for the FJSP in
the specific case of machine breakdown situations. They use two algorithms, the
non-dominated sorting genetic algorithm (NSGA) and the NSGA-II, which is usually
utilized to solve large multi-objective problems, like evaluating the status and condition of
machine breakdowns. A HA that uses a GA and a TS to minimize the makespan is
presented in Li ¢ Gao (2016). The proposed algorithm has an adequate search capacity
and balances intensification and diversification very well.

In Li et al. (2017), the hybrid artificial bee colony (HABC) algorithm and the improved
TS algorithm are proposed to solve the FJSP in a textile machine company. Three
rescheduling strategies are introduced—schedule reassembly, schedule intersection, and
schedule insertion—to address dynamic events such as new jobs inserted, old jobs, and
when there may be cell and machine breakdowns. The HABC algorithm is shown to have

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 4/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

satisfactory exploitation, exploration, and performance to solve the FJSP. A non-dominant
genetic classification algorithm that serves as an evolutionary guide for an artificial

bee colony (BEG-NSGA-II) is developed in Deng et al. (2017), and it focuses on the
multi-objective problem (MO-FJSP). Usually, this type of algorithm converges
prematurely. Therefore, that paper uses a two-stage optimization to avoid these
disadvantages in order to minimize the maximum completion time, the workload of the
most loaded machine, and the total workload of all the machines. An optimization
algorithm applying a hybrid ant colony optimization (ACO) to solve the FJSP described in
Wu, Wu & Wang (2017) is based on a 3D disjunctive graph, and has four objectives: to
minimize the completion time, the delay or anticipation penalty cost, average machine
downtime, and the cost of production.

In Shen, Dauzére-Péres ¢ Neufeld (2018) the FJSP is addressed using sequence-
dependent setup time (SDST) and a mixed-integer linear programming model (MILP) to
minimize the makespan using the TS as an optimization algorithm. They apply specific
functions and a diversification structure, comparing their model with well-known
reference instances and two metaheuristics from the literature, obtaining satisfactory
results. In Kato, de Aguiar Aranha & Tsunaki (2018), new strategies are used in population
initialization, particle displacement, stochastic assignment of operations, and partially and
fully flexible scenario management, to implement a HA using the PSO for the machine
routing subproblem and explore the solution space with a Random Restart Hill Climbing
(RRHC) for the local search programming subproblem. A new definition of the FJSP
(double flexible job-shop scheduling problem, DFJSP) is described in Gong et al. (2018).
Here, the processing time was considered, and factors related to the environment’s
protection were presented as an indicator. They presented and resolved ten benchmarks
using the new algorithm. An algorithm that combines the uncertainty processing time to
solve an FJSP in order to minimize uncertain times and the makespan is presented in Xie ¢
Chen (2018). The algorithm uses gray information based on external memory with an
elitism strategy. In Reddy et al. (2018), the FJSP is solved for the minimization of the
makespan and the workload of the machines using a programming model (mixed-integer
non-linear programming, MINLP) with machines focused on real-time situations using a
new HA through PSO and GA to solve multiple objectives, obtaining high-quality
solutions. An algorithm that addresses the FJSP to minimize the total workflow and
inventory costs is described in Meng, Pan ¢» Sang (2018); it applies an artificial bee colony
(ABC) and the modified migratory bird algorithm (MMBO), to obtain a satisfactory
capacity search. In Nowiri et al. (2018), 13 benchmark test problems of the FJSP are taken
to prove the effectiveness of a distributed particle swarm optimization algorithm.

In Tang et al. (2019), two optimization methods are applied with two significant
characteristics in practical casting production: the Tolerated Time interval (TTI) and the
Limited Start Time interval (LimSTI). A model to calculate the energy consumption of
machinery is presented in Wu, Shen ¢ Li (2019), which has different states and a
deterioration effect to determine the real processing time to apply a hybrid optimization
using the SA algorithm. A new algorithm called hybrid multi-verse optimization (HMVO)
is proposed in Lin, Zhu ¢» Wang (2019) to treat a fuzzy problem in an FJSP. Route linking

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 5/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

technique is used, and a mixed push-based phase to expand the search space and local
search to improve the solution is incorporated. Another elitist non-dominated sorting HA
(ENSHA) for a MO-FJSP is explained in Li et al. (2019). A configuration dependent on
the sequence is used. Its objective is to find the minimum makespan and the total costs of
the installation, by proposing a learning strategy based on estimating the distribution
algorithm (EDA) and checking its effectiveness with 39 instances and a real case study.
Another HA based on genetic operators is presented in Huang ¢ Yang (2019), and applied
to MO-FJSP, considering transportation time. TS continues to be a standard method to
complement the local search in the solution of FJSP, as demonstrated in Kefalas et al.
(2019), which proposes a memetic algorithm for the multi-objective case. Hybridization is
continuously applied to propose new and improved algorithms for the FJSP (Gao et al.,
2019). One proposal is in Zarrouk, Bennour & Jemai (2019), where a two-level PSO
algorithm is presented and tested with 16 benchmark problems. Another GA with a VNS is
explained in Zhang et al. (2019) and proved with 13 well-known benchmark problems.
Another modified metaheuristic is presented in Luan et al. (2019), where the whale
algorithm is adapted for the FJSP and proved with 15 test problems. A HA that combines
PSO and TS is described in Toshev (2019) and the performance of the algorithm is analyzed
in 12 benchmark problems. A distributed approach for implementing a PSO method is
explained in Caldeira ¢ Gnanavelbabu (2019) and proved with 6 different benchmark
datasets.

In Chen et al. (2020), 14 benchmark test problems are used to demonstrate the efficiency
of a self-learning GA based on reinforcement learning in the FJSP. A fuzzy version of
the FJSP is studied in Vela et al. (2020), where an evolutionary algorithm is proposed, using
a TS again for optimizing a due-date cost. Dynamic flexibility in FJSP is analyzed in
Baykasoglu, Madenoglu ¢» Hamzaday (2020) with a greedy randomized adaptive search.
The efficiency of the proposed algorithm is proved with three different sets of benchmark
test problems. Other hybrid methods for optimizing the FJSP are described in Bharti ¢
Jain (2020), where 28 benchmark instances are taken from three different data sets to
demonstrate the performance of these methods. In Shi et al. (2020), a multi-population
genetic algorithm with ER network is proposed and tested with 18 benchmark problems.
MO-FJSP instances are solved with a hybrid non-dominated sorting biogeography-based
optimization algorithm (An et al., 2021).

Previous works show that the algorithms dedicated to solving FJSP instances that have
had the best results use hybrid techniques that combine metaheuristic techniques and
local search methods such as TS. Another point analyzed in the literature review is that the
most recurrent objective function is the makespan as the most widely used performance
measure.

PROBLEM FORMULATION

The FJSP is presented following the definition of Zuo, Gong ¢ Jiao (2017). There is a set of
njobs J={J, I, ... J,} and a set of m machines M = {M,, M, ... M,, }. Each J; job consists
of a sequence of operations O J; = {O; 1, O; », ..., O; n;}, where n; is the number of
operations contemplated by the job Ji. For 1 <i < nand 1 <j < n;, each operation O; ; can

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 6/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

be processed by one machine from a set of machines M;; C M. The processing time of O; ;
on the machine My is denoted by p; j .
In an instance of the FJSP, the following conditions are considered:

. An operation cannot be interrupted while a machine is processing it.

. One machine can process one operation at most.

. Once the order of operations has been determined, it cannot be modified.
. Breakdowns in machines are not considered.

. The works are independent of one another.

. The machines are independent of one another.

NN U LN

. The time used for the machines’ preparation and the transfer of operations between
them is negligible.

A solution for the FJSP is defined as the order of operations O;; that respects each job’s

precedence restrictions. For each operation O; ;, a machine is selected from the subset M; ;.

7
The objective is to find the feasible order of operations O;; and for each operation, the
assignment of a machine in M;; minimizing the makespan, or the time needed to complete
all jobs. The makespan can be formally defined as C,,,,, = max{C; }, where C; represents the
completion time for all operations of the job J;, for 1 <i < n. A mathematical formulation of
the problem can be represented by Eq. (1), with the corresponding constraints.

Objective:

min{Cpax} = min{max Z Z(Si’j’k +pijk)} (1)

i=1 j=1

Subject to:

Pijk >0, 1<i<n1<j<n;l < k< msuchthat My € M)
Sijk + Pijk < Siji1k (3)
X 1, when operationO;jis processed onMj @

bk = 0, otherwise

m
Y Xijx=1 5)
k=1

n n;
) Xijg=1 (6)
i=1 j=1

The objective function in Eq. (1) minimizes the makespan or the maximum completion
time of all jobs J;, where s;; is the start time of operation O;; in machine M. Constraint
in Eq. (2) represents the processing time of every operation being greater than 0. Constraint
in Eq. (3) assures the precedence between operations of the same job. A processing record
of the assignment of one operation to a feasible machine is represented by X in Eq. (4).
With X, constraint in Eq. (5) shows that each operation is assigned to only one machine, and
constraint in Eq. (6) ensures each machine can process only one operation at any time.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 7/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Thus, an instance of the FJSP involves two problems: the scheduling of operations and
the machine assignment to each operation.

A recent strategy for solving this type of problem is the hybridization of techniques that
optimize both problems. This manuscript follows this research line, proposing an
algorithm that combines the generation of new solutions using a neighborhood inspired by
cellular automata, complemented with a local search technique based on TS, using a
simplified version of the Noptl neighborhood presented in Mastrolilli ¢» Gambardella
(2000).

This type of neighborhood allows the exploration of new solutions using well-known
operators for the scheduling problem. The conjunction with the simplified neighborhood
Noptl allows the proposal of a neighborhood-based algorithm that performs global and
local searches in each iteration, with a complexity similar to the most recent algorithms,
and uses less computational time, obtaining satisfactory results for problems with high
flexibility.

GLOBAL-LOCAL NEIGHBORHOOD SEARCH ALGORITHM
FOR THE FJSP

General description of the GLNSA

Many recent works have proposed hybrid optimization algorithms that combine a
population method with another local search method. These methods have produced
satisfactory results, and new proposals continue to be developed to have equally efficient
algorithms, with a simple implementation and lower complexity of execution. In these
methods, the population part applies a series of information sharing and mutation
operators to improve the optimization process. Usually, these methods are used serially to
each individual to obtain a new position.

In the algorithm proposed in this work, a different strategy is taken, inspired by the
operation of a cellular automaton, where the solution of a complex problem is achieved
through simple operators’ cooperation. This inspiration has been proved before in the
design of infinite-impulse filters (Lagos-Eulogio et al., 2017) and a concurrent layout and
scheduling problem (Herndndez-Gress et al., 2020), obtaining good results.

A cellular automaton is a discrete dynamic system made up of indivisible elements
called cells, where each cell changes its state over time. The state change can depend on
both the current state of each cell and its neighboring cells. With such simple dynamics,
cellular automata can create periodic, chaotic, or complex global behavior (Wolfram, 2002;
Mclntosh, 2009; Adamatzky, 2010; Bilan, Bilan & Motornyuk, 2020).

In this work, the idea of a cellular-automaton neighborhood is an inspiration to propose
a new algorithm that optimizes instances of the FJSP. The algorithm has S, leading
solutions or smart-cells, where each of them first performs a global search mainly focused
on making modifications to the sequencing of operations, applying several operators to
form a neighborhood, and selecting the best modification. Then, each smart-cell executes a
local search focused on machine assignment, applying a TS with increasing iterations
at each step of the algorithm. Thus, in each iteration, a global exploration search and a local

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 8/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

exploitation search are performed to optimize instances of the FJSP, and hence, this
process is called the global-local neighborhood search algorithm (GLNSA).

The novel part of the GLNSA is that instead of serially applying the sharing-information
and mutation operators to each smart-cell to obtain a new solution as most recently
proposed hybrid methods do, in the GLNSA, a neighborhood of new solutions is
generated. Each neighbor is the product of applying a random information exchange or
mutation operator to the original smart-cell. Then the best neighbor is selected to replace
it, following a neighborhood structure inspired by cellular automata.

In this way, the contribution of GLNSA is to show that notions of cellular automata are
helpful to inspire new forms of hybridization in the conceptualization of new optimization
methods for the FJSP, obtaining satisfactory results as shown in the subsequent sections.
The corresponding flow chart is described in Fig. 1.

The detailed explanation of the encoding and decoding of solutions, the neighborhood
used, its operators for the global search, and the TS operators are presented in the
following sub-sections. The general procedure of the GLNSA is in Algorithm 1.

Encoding and decoding of solutions
To represent a solution for an instance of the FJSP, we take the encoding with two strings
(OS and MS) described in Li ¢» Gao (2016), OS for operations and MS for machines.

The string OS consists of a permutation with repetitions where each job J; appears #;
times. The string OS is read from left to right, and the j—th appearance of J; indicates that
the O;; operation of job J; should be processed. This coding of the sequence of operations
OS has the advantage of any permutation with repetitions producing a valid sequence
so that the operators used in this work will always yield a feasible sequence.

The string MS consists of a string with a length equal to the number of the total
operations. The string is divided into n parts, where the i—th part contains the machines
assigned to J; with n; elements. For each i—th part of MS, the j—th element indicates the
machine assigned to O; ;.

Initially, each solution OS is generated at random, making sure that each job J; appears
exactly n; times. For every operation, one of the possible machines that can process it is
selected at random as well.

For each pair of OS and MS strings that represents a solution for an instance of the FJSP,
their decoding is done using an active scheduling. For each operation O;; in OS and its
assigned machine k in MS, its initial time s(O;) is taken as the greater time between the
completion time of the previous operation O;; _ ; and the lesser time available in the
machine k (not necessarily after the last operation programmed in that machine) where
there is an available time slot, such that the processing time p; . is less than or equal to
the size of this slot. The time the O; j operation is completed is called C(O,-j), and forj =1,
s(0;;— 1) =0forall 1 <i<n. An example with 3 jobs and 2 machines is shown in Fig. 2.

In Fig. 2 (A), there are 3 jobs, each with 2 operations. Almost every operation can
be executed on the 2 available machines. On average, each operation can be executed by
1.83 machines; this is called the system’s flexibility. Note that the time at which each
operation is performed on each machine may be different. In part (B), you can see how a

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 9/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

‘ Start

A

4

Set GLNSA

parameters

y

4

Initialize
smart-cells

A

4

Eval

smart-cells

uate

y

4

elitism and

Select smart-cells by |

tournament

Insertion

Generate

neigborhood

Swapping

for each
smart-cell and
select the

best neighbor
as the new

Path-relinking

smart-cell

A

4

Improve each smart-cell
by Tabu

Search

Termi

criteria satisfied?

nation

No

Yes

v

Output best solution

A

4

‘ Stop

Figure 1 The workflow of the GLNSA.

Full-size K&l DOT: 10.7717/peerj-cs.574/fig-1

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574

10/32

http://dx.doi.org/10.7717/peerj-cs.574/fig-1
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 General description of the GLNSA.

Result: Best smart-cell

Set the parameters of the GLNSA;

Initialize the population of smart-cells with Sn solutions generated at random;

Evaluate each smart-cell to obtain its makespan;

do
Select a refined population from the best smart-cells using elitism and tournament;
For each smart-cell, generate a neighborhood (using insertion, swapping, and PR operators) and
take the best neighbor as a new smart-cell;
For each smart-cell, improve the machine assignment by TS;

while (Iteration number less than G,, or stagnation number less than Sp);

Return the smart-cell with minimum makespan;

Job | Ope | My | M,

Alon| 23 os(2[1]8][8]2[1] |mior] [onpy
O1o 3 2

AR RS v i = m———
022 2 3 ‘*J 14'§‘*J 2"5:‘*J 34’ 0 3 5 7 >

J3 | Os1 | 2 2 Smart-cell Machine Gantt chart
O35 1 —

A ®B) ©)

Figure 2 Example of a FJSP instance (A), the encoding of a factible solution (B) and the active
decoding (C) used by the GLNSA. Full-size K&] DOT: 10.7717/peerj-cs.574/fig-2

smart-cell is encoded. It consists of two strings; the first OS is a permutation with
repetitions, where each job appears 2 times. The second string MS contains the machines
programmed for each operation, where the first 2 elements correspond to the machines
assigned to the operations O, ; and O ,, the second block of 2 elements specify the
machines assigned to operations O,; and O,, and so on. Finally, part (C) indicates the
decoding of the smart-cell reading of the string OS from left to right. In this case, the O,,
operation, which is the fifth task programmed in OS, is actively accommodated, since
there is a gap in the M; machine between O;; and Os,, which is of sufficient length to place
O,, just after the preceding operation on the machine M, and without moving the
operations already programmed in M;. This scheduling gives a final makespan of 7 time
units using the active decoding.

Selection method

The GLNSA uses elitism and tournament to refine the population, by considering the value
of the makespan of each smart-cell. For elitism, a proportion E, of smart-cells is taken with
the best values of population’s makespan. Those solutions will remain unchanged in

the next generation of the algorithm. The rest of the population members are selected

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 11/32

http://dx.doi.org/10.7717/peerj-cs.574/fig-2
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

using a tournament scheme, where a group of b smart-cells are randomly selected from the
current population and competed with each other, and the smart-cell with the best
makespan is selected to become part of the population to be improved using the global and
local search operators described later. In this work, we take b = 2. This mixture of elitism
and tournament allows a balance between exploring and exploiting the information in
the population, keeping the best smart-cells, and allowing the other smart-cells with a good
makespan to continue in the optimization process.

Neighborhood structure
In this section, two neighborhood structures are presented for the FJSP. The first
neighborhood focuses mainly on the sequencing of operations and random assignments of
machines to each operation, and the second neighborhood focuses on a local search
neighborhood to improve the assignment of the machines once the sequence of operations
has been modified.

For the second neighborhood, a simplification of the Noptl neighborhood and the
makespan estimation explained in Mastrolilli & Gambardella (2000) are used to improve
the GLNSA execution time.

Exploration neighborhood

For the global search neighborhood, well-known operators used in various task sequencing
problems are used. These operators are used to optimize the sequence of operations. For
the machine assignment, the mutation operator used in Li ¢» Gao (2016) is applied. Each
smart-cell generates [neighbors using one of the three possible operators (insertion,
swapping, or PR) with probability &, ag and ap, respectively, to generate a variant of OS.
For the machine assignment, the mutation operator with probability «,, is employed to
generate another variant of MS. From these / neighbors, the one with the smallest
makespan is chosen to be the new smart-cell. This neighborhood is exemplified in Fig. 3.

Insertion

The insertion operator consists of selecting two different positions, k; and k,, of the string
OS in a smart-cell to obtain another string OS'. For example, if k; > k, with OS = (O, ...
Ok, ... O k; ...), then we get the string OS' = (O, ... Ok; Ok, ... Ok; — 1 ...). This is
analogous if k; < k,. This is exemplified in Fig. 4.

Swapping
The swapping operator consists of selecting 2 different positions, k; and k,, from the string
OS to exchange their positions. For example, if k; < k, with OS = (O, ... Ok; ... Ok, ...),
then the string OS" = (O, ... Ok, ... Ok; ...). This is analogous if k; > k,. This is
exemplified in Fig. 5.

Insertion and swapping are operators classically used in metaheuristics for task
scheduling problems, since they provide good quality solutions (Blazewicz, Domschke &
Pesch, 1996; Cheng, Gen & Tsujimura, 1999; Deroussi, Gourgand ¢ Norre, 2006).

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 12/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

os:2]1]2[3[3]1]
msf{2]2]2]1]2]1]

Smart-cell

New OS by:

e Insertion with prob. aj

e Swapping with prob. ag

e Path-relinking with prob. ap

New M S by Mutation with prob. ayys

//, /l \\\
// / \\

g | 4 Sa
os:{3[1]2]3]2]1]| los]2[1]3]3]2]1] os:{2[1]1]3]2]3]
ms{1l2l2]1[1]1] |msft]2]2]1]2]1]] = = msf1]2]2]1]2]1]

Neighbor 1 Neighbor 2 Neighbor [
~\ ‘ rd
\\\\ \\ /////
\\A \1 A//

Best neighbor

T
|
v

os:2]1]3][3[2]1]
ms:i1|2]2]1]2]1]

New Smart-cell

Figure 3 Exploration neighborhood used by the GLNSA.
Full-size K&l DOT: 10.7717/peerj-cs.574/fig-3

Path relinking

Path relinking (PR) involves establishing a route between two different smart-cells for their
strings OS and OS'. The route defines intermediate strings ranging from OS to OS'. To
form this route, the first position k of OS is taken such that OS; # OS’k. Then, the first
position p is located after k such that OS, = OS';. Once both positions have been found,
the positions k and p are exchanged in OS to obtain a new string closer to OS'. The PR
is repeated until OS’ is obtained. In the end, one of the intermediate solutions is
randomly chosen.

The idea of the PR is to generate solutions that combine the information of OS and OS'
and fulfill two objectives in the GLNSA: if both smart-cells have similar machine strings,
PR acts as a local search method that refines the strings of operations. Conversely, if
both smart-cells have very different machine strings, PR works as an exploration method
that generates new variants of one of the smart-cells, taking the other as a guide, as shown
in Fig. 6. PR has already been used successfully in the FJSP, as shown in its application
with different neighborhood variants in Gonzdlez, Vela ¢» Varela (2015).

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 13/32

http://dx.doi.org/10.7717/peerj-cs.574/fig-3
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

OS:|2|1(2(3|3]|1

OoS:2|3|1|2|3]|1

Figure 4 The insertion operator. Full-size K&l DOT: 10.7717/peerj-cs.574/fig-4

OS:(2(1]2|3[3]|1

OoS:|2(3|2|3|1|1

Figure 5 The swapping operator. Full-size 4] DOT: 10.7717/peerj-cs.574/fig-5
oS:j2|11(2|3|3]|1
)
! New OS:
ol1]3]3]2[1}------ ~2]1]3[3]2]1
l
OS:(8|1|2|3|2|1
Figure 6 The path relinking operator. Full-size k4] DOT: 10.7717/peerj-cs.574/fig-6
ms:|2]2]2]1]2]1]
i i i Selected positions
v v v
ms:[1]2]1]2]2]1]
Figure 7 Mutation operator in machine strings. Full-size K&l DOT: 10.7717/peerj-cs.574/fig-7

Mutation of the string of machines
For the MS string of each smart-cell, a mutation operator is applied that selects half of
the positions in MS at random. For each position linked to an operation in OS, the assigned
machine is changed for another selected at random so that it can perform the respective
operation in OS.

Figure 7 shows an example of the mutation operator applied to a sequence MS. Three
machines are selected corresponding to the operations Oy;, O,;, and O,, in OS. The new

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 14/32

http://dx.doi.org/10.7717/peerj-cs.574/fig-4
http://dx.doi.org/10.7717/peerj-cs.574/fig-5
http://dx.doi.org/10.7717/peerj-cs.574/fig-6
http://dx.doi.org/10.7717/peerj-cs.574/fig-7
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

machine assignment is obtained by changing the machines in these positions to others
that can also perform these operations.

Local search neighborhood

Simple local search methods are based on creating slight modifications of a solution to
generate an improved one until the process can no longer achieve an improvement, or a
certain number of repetitions is met. These methods tend to get trapped in local minima or
regions where many solutions have the same cost. In order to make an algorithm more
adaptable and capable of escaping local optima, various strategies have been proposed.
One of the most effective ones so far is the TS.

TS is a metaheuristic developed by Glover ¢ Laguna (1998) to guide a local search
more effectively by incorporating an adaptive memory and a more intelligent exploration.
It is one of the most used methods and offers satisfactory results in many optimization
problems (Glover ¢» Kochenberger, 2006). TS allows, during the search process,
solutions with a worse cost to be accepted to provide a more significant search capacity.
A short-term memory prohibits returning to solutions that have already been recently
explored. They are again taken if they are outside the tabu threshold or meet an aspiration
criterion (Chaudhry & Khan, 2016). In this way, the search does not have a cyclical
behavior and produces new trajectories in the solution space.

In the GLNSA, TS allows generating solutions that may not improve the makespan of
the original smart-cell as long as the operation and the machine selected to obtain the
new solution are not forbidden. TS keeps a record of the operation and the machine
selected in each movement and the threshold at which this movement will remain tabu,
and the aspiration criterion allows a solution to be accepted even if it is tabu.

The implementation of TS is resumed using a simplification of the neighborhood
structure proposed in Mastrolilli & Gambardella (2000) and the makespan estimation
explained in the same work to reduce the computational time of TS. The general TS
procedure is described in Algorithm 2.

The flow chart of the TS is shown in Fig. 8.

Critical path

The TS for this job uses the following definition of the critical path cp. To form cp, one of
the operations with completion time equal to the makespan is selected randomly. Once
this operation has been chosen, the operation that precedes it is selected either on the same
machine or by the previous operation of the same job, and the one whose completion
time is equal to the initial time of the current operation is selected. If both previous
operations have the same completion time, one of them is selected randomly. This process
is repeated until an operation with a start time of 0 is selected. These operations form a
critical path cp of length g.

Simplified Nopt1 neighborhood
The neighborhood used for the local search is based on the one defined as Noptl in
Mastrolilli & Gambardella (2000). Given a critical path ¢p, in the original neighborhood

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 15/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 General description of the TS.

Result: Best smart-cell

Take a smart-cell as initial solution;

Take the operations and their machine assignments from a critical path of the smart-cell;

Initialize TS (empty list of operations/machines, iteration number T, for the TS, and tabu threshold
T.);

Set new_solution = smart_cell;

for T, iterations do

Generate new neighborhoods of new_solution modifying only the assigned machines to the
critical operations;

Select the best_neighbor;

if best_neighbor holds the aspiration criterion or is not tabu then

Set best_neighbor as new_solution;

else

Select the oldest tabu neighbor as new_solution;
end
Continue the TS from this new_solution;

Update the TS list by setting the selected entry operation/machine with the sum of the threshold

T, plus the current iteration, increasing the number of iterations;
end

Return the best new_solution as new smart-cell;

Noptl, for each operation in cp, a set of preceding and succeeding operations can be found
in each feasible machine, such that a new placement of the operation between these
operations on the new machine optimizes the makespan. The calculation of Noptl
depends on the review of the start and tail times of the operations programmed in each
machine, implying an almost constant computational time. When this operation is
performed several times (such as in a meta-heuristic algorithm), the computational time
can increase considerably, especially if the number of jobs and machines is large and the
system has high flexibility.

In this work, it is proposed to use a simplification of the Noptl neighborhood, where a
search for the best position is not carried out to accommodate each operation in a new
feasible machine, but its machine assignment is just changed in the string MS, preserving
the position in the string OS. The idea is that the global search operations applied in the
neighborhood based on cellular automata (insertion, swapping, and PR) are capable of
finding this optimal assignment as the optimization algorithm advances, especially for
systems with greater flexibility, where more machines are capable of processing the same
operation. Thus, the objective is to avoid carrying out the operations that explicitly seek to
accommodate an operation on a machine and directly take the position that is being
refined by the global neighborhood’s operations.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 16/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Y 1

Input Update tabu table with entry
smart-cell s (operation,machine)=
and let v=s iteration umber+ threshold

Set empty tabu table,

tabu iteration and v=s’ —
tabu threshold

s’ is the oldest tabu
solution?

Tabu iteration
completed?

Calculate random critical
path (cp) of v

v

Simplified Nop11
neighborhood:
Take every
operation in cp and
change de current
machine for every
possible alternative.
Select the new
solution s’ with best
estimated
makespan

NEED

Figure 8 TS applied to the local search process of the GLNSA.
Full-size Kal DOI: 10.7717/peerj-cs.574/fig-8

s’is not tabu?

s’ holds aspiration
criteria?

There are more optimal job placement positions for systems with high flexibility, given
the greater availability of feasible machines, so this simplification focuses on showing that
good results can be obtained with a reduced process for this type of FJSP instance.

Parameters of the GLNSA

The following are the parameters of the proposed algorithm:

e Number of iterations for the whole optimization process: G,,.

o Number of smart-cells: S,,.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 17/32

http://dx.doi.org/10.7717/peerj-cs.574/fig-8
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Global neighborhood size: I.

Probabilities ay, a5, and ap for insertion, swapping, and PR, respectively, and probability

ays for mutation.

Maximum number of stagnation iterations: S.

Proportion of elitist solutions: E,.

Number of tabu iterations for every optimization iteration: T,.
Tabu threshold: T,,.

Parameter tuning

A preliminary study was carried out considering different values of the GLNSA
parameters. They were applied to the same problem using a similar number of iterations to
select the best parameters applied to instances of FJSP with high flexibility.

For the population size S,,, the number of iterations G,, and the mutation probability
& the results presented in Gonzdlez, Vela ¢ Varela (2015) and Li ¢» Gao (2016) are taken
as a basis, since they are recent works that show great effectiveness both in the makespan
calculation as well as in the runtime for FJSP instances.

For G,, values of 200 and 250 were tested. Also, while S,, is taken between 20 and 100 in
Gonzilez, Vela & Varela (2015) and defined as 400 in Li ¢ Gao (2016), we tested S,,
between 40 and 80.

The number of neighborsithat each smart-cell has in our algorithm to generate the
global search neighborhood was tested with values between 2 and 3, in order to preserve a
population close to 250 solutions at most (number of smart-cells by number of neighbors)
and keep a computational execution close to the cited references. To form the global
neighborhood, the probability combinations (a;, as, ap) with respective values
(0.5,0.25,0.25), (0.25,0.5,0.25) and (0.25,0.25, 0.5) were tested. The mutation probability
oy was taken with values 0.1 and 0.2.

To control the stagnation limit S, the value proposed by Li ¢ Gao (2016) is taken to test
Sp with values 20 and 40, and for the elitist proportion of solutions, a value of E, of 0.025
and 0.05 is considered.

Without a doubt, the TS is the most computationally expensive process that the
proposed algorithm has. In Gonzilez, Vela ¢ Varela (2015), the execution of the TS is
tested up to 10,000 iterations per solution. In Li ¢» Gao (2016), this number goes up to
about 80,000 times per solution, of course, with different ways of creating solutions and
estimating the makespan. Our algorithm uses the makespan estimation developed in
Mastrolilli & Gambardella (2000) during the TS to reduce the computational time of the
optimization process.

In our algorithm, we take a point of view similar to Li ¢» Gao (2016), using an increasing
number of iterations of TS, as the number of iterations of the optimization process
grows. For each iteration i, T, * i TS iterations will be taken for each smart-cell, where T,
values of 1 and 2 are tested to keep a maximum TS close to 60,000 iterations per smart-cell.
Altogether, it took 384 different combinations of parameters to tune the GLNSA.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 18/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Optimization of LA31 instance

2400

2300

2200

2100

Makespan
N
o
o
o

1900 B
1800 .
1700 i
1600 .
1500 1 1 1 1 1 1 1
20 40 60 80 100 120 140
Iteration

Figure 9 Behavior of the makespan with tuned parameters for the la31-vdata instance.
Full-size K&l DOT: 10.7717/peerj-cs.574/fig-9

For this preliminary tuning study, we took the problem /a31 with more flexibility
(known as part of the vdata set), initially proposed by Hurink, Jurisch & Thole (1994), and
downloaded from https:/people.idsia.ch/monaldo/fjsp.html. From the tuning study, the
parameters G, = 250, S, = 40, [= 2, a; = 0.5, ag = 0.25, ap = 0.25, ap; = 0.1, S, = 40;

E, =0.025 and T}, = 1 were selected as the most appropriate values to apply the GLNSA.

The threshold used in the tabu list for each entry (operation/machine) consists of
the sum of the length of the random critical path plus the number of feasible machines
that can perform the corresponding operation. This criterion was also proposed in
Mastrolilli & Gambardella (2000) and has been widely used by similar algorithms.

Figure 9 shows the convergence of the makespan by applying the GLNSA to the
parameters indicated above on the instance la31-vdata. The implementation was
developed in Matlab (the implementation characteristics and computational experiments
are specified in detail in the next section), and the execution time was 56 s.

EXPERIMENTAL RESULTS

The GLNSA was implemented in Matlab R2015a (TM) on a 2.3 GHz Intel Xeon W
machine and with 128 GB of RAM. The GLNSA was compared with other nine algorithms,
proposed between 2015 and 2020, to show the effectiveness of the proposed method.
These algorithms are the efficient PSO and gravitational search algorithm (ePSOGSA)
(Bharti & Jain, 2020), the greedy randomized adaptive search procedure (GRASP)

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 19/32

https:/people.idsia.ch/monaldo/fjsp.html
http://dx.doi.org/10.7717/peerj-cs.574/fig-9
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

(Baykasoglu, Madenoglu & Hamzaday, 2020), the HA (Li & Gao, 2016), the improved Jaya
algorithm (IJA) (Caldeira ¢» Gnanavelbabu, 2019), the self-learning GA (SLGA) (Chen
et al., 2020), the scatter search with PR algorithm (SSPR) (Gonzidlez, Vela ¢ Varela, 2015),
the teaching-learning-based optimization (TLBO) (Buddala ¢» Mahapatra, 2019), the
two-level PSO (TIPSO) (Zarrouk, Bennour ¢ Jemai, 2019), and the VNS-based GA
(VNSGA) (Zhang et al., 2019).

To test the efficiency of the GLNSA, 4 benchmark datasets commonly used in the FJSP
literature were taken, each with a different number of instances. The flexibility of each
instance was weighted with a rate = (flexibility average/number of machines). The rate f3
is between 0 and 1. A higher value indicates that more machines can perform more
different operations. The first dataset is the Kacem dataset (Kacem, Hammadi ¢ Borne,
2002a; Kacem, Hammadi ¢» Borne, 2002b), with 5 instances of different characteristics and
4 with 8 = 1. In other words, all machines can perform all operations, showing a system
with total flexibility. The second benchmark dataset is the Brandimarte dataset
(Brandimarte, 1993), with 10 instances of partial flexibility (8 < 1). The last dataset is the
Hurink dataset (Hurink, Jurisch & Thole, 1994), from which two groups of 43 problems
each are taken, the first with low partial flexibility and the second with high partial
flexibility. These four datasets make a total of 101 different instances to test and compare
the efficiency of the GLNSA. For the Kacem and Brandimarte benchmarks, almost all
the referenced algorithms present results, but only a few for all the instances. For the
Hurink benchmark, only four algorithms present results (ePSOGSA, HA, IJA, and SSPR),
against which the GLNSA is compared for this case.

Comparative analysis of computational complexity between
algorithms

Since it is difficult to compare the execution time of each of these algorithms since they
were tested in different architectures, languages, and programming skills, these algorithms
are compared based on their computational complexity O(o), taking as a reference the
total number of operations 0 = >, Z}’;l O;j to be processed for an instance of the FJSP.
To generalize the way of measuring each algorithm’s complexity, we will use the notation
defined for the GLNSA parameters; the number of iterations will be denoted by G,, and
the number of solutions handled by each algorithm will be defined by X, which in the case
of the GLNSA is X = S, For the local search each algorithm applies, the number of
iterations is expressed with T, and for the number of machines, m will be used.

The ePSOGSA first uses a modified PSO to update each individual by rate or mutation,
then applies a modified GSA to obtain an extended population and sort a final population.
The ePSOGSA does not use an iterative local search based on the calculation of critical
paths. The GRASP algorithm constructs an optimized Gantt chart and then applies a
greedy local search that is quadratic concerning the number of operations. The HA has an
architecture similar to the GLNSA proposed in this work, and first applies four types of
genetic operators to each solution. Then, HA applies a TS that is supported by calculating
the critical path and selecting different machines for each operation. The IJA uses a
modified Java algorithm that applies three change operators to each solution and then, in

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 20/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Algorithms used in the experiments and their computational complexity.

Algorithm Complexity Rank
SLGA O(0(G,5X)) 1
ePSOGA O(0(G,8X) + XlogX) 2
TIPSO 0(0(G,2X) + G,2X))) 3
SSPR O(o(XT,m + Gn(X + T,m))) 4
GLNSA O(0(Gu(Sy + X + Sy Tum))) 5
IJA O(0(G,(3X + XT,m)) 6
HA O(0(G,(4X + XT,m))) 7
TLBO O(0(G,(4X + XT,m) 7
VNSGA O(O(Gn(3X + 4XT,m))) 8
GRASP O(0*(G, x Ty,)) 9

the same cycle, a local search to all individuals based on the critical path and random
exchange of critical blocks in the machines, obtaining a complexity very similar to HA. The
SLGA uses two genetic operators for each individual and then uses greedy reinforcement
learning based on selecting suitable individuals and two types of actions that also do
not need to calculate a critical path. The SSPR algorithm also has a similar structure to HA
and GLNSA. It first uses a TS for each individual and then uses PR between two pairs
of solutions iteratively to obtain a new individual, which is again improved by a TS based
on the critical path calculation. The SSPR also employs a diversification phase when all
pairs of individuals have been selected for the PR. The TLBO algorithm is based on a
teaching-learning algorithm that uses real coding that utilizes three learning rules and
must review the feasibility of the solutions. It also applies a local search based on the
exchange of critical operations and their change of machines. The TIPSO algorithm applies
two modifications to the PSO in order to optimize the routing problem in the first stage,
and within this stage, optimizes the machine assignment problem with another PSO.
The last algorithm taken for comparison was the VNSGA, which first applies three genetic
operators to each individual and then performs a local search based on the critical path
of each solution where processing-time conditions are detected for four neighborhood
types available for the machines assigned to each solution.

Finally, the algorithm proposed in this work (GLNSA) performs an elitist selection
of solutions, then a search for / based on simple operators such as insertion, swapping, PR,
and machine mutation on the set of S,, smart-cells and then a TS only on S, smart-cells.
Since S, < X, the GLNSA performs less computation for the local search.

Table 1 presents the algorithms used for comparison in this work ordered depending on
their complexity, taking as a reference that S, < X <T,, since in the algorithms that apply a
local search, a high value of T, is usually chosen for best results. We can see that the
GLNSA has a competitive computational complexity compared to state-of-art algorithms
recently proposed in the literature for the FJSP.

It should be noted that this analysis only considers the computational complexity
required to manipulate and modify the scheduling and routing of the sequences of
operations of an FJSP instance. The computational complexity for the makespan

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 21/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Experimental results for the Kacem instances.

Instance n x m B ePSOGA GLNSA GRASP HA IJA SLGA TLBO TIPSO VNSGA
K1 4x5 1 11 11 - - 11 11 11 11 -

K2 8§ x8 0.81 - 14 14 14 14 14 14 14 14

K3 10 x 7 1 - 11 - - 11 11 11 - -

K4 10 x 10 1 7 7 7 7 7 - 7 7 7

K5 15 x 10 1 11 11 11 11 11 - 13 - 11

calculation is O(0?) and the makespan estimation taking into account only critical
operations is bounded by O(0). These processes are not contemplated in the analysis
presented since all the algorithms use these operations, and we only focus on the study of
the computational process that distinguishes each algorithm.

First experiment, Kacem instances

Table 2 presents the GLNSA results and the comparison with algorithms that present
results for the Kacem benchmark. n represents the number of jobs and m the number of
machines, in addition to the flexibility rate 3 of each instance. This benchmark dataset
is characterized by its high flexibility and starts from instances with low dimensionality to
instances with a greater number of jobs and machines.

For this benchmark, only the IJA and TLBO algorithms report complete results
(Caldeira & Gnanavelbabu, 2019; Buddala & Mahapatra, 2019). In this experiment, the
GLNSA obtains the best-known results for the makespan value in all cases, like the IJA,
and improves the TLBO for the K5 instance with greater dimensionality. This experiment
corroborates the excellent performance of the GLNSA for problems with a high rate of
flexibility f.

Second experiment, Brandimarte instances

To compare the results of the nine algorithms in this benchmark, the relative percentage
deviation (RPD) is defined in Eq. 7.

BOV — BKV o
BOV

RPD = 100 (7)
where BOV is the best value obtained by the algorithm, and BKV is the best-known value
for each instance, in the Brandimarte benchmark, and the best-reported values are
taken from Chen et al. (2020). Table 3 presents the results of the GLNSA and its
comparison with the other algorithms. In this table, the rate 8 of each instance is presented,
which varies from 0.15 to 0.35. All cases have partial flexibility. The best makespan
obtained by any of the algorithms is indicated with a *. In this experiment, it can be
observed that the GLNSA obtains the best makespan 6 times, only behind the ePSOGA
and the SSPR, and shares the number of best results obtained with the GRASP, HA, and
TIPSO algorithms.

Table 4 presents the average RPD of each algorithm in the 10 instances and the ranking
of each algorithm, taking the average RPD as a reference. The GLNSA is seen to obtain the

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 22/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Experimental results for the Brandimarte instances.

Instance nxm B BKV ePSOGA GLNSA GRASP HA IJA SLGA SSPR TLBO TIPSO VNSGA
MKO01 10 x 6 0.2 36 40 40 40 40 40 40 40 39 40 40
MKO02 10 x 6 0.35 24 26 26" 26" 26" 27 27 26" 27 26* 27
MKO03 15x 8 0.3 204 204* 204* 204* 204* 204* 204* 204* 204% 204* 204*
MKO04 15%x 8 0.2 48 60" 60" 60" 60" 60" 60" 60" 63 60" 60"
MKO05 15x 4 0.15 168 170* 173 172 172 172 172 172 172 173 173
MKO06 10 x 15 0.3 33 56* 58 64 57 57 69 57 65 60 58
MKO07 20x 5 0.3 133 139* 139* 139" 139" 139" 144 139* 144 139* 144
MKO08 20 x 10 0.15 523 523* 523% 523* 523* 523* 523* 523* 523* 523* 523*
MKO09 20 x 10 0.3 299 307" 307 307* 307* 307* 320 307" 311 307 307*
MK10 20 x 15 0.2 165 196" 205 205 197 197 254 196" 214 205 198
Note:

“ Best obtained makespan.

Table 4 Average RPD and Friedman test for Brandimarte instances.

Algorithm: ePSOGA GLNSA GRASP HA IJA SLGA SSPR TLBO TIPSO VNSGA p value
Average RPD: 10.2679 11.0121 11.4890 10.5289 10.8708 14.4851 10.4862 13.4046 11.3128 11.0597 0.0003
Rank: 1 5 8 3 4 10 2 9 7 6

fifth position among the algorithms taken for comparison, which shows its
competitiveness with state-of-the-art algorithms for this benchmark.

A non-parametric Friedman test was performed with the RPD values in all instances to
corroborate whether there is a statistically significant comparison between the results
obtained by all the algorithms (Derrac et al., 2011). The result of the Friedman test is
observed in the last column of Table 4 with a value of p = 0.0003, which is less than the
significant level of 0.05 to reject the null hypothesis that algorithms behave statistically
similarly. The p value demonstrates significant differences in the performance of the 10
algorithms, showing the GLNSA’s competitiveness to optimize this benchmark.

Third experiment, Hurink instances with low flexibility

This experiment takes 43 instances from the Hurink benchmark (rdata) with low
flexibility, whose rate 8 < 0.4. The results of the GLNSA are compared taking the BKV's of
every instance as reported in Li ¢» Gao (2016). Table 5 shows the comparison of the
GLNSA with the previous algorithms that report results for this benchmark (ePSOGA,
HA, IJA, and SSPR); the ePSOGA only reports 15 results from the 43 instances, so only
these results were taken to complete the comparative analysis. The results marked with *
are the best obtained among the five algorithms.

Table 6 presents the average RPD of the algorithms that report complete results for the
43 instances and the ranking of each algorithm, taking the average RPD as a reference.
The GLNSA is seen to obtain the fourth position among the algorithms taken for
comparison, and the Friedman test obtains a value of p = 0.000000002, which is less than

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 23/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Experimental results for the Hurink-rdata instances.

Instance nxm B BKV ePSOGSA GLNSA HA IJA SSPR
mt06 6x6 0.33 47 - 47" 47" 47" 47"
mtl0 10 x 10 0.2 686 - 686 * 686 686" 686"
mt20 20x 5 0.4 1,022 - 1,022 * 1,024 1,024 1,022*
la01 10 x 5 0.4 570 572 571 570 * 571 571
la02 10 x5 0.4 529 529* 530 530 530 530
la03 10 x5 0.4 477 478 477* 477* 477* 477*
la04 10 x 5 0.4 502 502* 502* 502* 502" 502*
la05 10 x5 0.4 457 457~ 457~ 457" 457~ 457~
1a06 15x5 0.4 799 800 799* 799* 799* 799*
la07 15%x5 0.4 749 750 749* 749* 749* 749*
1a08 15x5 0.4 765 765" 765" 765" 765" 765"
1a09 15x5 0.4 853 853" 853" 853" 853" 853"
lal0 15%x5 0.4 804 805 804~ 804~ 804" 804"
lall 20x 5 0.4 1,071 1,071% 1,071% 1,071% 1,071% 1,071%
la12 20x5 0.4 936 936" 936 * 936" 936" 936"
lal3 20x 5 0.4 1,038 1,038* 1,038 1,038* 1,038 1,038
la14 20 x5 0.4 1,070 1,070* 1,070* 1,070* 1,070* 1,070*
lal5 20x5 0.4 1,089 1,090 1,089* 1,090 1,090 1,089%
lal6 10 x 10 0.2 717 - 717* 717* 717* 717*
lal7 10 x 10 0.2 646 - 646" 646" 646" 646"
la18 10 x 10 0.2 666 - 666" 666" 666" 666"
lal9 10 x 10 0.2 647 - 700" 700" 702 700*
1a20 10 x 10 0.2 756 - 756" 756" 760 756"
la21 15 x 10 0.2 808 - 852 835 854 830"
la22 15 x 10 0.2 737 - 774 760 760 756"
la23 15 x 10 0.2 816 - 854 840 852 835"
la24 15 x 10 0.2 775 - 826 806 806 802"
la25 15 x 10 0.2 752 - 803 789 803 784"
la26 20 x 10 0.2 1,056 - 1,075 1,061 1,061 1,059%
la27 20 x 10 0.2 1,085 - 1,109 1,089* 1,109 1,089*
la28 20 x 10 0.2 1,075 - 1,096 1,079 1,081 1,078
la29 20 x 10 0.2 993 - 1,008 997 997 996*
1a30 20 x 10 0.2 1068 - 1,096 1,078 1,078 1,074*
la31 30 x 10 0.2 1520 - 1,527 1,521 1,521 1,520
la32 30 x 10 0.2 1,657 - 1,667 1,659 1,659 1,658
la33 30 x 10 0.2 1,497 - 1,504 1,499 1,499 1,498
la34 30 x 10 0.2 1,535 - 1,540 1,536 1,536 1,535*
la35 30 x 10 0.2 1,549 - 1,555 1,550* 1,555 1,550*
la36 15 x 15 0.13 1,016 - 1,053 1,028 1,050 1,023*
la37 15 x 15 0.13 989 - 1,093 1,074 1,092 1,069
la38 15 x 15 0.13 943 - 999 960" 995 961
la39 15 x 15 0.13 966 - 1,034 1,024* 1,031 1,024*
la40 15 x 15 0.13 955 - 997 970 993 961*
Note:
* Best obtained makespan.
Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 24/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Average RPD and Friedman test for all the Hurink-rdata instances.

Algorithm: GLNSA HA IJA SSPR p value
Average RPD: 1.7768 1.0872 1.5155 0.9566 0.000000002
Rank: 4 2 3 1

Table 7 Average RPD and Friedman test for the Hurink-rdata instances with greater flexibility.

Algorithm: ePSOGSA GLNSA HA IJA SSPR p value
Average RPD: 0.0689 0.0243 0.0187 0.0304 0.0243 0.0339
Rank: 5 2 1 4 3

the significant level of 0.05, proving that there are significant differences in the
performance of the 4 algorithms. The low competitiveness of the GLNSA with respect to
the other algorithms can be explained by the results in instances la21 to la40, which
correspond to the examples with higher dimensionality (number of jobs and machines)
and lower flexibility. This is expected given the functioning of the GLNSA that is focused
on resolving FJSP instances with a higher rate f.

However, if we analyze only the problems with greater flexibility (la01 to lal5) to
consider the ePSOGSA algorithm and do the same average RPD examination and
Friedman test, we obtain the result shown in Table 7. For these instances with more
flexibility, the GLNSA ranks second among the 5 algorithms with a value of p = 0.0339,
which is less than the significant level of 0.05, demonstrating significant differences in
performance of the 5 algorithms for these instances. The preceding results corroborate the
efficiency of the GLNSA to optimize FJSP instances with high flexibility.

Fourth experiment, Hurink instances with greater flexibility

The fourth experiment takes 43 instances of the Hurink-vdata benchmark with rate § =
0.5, indicating that an operation can be processed by around half the machines, already
implying a high degree of flexibility. The results of the GLNSA are compared with the
algorithms taken before that report results for this benchmark (HA, IJA, and SSPR) in
Table 8, taking the BKV's for statistical analysis again from Li ¢» Gao (2016).

Table 9 presents the average RPD of the algorithms and their ranking. According to
this average, the GLNSA obtains the third position among the algorithms taken for
comparison. Two non-parametric Friedman tests were made, one among the 4 algorithms
and the other only comparing the GLNSA with the HA, which are the ones that had the
closest values.

In Table 9, a value of p = 0.0000003 is obtained, which is less than the significant level of
0.05, proving that there are significant differences in the performance of the 4 algorithms.
However, when comparing only the GLNSA to the HA, a value of p = 0.5637 is obtained,
which rejects a significant difference between both algorithms to optimize this benchmark
dataset. This test verifies that the efficiency of the GLNSA is similar to the HA and is only
significantly below the SSPR. These results confirm the observation that the simplified

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 25/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Experimental results for the Hurink-vdata instances.

Instance nxm B BKV GLNSA HA IJA SSPR
mt06 6 X6 0.5 47 47* 47% 47% 47"
mtl0 10 x 10 0.5 655 655" 655* 655* 655"
mt20 20 x5 0.5 1022 1022* 1022* 1024 1022*
la01 10x5 0.5 570 570" 570" 571 570"
1a02 10 x5 0.5 529 529* 529* 529* 529*
1a03 10 x 5 0.5 477 477 477" 477" 477"
la04 10x5 0.5 502 502" 502* 502" 502"
1a05 10 x5 0.5 457 457* 457 457 457*
1a06 15x5 0.5 799 799 799* 799 799"
1a07 15x5 0.5 749 749* 749% 749" 749"
1a08 15x5 0.5 765 765 765% 765 765
1a09 15%5 0.5 853 853" 853" 853" 853"
la10 15x5 0.5 804 804" 804* 804" 804"
lall 20x 5 0.5 1071 1071* 1071* 1071* 1071*
la12 20 x5 0.5 936 936™ 936" 936 936"
la13 20 x5 0.5 1038 1038* 1038* 1038* 1038*
lal4 20 x5 0.5 1070 1070* 1070* 1070* 1070*
lal5 20 x5 0.5 1089 1089* 1089* 1089* 1089*
lal6 10 x 10 0.5 717 717% 717% 717* 717*
la17 10 x 10 0.5 646 646" 646" 646" 646"
la18 10 x 10 0.5 663 663" 663" 665 663"
la19 10 x 10 0.5 617 617* 617* 618 617*
1a20 10 x 10 0.5 756 756" 756* 758 756"
la21 15 x 10 0.5 800 806 804" 806 804"
la22 15 x 10 0.5 733 737% 738 738 738
la23 15 x 10 0.5 809 813 813 813 812"
la24 15 x 10 0.5 773 777 777 778 775"
la25 15x 10 0.5 751 754 754* 754" 754"
la26 20 x 10 0.5 1052 1054 1053* 1054 1053*
la27 20 x 10 0.5 1084 1085 1085 1085 1084*
l1a28 20 x 10 0.5 1069 1070 1070 1070 1069*
la29 20 x 10 0.5 993 994* 994 994" 994"
1a30 20 x 10 0.5 1068 1069* 1069* 1069* 1069*
la31 30 x 10 0.5 1520 1520* 1520* 1521 1520*
la32 30 x 10 0.5 1657 1658* 1658* 1658* 1658*
la33 30 x 10 0.5 1497 1497 1497 1497 1497
la34 30 x 10 0.5 1535 1535* 1535* 1535* 1535*
la35 30 x 10 0.5 1549 1549* 1549* 1549* 1549*
la36 15 x 15 0.5 948 948* 948" 950 948~
la37 15 x 15 0.5 986 986* 986* 986* 986*
1a38 15 x 15 0.5 943 943* 943" 943* 943~
l1a39 15 x 15 0.5 922 922 922% 9227 922
1a40 15 x 15 0.5 955 955* 955* 956 955*
Note:
* Best obtained makespan.
Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 26/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Table 9 Average RPD for the Hurink-rdata instances and Friedman test comparing all the
algorithms and the GLNSA with the HA.

Algorithm: GLNSA HA IJA SSPR p value all algorithms p value GLNSA vs HA

Average RPD: 0.0772 0.0724 0.1177 0.0593 0.0000003 0.5637
Rank: 3 2 4 1

Noptl neighborhood works adequately for problems with greater flexibility. From the
results of the four sets of experiments, the GLNSA has obtained results comparable with
state-of-art algorithms and with a competitive computational complexity, especially for
problems with a high rate of flexibility.

CONCLUSIONS AND FURTHER WORK

This work has presented an algorithm that performs a global search with smart-cells using
a cellular automaton-like neighborhood where individual operators such as insert and
swapping are used, along with an operator like PR, to share information between solutions.
These operators are primarily focused on optimizing the scheduling of operations.

The local search on the GLNSA performs a TS to find the best assignment of machines
for each operation. Another contribution of this work is that a simplified neighborhood
based on Noptl is proposed, where the feasible machine of a critical operation is modified
without explicitly finding the optimal allocation of the operation, since this is left to
global search operations, which is suitable for FJSP instances with high rate of flexibility.

The cellular automaton-like neighborhood allows this type of operations to be carried
out concurrently and in a balanced way, which provides an equilibrium between the
exploration and exploitation of the GLNSA and allows the use of a lower number of
smart-cells compared to other algorithms, as well as a lower number of iterations of the TS,
which is reflected in a lower computational complexity.

Four well-known benchmarks (including 101 instances) were used to develop the
GLNSA’s computational experimentation. The results obtained show good performance
compared to the algorithms taken as a reference.

The GLNSA represents a new way of solving task scheduling, which can be applied to
other types of problems, such as the Flowshop, the Job Shop, or the Open Shop Scheduling
Problem, where cellular automaton-like neighborhoods can be applied to make
concurrent exploration and exploitation actions.

For possible future work, we propose to use other operations, such as two-point, POX,
or JBX crossovers, or other types of mutations, for global search. Other types of local search
strategies such as climbing algorithms with restarts can also be used. Also, other
simplifications of the Noptl neighborhood can be investigated to treat problems with less
flexibility.

Finally, the GLNSA approach that uses a cellular automaton-like neighborhood can also
be extended to investigate its effectiveness in optimizing multi-objective manufacturing
problems.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 27/32

http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This study was supported by the National Council for Science and Technology
(CONACYT) with project number CB- 2017-2018-A1-S-43008, and Nayeli J. Escamilla
Serna was supported by CONACYT with grant number 1013175. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Council for Science and Technology (CONACYT): CB- 2017-2018-A1-S-43008.
CONACYT: 1013175.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Nayeli Jazmin Escamilla Serna performed the experiments, analyzed the data, performed
the computation work, prepared figures and/or tables, and approved the final draft.

e Juan Carlos Seck-Tuoh-Mora conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

o Joselito Medina-Marin analyzed the data, performed the computation work, authored or
reviewed drafts of the paper, and approved the final draft.

e Norberto Hernandez-Romero conceived and designed the experiments, performed the
experiments, prepared figures and/or tables, and approved the final draft.

e Irving Barragan-Vite conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.

e Jose Ramon Corona Armenta analyzed the data, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File, and the code and test problem are also
available at GitHub: https://github.com/juanseck/GLNSA-FJSP-2020.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.574#supplemental-information.

REFERENCES

Adamatzky A. 2010. Game of life cellular automata. Vol. 1. Berlin: Springer.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 28/32

http://dx.doi.org/10.7717/peerj-cs.574#supplemental-information
https://github.com/juanseck/GLNSA-FJSP-2020
http://dx.doi.org/10.7717/peerj-cs.574#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.574#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Ahmadi E, Zandieh M, Farrokh M, Emami SM. 2016. A multi objective optimization approach
for flexible job shop scheduling problem under random machine breakdown by evolutionary
algorithms. Computers & Operations Research 73(2):56-66 DOI 10.1016/j.cor.2016.03.009.

Amiri M, Zandieh M, Yazdani M, Bagheri A. 2010. A variable neighbourhood search algorithm
for the flexible job-shop scheduling problem. International Journal of Production Research
48(19):5671-5689 DOI 10.1080/00207540903055743.

An Y, Chen X, Li Y, Han Y, Zhang J, Shi H. 2021. An improved non-dominated sorting
biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop
scheduling problem. Applied Soft Computing 99(C):106869 DOI 10.1016/j.as0¢.2020.106869.

Baykasoglu A, Madenoglu FS, Hamzaday A. 2020. Greedy randomized adaptive search for
dynamic flexible job-shop scheduling. Journal of Manufacturing Systems 56:425-451.

Bharti P, Jain S. 2020. Hybrid frameworks for flexible job shop scheduling. The International
Journal of Advanced Manufacturing Technology 108(5-6):1563-1585
DOI 10.1007/s00170-020-05398-4.

Bilan SM, Bilan MM, Motornyuk RL. 2020. New methods and paradigms for modeling dynamic
processes based on cellular automata. Hershey: IGI Global.

Blazewicz J, Domschke W, Pesch E. 1996. The job shop scheduling problem: conventional and
new solution techniques. European Journal of Operational Research 93(1):1-33.

Brandimarte P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations research 41(3):157-183 DOI 10.1007/BF02023073.

Brucker P, Schlie R. 1990. Job-shop scheduling with multi-purpose machines. Computing
45(4):369-375 DOI 10.1007/BF02238804.

Buddala R, Mahapatra SS. 2019. An integrated approach for scheduling flexible job-shop using
teaching-learning-based optimization method. Journal of Industrial Engineering International
15(1):181-192 DOI 10.1007/s40092-018-0280-8.

Caldeira RH, Gnanavelbabu A. 2019. Solving the flexible job shop scheduling problem using an
improved jaya algorithm. Computers & Industrial Engineering 137(4):106064
DOI 10.1016/j.cie.2019.106064.

Chang H-C, Chen Y-P, Liu T-K, Chou J-H. 2015. Solving the flexible job shop scheduling
problem with makespan optimization by using a hybrid taguchi-genetic algorithm. IEEE Access
3:1740-1754 DOI 10.1109/ACCESS.2015.2481463.

Chaudhry IA, Khan AA. 2016. A research survey: review of flexible job shop scheduling
techniques. International Transactions in Operational Research 23(3):551-591
DOI 10.1111/itor.12199.

Chen R, Yang B, Li S, Wang S. 2020. A self-learning genetic algorithm based on reinforcement
learning for flexible job-shop scheduling problem. Computers ¢ Industrial Engineering
149(1993):106778 DOI 10.1016/j.cie.2020.106778.

Cheng R, Gen M, Tsujimura Y. 1999. A tutorial survey of job-shop scheduling problems using
genetic algorithms, part ii: hybrid genetic search strategies. Computers & Industrial Engineering
36(2):343-364 DOI 10.1016/50360-8352(99)00136-9.

Dalfard VM, Mohammadi G. 2012. Two meta-heuristic algorithms for solving multi-objective
flexible job-shop scheduling with parallel machine and maintenance constraints. Computers &
Mathematics with Applications 64(6):2111-2117 DOI 10.1016/j.camwa.2012.04.007.

Deng Q, Gong G, Gong X, Zhang L, Liu W, Ren Q. 2017. A bee evolutionary guiding
nondominated sorting genetic algorithm ii for multiobjective flexible job-shop scheduling.
Computational Intelligence and Neuroscience 2017(1):1-20 DOI 10.1155/2017/5232518.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 29/32

http://dx.doi.org/10.1016/j.cor.2016.03.009
http://dx.doi.org/10.1080/00207540903055743
http://dx.doi.org/10.1016/j.asoc.2020.106869
http://dx.doi.org/10.1007/s00170-020-05398-4
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1007/BF02238804
http://dx.doi.org/10.1007/s40092-018-0280-8
http://dx.doi.org/10.1016/j.cie.2019.106064
http://dx.doi.org/10.1109/ACCESS.2015.2481463
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1016/j.cie.2020.106778
http://dx.doi.org/10.1016/S0360-8352(99)00136-9
http://dx.doi.org/10.1016/j.camwa.2012.04.007
http://dx.doi.org/10.1155/2017/5232518
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Deroussi L, Gourgand M, Norre S. 2006. New effective neighborhoods for the permutation flow
shop problem. Technical report. Available at https://hal.archives-ouvertes.fr/hal-00678053/.

Derrac J, Garcia S, Molina D, Herrera F. 2011. A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation 1(1):3-18.

Gao J, Sun L, Gen M. 2008. A hybrid genetic and variable neighborhood descent algorithm for
flexible job shop scheduling problems. Computers ¢~ Operations Research 35(9):2892-2907
DOI 10.1016/j.cor.2007.01.001.

Gao K, Cao Z, Zhang L, Chen Z, Han Y, Pan Q. 2019. A review on swarm intelligence and
evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA Journal of
Automatica Sinica 6(4):904-916 DOI 10.1109/JAS.2019.1911540.

Glover F, Laguna M. 1998. Tabu search. In: Handbook of Combinatorial Optimization. Berlin:
Springer, 2093-2229.

Glover FW, Kochenberger GA. 2006. Handbook of metaheuristics. Vol. 57. Berlin: Springer
Science & Business Media.

Gong G, Deng Q, Gong X, Liu W, Ren Q. 2018. A new double flexible job-shop scheduling
problem integrating processing time, green production, and human factor indicators. Journal of
Cleaner Production 174(5):560-576 DOI 10.1016/j.jclepro.2017.10.188.

Gonzalez MA, Vela CR, Varela R. 2015. Scatter search with path relinking for the flexible job shop
scheduling problem. European Journal of Operational Research 245(1):35-45
DOI 10.1016/j.¢jor.2015.02.052.

Hernandez-Gress ES, Seck-Tuoh-Mora JC, Hernandez-Romero N, Medina-Marn J,
Lagos-Eulogio P, Ortz-Perea J. 2020. The solution of the concurrent layout scheduling problem
in the job-shop environment through a local neighborhood search algorithm. Expert Systems
with Applications 144(1):113096 DOI 10.1016/j.eswa.2019.113096.

Huang X, Yang L. 2019. A hybrid genetic algorithm for multi-objective flexible job shop
scheduling problem considering transportation time. International Journal of Intelligent
Computing and Cybernetics 12(2):154-174 DOI 10.1108/IJICC-10-2018-0136.

Hurink J, Jurisch B, Thole M. 1994. Tabu search for the job-shop scheduling problem with multi-
purpose machines. Operations-Research-Spektrum 15(4):205-215 DOI 10.1007/BF01719451.

Kacem I, Hammadi S, Borne P. 2002a. Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 32(1):1-13
DOI 10.1109/TSMCC.2002.1009117.

Kacem I, Hammadi S, Borne P. 2002b. Pareto-optimality approach for flexible job-shop
scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics
and Computers in Simulation 60(3-5):245-276 DOI 10.1016/S0378-4754(02)00019-8.

Kato ERR, de Aguiar Aranha GD, Tsunaki RH. 2018. A new approach to solve the flexible job
shop problem based on a hybrid particle swarm optimization and random-restart hill climbing.
Computers & Industrial Engineering 125(4):178-189 DOI 10.1016/j.cie.2018.08.022.

Kefalas M, Limmer S, Apostolidis A, Olhofer M, Emmerich M, Bick T. 2019. A tabu search-
based memetic algorithm for the multi-objective flexible job shop scheduling problem. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion. 1254-1262.

Lagos-Eulogio P, Seck-Tuoh-Mora JC, Hernandez-Romero N, Medina-Marin J. 2017. A new
design method for adaptive iir system identification using hybrid cpso and de. Nonlinear
Dynamics 88(4):2371-2389 DOI 10.1007/s11071-017-3383-7.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 30/32

https://hal.archives-ouvertes.fr/hal-00678053/
http://dx.doi.org/10.1016/j.cor.2007.01.001
http://dx.doi.org/10.1109/JAS.2019.1911540
http://dx.doi.org/10.1016/j.jclepro.2017.10.188
http://dx.doi.org/10.1016/j.ejor.2015.02.052
http://dx.doi.org/10.1016/j.eswa.2019.113096
http://dx.doi.org/10.1108/IJICC-10-2018-0136
http://dx.doi.org/10.1007/BF01719451
http://dx.doi.org/10.1109/TSMCC.2002.1009117
http://dx.doi.org/10.1016/S0378-4754(02)00019-8
http://dx.doi.org/10.1016/j.cie.2018.08.022
http://dx.doi.org/10.1007/s11071-017-3383-7
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Li J-q, Pan Q-k, Liang Y-C. 2010. An effective hybrid tabu search algorithm for multi-objective
flexible job-shop scheduling problems. Computers & Industrial Engineering 59(4):647-662
DOI 10.1016/j.cie.2010.07.014.

Li J-Q, Pan Q-K, Tasgetiren MF. 2014. A discrete artificial bee colony algorithm for the multi-
objective flexible job-shop scheduling problem with maintenance activities. Applied
Mathematical Modelling 38(3):1111-1132 DOI 10.1016/j.apm.2013.07.038.

Li X, Gao L. 2016. An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. International Journal of Production Economics 174(19):93-110
DOI 10.1016/j.ijpe.2016.01.016.

Li X, Peng Z, Du B, Guo J, Xu W, Zhuang K. 2017. Hybrid artificial bee colony algorithm with a
rescheduling strategy for solving flexible job shop scheduling problems. Computers & Industrial
Engineering 113(4):10-26 DOI 10.1016/j.cie.2017.09.005.

Li Z, Qian B, Hu R, Chang L, Yang J. 2019. An elitist nondominated sorting hybrid algorithm for
multi-objective flexible job-shop scheduling problem with sequence-dependent setups.
Knowledge-Based Systems 173(3):83-112 DOI 10.1016/j.knosys.2019.02.027.

Lin J, Zhu L, Wang Z-J. 2019. A hybrid multi-verse optimization for the fuzzy flexible job-shop
scheduling problem. Computers ¢ Industrial Engineering 127(8):1089-1100
DOI 10.1016/j.cie.2018.11.046.

Luan F, Cai Z, Wu S, Jiang T, Li F, Yang J. 2019. Improved whale algorithm for solving the
flexible job shop scheduling problem. Mathematics 7(5):384 DOI 10.3390/math7050384.

Mastrolilli M, Gambardella LM. 2000. Effective neighbourhood functions for the flexible job shop
problem. Journal of Scheduling 3(1):3-20
DOI 10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-]JOS32>3.0.CO;2-Y.

MclIntosh HV. 2009. One dimensional cellular automata. Beckington: Luniver Press.

Meng T, Pan Q-K, Sang H-Y. 2018. A hybrid artificial bee colony algorithm for a flexible job shop
scheduling problem with overlapping in operations. International Journal of Production
Research 56(16):5278-5292 DOI 10.1080/00207543.2018.1467575.

Nouiri M, Bekrar A, Jemai A, Niar S, Ammari AC. 2018. An effective and distributed particle
swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent
Manufacturing 29(3):603-615 DOI 10.1007/s10845-015-1039-3.

Pezzella F, Morganti G, Ciaschetti G. 2008. A genetic algorithm for the flexible job-shop
scheduling problem. Computers & Operations Research 35(10):3202-3212
DOI 10.1016/j.cor.2007.02.014.

Reddy MS, Ratnam C, Rajyalakshmi G, Manupati V. 2018. An effective hybrid multi objective
evolutionary algorithm for solving real time event in flexible job shop scheduling problem.
Measurement 114(5):78-90 DOI 10.1016/j.measurement.2017.09.022.

Shen L, Dauzére-Pérés S, Neufeld JS. 2018. Solving the flexible job shop scheduling problem with
sequence-dependent setup times. European Journal of Operational Research 265(2):503-516
DOI 10.1016/j.ejor.2017.08.021.

Shi X, Long W, Li Y, Deng D. 2020. Multi-population genetic algorithm with er network for
solving flexible job shop scheduling problems. PLOS ONE 15(5):¢0233759
DOI 10.1371/journal.pone.0233759.

Shi Y, Liu H, Gao L, Zhang G. 2011. Cellular particle swarm optimization. Information Sciences
181(20):4460-4493 DOI 10.1016/.ins.2010.05.025.

Sun L, Lin L, Wang Y, Gen M, Kawakami H. 2015. A bayesian optimization-based evolutionary

algorithm for flexible job shop scheduling. Procedia Computer Science 61(3):521-526
DOI 10.1016/j.procs.2015.09.207.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 31/32

http://dx.doi.org/10.1016/j.cie.2010.07.014
http://dx.doi.org/10.1016/j.apm.2013.07.038
http://dx.doi.org/10.1016/j.ijpe.2016.01.016
http://dx.doi.org/10.1016/j.cie.2017.09.005
http://dx.doi.org/10.1016/j.knosys.2019.02.027
http://dx.doi.org/10.1016/j.cie.2018.11.046
http://dx.doi.org/10.3390/math7050384
http://dx.doi.org/10.1002/(SICI)1099-1425(200001/02)3:1%3C3::AID-JOS32%3E3.0.CO;2-Y
http://dx.doi.org/10.1080/00207543.2018.1467575
http://dx.doi.org/10.1007/s10845-015-1039-3
http://dx.doi.org/10.1016/j.cor.2007.02.014
http://dx.doi.org/10.1016/j.measurement.2017.09.022
http://dx.doi.org/10.1016/j.ejor.2017.08.021
http://dx.doi.org/10.1371/journal.pone.0233759
http://dx.doi.org/10.1016/j.ins.2010.05.025
http://dx.doi.org/10.1016/j.procs.2015.09.207
http://dx.doi.org/10.7717/peerj-cs.574
https://peerj.com/computer-science/

PeerJ Computer Science

Tang H, Chen R, Li Y, Peng Z, Guo S, Du Y. 2019. Flexible job-shop scheduling with tolerated
time interval and limited starting time interval based on hybrid discrete pso-sa: an application
from a casting workshop. Applied Soft Computing 78:176-194 DOI 10.1016/j.as0¢.2019.02.011.

Toshev A. 2019. Particle swarm optimization and tabu search hybrid algorithm for flexible job
shop scheduling problem-analysis of test results. Cybernetics and Information Technologies
19(4):26-44 DOI 10.2478/cait-2019-0034.

Vela CR, Afsar S, Palacios JJ, Gonzalez-Rodrguez I, Puente J. 2020. Evolutionary tabu search for
flexible due-date satisfaction in fuzzy job shop scheduling. Computers & Operations Research
119:104931 DOI 10.1016/j.cor.2020.104931.

Wolfram S. 2002. A new kind of science. Vol. 5. Champaign, IL: Wolfram media.

Wu J, Wu GD, Wang JJ. 2017. Flexible job-shop scheduling problem based on hybrid aco
algorithm. International Journal of Simulation Modelling 16(3):497-505
DOI 10.2507/IJSIMM16(3)COL11.

Wu X, Shen X, Li C. 2019. The flexible job-shop scheduling problem considering deterioration
effect and energy consumption simultaneously. Computers ¢ Industrial Engineering
135(3):1004-1024 DOI 10.1016/j.cie.2019.06.048.

Xia W, Wu Z. 2005. An effective hybrid optimization approach for multi-objective flexible job-
shop scheduling problems. Computers ¢ Industrial Engineering 48(2):409-425
DOI 10.1016/j.cie.2005.01.018.

Xie N, Chen N. 2018. Flexible job shop scheduling problem with interval grey processing time.
Applied Soft Computing 70(8-9):513-524 DOI 10.1016/j.as0c.2018.06.004.

Yuan Y, Xu H, Yang J. 2013. A hybrid harmony search algorithm for the flexible job shop
scheduling problem. Applied Soft Computing 13(7):3259-3272 DOI 10.1016/j.as0c.2013.02.013.

Zarrouk R, Bennour IE, Jemai A. 2019. A two-level particle swarm optimization algorithm for the
flexible job shop scheduling problem. Swarm Intelligence 13(2):145-168
DOI 10.1007/s11721-019-00167-w.

Zhang G, Shao X, Li P, Gao L. 2009. An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering
56(4):1309-1318 DOI 10.1016/j.cie.2008.07.021.

Zhang G, Zhang L, Song X, Wang Y, Zhou C. 2019. A variable neighborhood search based genetic
algorithm for flexible job shop scheduling problem. Cluster Computing 22(5):11561-11572
DOI 10.1007/s10586-017-1420-4.

Zuo Y, Gong M, Jiao L. 2017. Adaptive multimeme algorithm for flexible job shop scheduling
problem. Natural Computing 16(4):677-698 DOI 10.1007/s11047-016-9583-0.

Escamilla Serna et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.574 32/32

http://dx.doi.org/10.1016/j.asoc.2019.02.011
http://dx.doi.org/10.2478/cait-2019-0034
http://dx.doi.org/10.1016/j.cor.2020.104931
http://dx.doi.org/10.2507/IJSIMM16(3)CO11
http://dx.doi.org/10.1016/j.cie.2019.06.048
http://dx.doi.org/10.1016/j.cie.2005.01.018
http://dx.doi.org/10.1016/j.asoc.2018.06.004
http://dx.doi.org/10.1016/j.asoc.2013.02.013
http://dx.doi.org/10.1007/s11721-019-00167-w
http://dx.doi.org/10.1016/j.cie.2008.07.021
http://dx.doi.org/10.1007/s10586-017-1420-4
http://dx.doi.org/10.1007/s11047-016-9583-0
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.574

	A global-local neighborhood search algorithm and tabu search for flexible job shop scheduling problem
	Introduction
	State of the art of fjsp
	Problem formulation
	Global-local neighborhood search algorithm for the fjsp
	Experimental results
	Conclusions and further work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

