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ABSTRACT
Unlike traditional visualizationmethods, augmented reality (AR) inserts virtual objects
and information directly into digital representations of the real world, which makes
these objects and data more easily understood and interactive. The integration of AR
and GIS is a promising way to display spatial information in context. However, most
existing AR-GIS applications only provide local spatial information in a fixed location,
which is exposed to a set of problems, limited legibility, information clutter and the
incomplete spatial relationships. In addition, the indoor space structure is complex
and GPS is unavailable, so that indoor AR systems are further impeded by the limited
capacity of these systems to detect and display location and semantic information.
To address this problem, the localization technique for tracking the camera positions
was fused by Bluetooth low energy (BLE) and pedestrian dead reckoning (PDR). The
multi-sensor fusion-based algorithm employs a particle filter. Based on the direction
and position of the phone, the spatial information is automatically registered onto a
live camera view. The proposed algorithm extracts and matches a bounding box of the
indoor map to a real world scene. Finally, the indoor map and semantic information
were rendered into the real world, based on the real-time computed spatial relationship
between the indoor map and live camera view. Experimental results demonstrate that
the average positioning error of our approach is 1.47 m, and 80% of proposed method
error is within approximately 1.8 m. The positioning result can effectively support that
AR and indoormap fusion technique links rich indoor spatial information to real world
scenes. Themethod is not only suitable for traditional tasks related to indoor navigation,
but it is also promising method for crowdsourcing data collection and indoor map
reconstruction.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Data Mining and Machine
Learning, Mobile and Ubiquitous Computing, Spatial and Geographic Information Systems
Keywords Mobile augmented reality, BLE and PDR fusion, Indoor map, Indoor localization,
Geo-visualization

INTRODUCTION
Research background
Consumer applications, like smart phones integrated with GIS, could provide users with
useful information. This geospatial information however, might be difficult to understand.
Data pertaining to complex indoor environments is especially challenging for users with
limited geographic knowledge, but visualization enhances situational awareness among
users for a more satisfying experience. Thus, in either 2D to 3D representation, flexibility
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and realism requirements for spatial information visualization are becoming ever more
demanding. In contrast to traditional visualization methods, AR combines virtual objects
with a real scene, as an intuitive way to convey information that is otherwise difficult to
transmit (Carrera et al., 2017). The integration of AR and GIS promotes a more expressive
way to display GIS data in context, closely related to information about the surrounding
environment.

Researchers have made some useful explorations in AR-GIS (Huang, Sun & Li, 2016;
Wang et al., 2014). Ruta et al. (2016) proposed an AR system for description of Location-
Based Services (LBSs) and Points of Interest (POIs), which supports users with disabilities.
Liu, Jonsson & Seipel (2020) presented an AR system for infrared thermographic façade
inspection. The system employed a third person perspective augmented view displayed and
camera tracking based on image registration. Sun et al. offered an interactive method based
on the linear characteristics to combine 3D GIS with outdoor AR (Shaughnessy & Resnick,
2013). Data management between GIS databases and AR visualizations maintains an
interactive data round-trip (Zollmann et al., 2012). Liu et al. integrated AR and Location-
based social networks for enriching the GIS-science research agenda in data conflation
and multimedia storytelling (Chengbi & Sven, 2018). However, there are still several open
challenges for spatial information AR visualization, especially in indoor space where the
structure layout complex and mobile phone sensors limited.

AR and GIS techniques have received increasing attention. Thus there is a need
to better understand the particulars of AR interfaces in indoor environments beyond
location-awareness affecting GIS data visualization and interaction performance in AR-
GIS applications. Camera pose tracking is the keystone for accurate understanding of
spatial relationships in AR visualization (Sadeghi-Niaraki & Choi, 2020). To overcome the
limitations of GPS indoors, many researchers have focused on the vision-based tracking
methods, such as Structure fromMotion (SFM) or Simultaneous Localization andMapping
(SLAM) (Liu, Zhang & Bao, 2016). These camera pose tracking methods rely heavily on
the reference points. Xu et al. (2020) proposed a Walkability network-based Augmented
Reality (WaNAR). But the method needs a man-made 3D drawing of indoor walkable
space. Indoor environments often contain scenes without visual features such as bare walls
or windows, thus the indoor accuracy is seriously limited. Thus, a light weight and accurate
indoor camera pose tracking method suitable for AR is still an elusive goal.

The main challenge is that most existing AR applications are usually used for short
periods of time and for specific purposes, they do not allow for a continuous, universal,
context-aware AR experience, except that there is still a lack of effective organization in the
dynamic spatial information visualization in AR-GIS system. It leads to spatial information
clutter and limited visibility due to fixed location. Visualizing spatial data in an indoor
AR environment requires special consideration because a disproportionate mixture of AR
content or redundant information will mislead and confuse users. Therefore, organizing
these dynamic spatial information and visual elements is another challenge.
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Aim of the study
In this paper, the objective is optimizing and enriching the spatial information visualization
in indoor environments. We bridge the indoor map and situational visualization with real
world scene based on mobile augmented reality technique. Firstly, we divide an indoor
map by a regular grid and build the index of map data to diminish redundant data and
limit AR visualization within a certain range of the current location. At the camera tracking
stage, we propose a novel multi-sensor fusion-based algorithm, which employs a particle
filter to fuse BLE and PDR. Based on the direction and position of the phone, the extent
of an indoor map visible in the camera view is extracted and the spatial entities calculated
just for this area. Considering different poses of the mobile phone in users’ hand, we also
designed changed forms of the AR view. After applying a coordinate transformation to the
spatial entities, the fused AR-GIS system renders spatial information in relation to the area
visible in the dynamic camera view.

Contributions
The contributions can be summarized as follows:

• We propose a novel AR-GIS method for indoor environments that fuses an indoor map
with dynamic situated visualizations.
• We designed an online indoor positioning method that fuses the BLE and PDR for AR
camera tracking.
• We designed a flexible AR system that accessibly visualizes a variety of types of spatial
information regardless of the pose of a mobile phone.

Organization of the paper
The organization of this paper is as follows. The related works are briefly reviewed in
Section 2. Section 3 discussed the main methods. The experimental results and analysis are
described in Section 4. The conclusions are then presented in Section 5. The Abbreviation
table is shown in Table 1.

RELATED WORK
AR has gradually emerged as a popular way to display LBSs. Hence, researchers are focused
on AR techniques for GIS visualization in two major areas; camera tracking techniques for
estimating camera poses and tracking target objects, and AR visualization to render virtual
data onto a live camera view.

Camera tracking techniques
Indoor localization enables AR camera tracking. The method based on visual features
from images was representative way for AR. Skrypnyk & Lowe (2004) established 3D model
by multi-view correspondences and localized object for AR based on the Scale-Invariant
Feature Transform (SIFT) descriptor. However, vision-based method is difficult to remain
accurate and robust in an AR camera-tracking environment. These methods tend to be
failed in texture-less environments.
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Table 1 Abbreviation table.

Abbreviation Whole words

AR Augmented Reality
BLE Bluetooth low energy
PDR Pedestrian dead reckoning
GIS Geographic Information System
LBSs Location-Based Services
3D GIS 3-Dimensional Geographical Information System
SFM Structure from Motion
SLAM Simultaneous Localization and Mapping
SIFT Scale-Invariant Feature Transform
WaNAR Walkability network-based Augmented Reality
DoF Degrees of freedom
GPS Global Positioning System
IMU Inertial Measurement Unit
WKNN Weight k-nearest neighbour
RSS Received signal strength
PF Particle filter
CDF Cumulative Distribution Function

In order to solve this problem, Subakti (2016) designed and utilized visible/invisible
markers to determine the indoor position. Zhou et al. (2020) extracts the activity landmarks
from crowdsourcing data and clusters the activity landmarks into different clusters. But,
those localization methods need manual intervention, which is can’t be used in AR. Ahmad
et al. (2020) aligned the floor plan and collected fingerprints on reference points based on
the Microsoft HoloLens. But these methods either involve cost of installing and managing
wireless access points or positioning error accumulated with time.Xu et al. (2020) proposed
a Walkability network-based Augmented Reality (WaNAR) method to positioning and
navigation. But this method needs a man-made 3D drawing of indoor walkable space
before being used.

SLAM is a widely solution for AR tracking. Li et al. (2019) improve indoor camera
localization by optimized 3D prior map. They integrated RGBD SLAM with a deep
learning routine whose training dataset is sequential video frames with labelled camera
poses. Reitmayr, Eade & Drummond (2007) developed an AR application for annotation in
unknown environments based on an extended SLAM that tracks and estimates high-level
features automatically. MARINS is an indoor navigation system developed using the Apple
ARKit SDK and an associated SLAM system (Diao & Shih, 2018). However, this method is
computational expensiveness, which is hard to apply to a wide range of scenarios.

In addition, some experts consider using sensors embedded in mobile phones for
locating, such as WiFi or accelerometer (Zhou et al., 2015). Instead of single tracking
method, multiple sources combination is a promising way to improve camera tracking
(Li et al., 2016; Liu et al., 2021). Ma et al. (2020) proposed a multi-sensor fusion-based
algorithm to improve the precision of indoor localization. The multi-source data include
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Table 2 Camera tracking techniques.

Advantage Disadvantage

Visual feature-based low-cost, no need for multiple sensors tend to be failed in texture-less environments
Landmark-based low-cost, no need for extra equipment, high precision manual intervention required
SLAM automatic, no need for pre-identify the scene computational expensiveness, multi-sensor required,
Multiple sensors-based high precision algorithm complicated, pre-establish device required

activity detection, PDR, and 3D vision-based localization. However, this method cannot
meet the requirement of positioning at real-time. Neges et al. (2017) combined visual
natural markers and an IMU to support AR indoor navigation. They used the IMU data
to estimate the camera position and orientation when a natural marker-based method is
limited. Arth et al. (2011) localized the six DoF pose of a mobile phone by using GPS data
and a panoramic view of the environment. Li et al. (2017) integrated monocular camera
and IMUmeasurements to estimate metric distance and localize the mobile device. Hybrid
tracking methods improve mobile AR, but there is still a gap to low-latency, high precision
AR camera tracking for AR visualization in indoor environments. The camera tracking
techniques are summarized in Table 2.

AR visualization
AR visualization is not only about rendering computer graphics, but also can help make
virtual 2D/3D data easier to understand as an aid to navigation in the real world. For
helping designers in managing the aspect of layout and the representation of reasonable
AR view, Javornik et al. (2019) compared the different visualization effect between two
types of AR content—image and text and image by using Unity 3D and the Vuforia library.
Tönnis, Klein & Klinker (2008) considered the impact of the AR visualization style on user
perception and designed three types of directional arrows to improve the AR presentation
in large distances. They rendered directional arrows according to different speeds. To
manage the amount of information in AR view, Mulloni, Dünser & Schmalstieg (2010)
proposed two types of zooming interfaces to reduce the user reading load, the egocentric
panoramic 360◦ view and an exocentric top-down view. Tsai & Huang (2017) investigated
the AR content presentation and human interaction problems based on the smart glasses.
This research provides some interesting references for AR visualization, but the spatial
information visualization contains more content and needs more complex visual element.

To solve the problem of limited information visibility, Zollmann, Poglitsch & Ventura
(2017) proposed a set of Situated Visualization techniques (White & Feiner, 2009) for a
‘‘street-view’’ perspective. They implemented the dynamic annotation placement, label
alignment and occlusion culling for scene information extracted from a GIS database. To
resolve the similar problem, Bell, Feiner & Hllerer (2001) presented a 3D representation
algorithm for virtual or mixed environments with virtual objects. However, the structural
distortions in representations of space are influenced peoples’ spatial perception. Keil et
al. (2020) projected a holographic grid into 3D space to explore whether the structural
distortions can be reduced. However, their method was based on the additional holograms
equipment. Matsuda et al. (2013) proposed a method for providing a non-3D display
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based on pseudo motion parallax. Considering the user’s point of view, they superimposed
computer graphics (CG) images behind the scene display. Grasset et al. (2013) proposed
an image-based label placed method that combined a visual saliency algorithm with edge
analysis to find the image regions and geometric constraints. Fenais et al. (2019) developed
an AR-GIS system for mapping and capturing underground utilities. However, these
AR-GIS applications are used for short periods of time and for specific purposes.

The existing AR-GIS applications only provide local spatial information in fixed location
for users. The applicationswith comprehensive spatial information are rarely reported in the
literature. These systems do not allow for a continuous and context-aware AR experience.
Moreover, the dynamic spatial information visualization in AR-GIS system is tend to
clutter and limited visibility due to fixed location.

In this paper, we focus on how to localize and organize the spatial information into an
AR view. The goal is to construct a mobile augmented reality system that visualizes spatial
information in indoor environment. The proposed AR-GIS system is fused an indoor map
and situational visualization based on a mobile phone, which can provide dynamic and
comprehensive spatial information for users.

METHODS
Overview
The proposed workflow is illustrated in Fig. 1. Given an indoor map from the GIS
database, we first divide the indoor map by a regular grid and build an index of map
data, to support AR visualization within a certain range at the current user location. At the
indoor positioning stage, our novel multi-sensor fusion-based algorithm employs a particle
filter to fuse BLE and PDR. We extract the extent of the current location from the indoor
map and calculate the spatial entities in front of the camera view according to the direction
and position of the phone. The algorithm is proposed to determine screen coordinates for
semantic information. The fused mobile augmented reality system renders the semantic
information for parts of the indoor model corresponding to the AR camera view.

Indoor positioning
Since we set up a configuration to display the indoor spatial information, the first step in
our implementation is tracking the camera pose based on the mobile phone. We propose a
novel multi-sensor fusion-based algorithm, which utilizes a particle filter to fuse BLE and
PDR. The indoor localization algorithm is presented in Fig. 2.

The input of the algorithm includes BLE and inertial sensors data. Based on the BLE
data, we obtain the BLE-based localization result. Meanwhile, based on the inertial sensors
data, we get the displacement estimation result. Then, we use particle filter to fuse these
two results. The displacement is used to update the particles for the particle filter.

BLE-based indoor localization
BLE is a wireless personal area network technology designed for applications in the
healthcare, fitness, beacons, security, and home entertainment industries. Proximity sensing
is one of its applications, which also provides a new method for indoor localization. BLE
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Figure 1 The workflow of augmented reality and indoor map fusion.
Full-size DOI: 10.7717/peerjcs.704/fig-1

realizes indoor localization by measure the distance between a mobile device and several
beacons. The locations of the beacons are known. Specifically, based on the known location
of the beacon, the received signal strength (RSS) of the beacon can be used to estimate the
distance from the mobile device to the beacon, which can be expressed as Eq. (1):

RSS(λ)=RSS(λ0)−10ηlog
(
λ

λ0

)
+X (1)

where λ is the distance from the beacon to device, RSS(λ) is RSS of a beacon, λ0 is
reference distance (normally λ0 equal to 1m), η is the path loss exponent, and X is a
zero-mean Gaussian distribution variable with variance σ 2

X.
The localization method is called triangulation. If the location of the mobile

device is
(
x,y,z

)
, the locations of the beacons are

(
xi,yi,zi

)
, i = 1,2,...,N . N is

usually more than 3. The measured distances are di. Then, we can get N equations:
d2i = (x−xi)2+ (y−yi)2+ (y−yi)2. By solving the N equations, we can get the location of
the mobile device.

Because of the complexity of indoor environments, the measured distance usually
contains error, which makes localization results unreliable. We propose a novel algorithm
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Figure 2 Indoor localization algorithm.
Full-size DOI: 10.7717/peerjcs.704/fig-2

that improves the localization accuracy of BLE. By the beacon, we can obtain the signal
quality index (SQI), which reflects the confidence of estimated distance.

If the SQI is greater than the threshold, we use a triangulation method to calculate
the position of the device; otherwise, we use fingerprinting-based method to estimate
the location. A weight k-nearest neighbour (WKNN) is adopted for location calculation.
The location is calculated by the following equation: p= (wi ∗pi)(i= 1,2,...,k),, where
p is the estimated location, wi is the weight, pi is the location of the ith beacon, k is a
parameter, which is determined by experiment. wi is calculated based on the measured
distance between the device and beacon:

1) wi= 1/di,
2) normalize wi.

PDR
PDR algorithm is utilized to estimate the displacement. If the previous location is

(
x,y

)
,

the next location is calculated as:

(x+ l ∗n∗ cos(h), y+ l ∗n∗ sin(h)) (2)

where l is the step length, n the step number, and the heading. Step number is obtained by
the peak detection algorithm (Mladenov & Mock, 2009). The step detection result is shown
in Fig. 3. The step length is estimated using the step frequency-based model (Cho et al.,
2010): l = a∗ f +b, where f is the step frequency, and (a,b) are the parameters that can be
trained offline.
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Figure 3 Step detection result.
Full-size DOI: 10.7717/peerjcs.704/fig-3

Particle filter-based data fusion
The PF algorithm is based on the sequential Monte Carlo framework, applied to nonlinear
and non-Gaussian estimation problems (Arulampalam et al., 2002). A typical particle filter
comprises of the following steps:

Initialization: Sampling N particles based on the initial localization result.
Prediction Sampling: Predict a new particle pi(k+1) for each particle pi(k) based on

the prediction function. In this paper, we use PDR to model the user’s movement for the
prediction of multiple particles. The new location (x ik+1,y

i
k+1) of ith particle is updated by{

x ik+1= x ik+1l cos(hk+1h)
y ik+1= y ik+1l sin(hk+1h)

(3)

where 1l and 1h are the distance and heading change obtained by PDR, and hk is the
heading at time k.

Importance Sampling: Calculate weights wi(k+1) for each new particle pi(k+1).
Normalization and Resampling: The weights are normalized and resampled. In the

resampling process, particles with low weight are deleted and particles with high weight
are duplicated.

In our proposedmethod, the initial localization is obtained by onBLE-based localization.
The particle prediction is realized by PDR algorithm. The weights are calculated based on
the distances between the new particles and BLE-based localization results. Based on this
online indoor positioning method for AR camera tracking, we fused AR and indoor map
for GIS data visualization.
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Figure 4 The workflow of AR-GIS visualization fusion.
Full-size DOI: 10.7717/peerjcs.704/fig-4

Augmented reality and indoor map fusion
The workflow of AR-GIS visualization was shown in Fig. 4. We first set up a pre-processing
procedure onto indoor map since the GIS information is not adjusted to the visual
perspective of the user. During the AR visualization, we extract the extent of the current
location from the indoor map and calculate the spatial entities in front of the camera view
according to the direction and position of the phone. Then, the spatial entities in front of
the camera view are detected and their coordinates transformed from real world to AR
view.

Indoor map pre-processing
A map constructed of planar features will block the real scene; the indoor map is only
composed of line feature that looks transparent in AR view. In order to display attribute
information on the indoor map, we keep the text information as a texture and map it onto
indoor map. Thus, textual information will align with indoor map whenever an application
requires the user to zoom in, zoom out or rotate the map.

The user may be distracted by showing entire map of a large space in an AR view.
The displayed part of indoor map should be limited within a certain range of the current
location. Thus, we divide indoor map by a regular grid and build an index for map data.
Each regular grid cell records theminimumbounding box, transverse step, and longitudinal
step. During the AR visualization, we get the current position grid as center, and acquired
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Figure 5 The interface of AR view.
Full-size DOI: 10.7717/peerjcs.704/fig-5

its surrounding eight grids for displaying. This data structure based on a spatial index of
regular grid needs low storage and little communication.

AR-GIS visualization
We designed the interface of AR-GIS system that fused the situation and indoor map
visualization. As described in Fig. 5, we divided the screen into two parts, which the top
one third is displayed the situation information, and the lower two third is rendered the
indoor map. Moreover, the indoor positioning result is rendered into the indoor map to
show the current user position.
We transformed all these visual elements into the AR coordinate system. As shown in Fig.
6, Fig. 6A is indoor map coordinate system and Fig. 6B is AR coordinate system.

We acquired the rendered part of indoor map according to the current position, and
calculated the bounding box of indoor map ABCO and the center point M(xm,ym). We
put the point M as a new original point, and reduce the size of indoor map in accordance
with a certain proportion to keep it within the AR view. Considering the indoor map
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Figure 6 The coordinate transformation. (A) The indoor map coordinate system. (B) The AR view co-
ordinate system.

Full-size DOI: 10.7717/peerjcs.704/fig-6

coordinates in Euclidean space [O;x,y], we define the AR coordinate system as [O;x′,y′].
The coordinate transformation can be described as Eq. (4):
x′=

(x−xm)
max(|2xm|,

∣∣2ym∣∣)
y′=

(y−ym)
max(|2xm|,

∣∣2ym∣∣) .

(4)

Furthermore, we optimized the AR-GIS visualization system from three aspects.
The existing map visualization methods do not consider the direction relationship

between map and the real world. As shown in Fig. 7B, the orientation of indoor map
always changes with mobile phone, not the real scene. Users commonly identify the north
by a compass in the map. However, this approach is not suitable for AR visualization. AR
explains the spatial context by overlaying digital data onto the users’ view of the real world.
The preferable way to make user understand spatial data clearly in an AR view is not by
providing more visual elements like a compass, but rendering virtual data that directly
matches the real scene. In order to keep a same orientation between indoor map and the
real scene, we first obtained the angle between the mobile phone’s orientation and the
north. We obtained the orientation and rotation of mobile phone from multiple sensors.
Considering clockwise direction as positive direction, when the phone is tilted by an angle θ
away from the north, we rotate the indoor map by the same angle in the opposite direction.
The calculation of angle θ in indoor environment needs to account for the deflection angle
of the indoor map. As shown in Fig. 7C, the direction of indoor map always matches the
real scene whenever the mobile phone rotated, so that users can better understand the map
information in AR view.

The foreshortening effects are basic visual rules in the real world. To make the AR
visualization more realistic, we rendered the indoor map with foreshortening effects when
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Figure 7 The orientation of indoor map. (A) Mobile phone orientation. (B) The orientation of indoor
map changes with mobile phone. (C) The orientation of indoor map changes with the real scene.

Full-size DOI: 10.7717/peerjcs.704/fig-7

the phone’s pitch angle changes. We obtain the pitch angle from the sensors in mobile
phone, and rotate the indoor map around the X-axis along with the angle change.

As show in Fig. 8A, when the phone is placed horizontally that the pitch angle is
approximately equal to 0◦, the user can only see the ground through their phone, so there
is no foreshortening effects. The pitch angle is getting bigger along with user lifts the mobile
phone, the indoor scene appears in the camera view, and AR map shows the effect of ‘‘near
big far small’’ as well (Fig. 8B).

We provide the spatial information onto AR view based on the spatial relationship
between GIS data and the actual indoor environment. As shown in Fig. 9, O is the current
position, V is the camera direction, and θ is the angle to the north. We set two threshold
values d1 and β, which identify distance and the angle of vision. Thus, the quadrangle
Op1p2p3 is the field of AR view. When an object appears in the quadrangle, its information
will be rendered onto AR view. In addition, if the object fall in the triangle Op1p2, its
information will rendered on the left of the AR view. Otherwise, the information will be
rendered on the right of the AR view.

We build the virtual and real camera alignment by coordinate transformation. For
example, a point p in the Op1p2, whose screen coordinates of information can be described
as:
x =

d2
2 −d3

d2
2

∗
width
2

y =
d4
d1
∗height

(5)

where the width and height are the width and height of screen, d2 is the distance between
p1 to p3, d3 is the perpendicular distance between p to the camera direction v, and the d4
is the perpendicular distance between p2 to the perpendicular line segment from p and
camera direction v , where a perpendicular line from d3 intersects the line from p and
camera direction v .
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Figure 8 The foreshortening effects of indoor map. (A) The mobile phone is placed horizontally. (B)
The mobile phone is placed vertically.

Full-size DOI: 10.7717/peerjcs.704/fig-8

If the point p in the Op2p3, the screen coordinates of information can be described as:
x =width−

d2
2 −d3

d2
2

∗
width
2

y =
d4
d1
∗height

(6)

Finally, the indoor map and situational information are rendered on to camera AR view
by the coordinate transformation.

EXPERIMENTAL RESULTS AND ANALYSIS
Our experiment was operated on an android systemmobile phone of Samsung SM-G9500.
The AR visualization system was implemented based on OpenES as single-threaded
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Figure 9 The field of AR view.
Full-size DOI: 10.7717/peerjcs.704/fig-9

programs. As shown in Fig. 10, the experiment environment is a 52.5 m * 52.5 m floor
plan, which includes office area, lift well and public area.

Indoor positioning
To evaluate the performance of the proposed indoor positioning method, the participants
were asked to walk along four routes with the smartphone in the hand. We set some
markers with known coordinates along the routes to collect the ground truth data. When
participants walk over a marker, they push the button to record the time. The ground
truth between the markers is obtained by interpolating the step count. We calculated the
positioning error based on the Euclidean distance between the estimated position and the
ground truth, and also gave the the Cumulative Distribution Function (CDF) of positioning
resulte.

We evaluated the effect of the number of particles in PF algorithm on the performance
of the proposed positioning method. The performance was evaluated in two metrics:
average positioning error and computing time. The computing time is a key factor since
the proposed positioning system is implemented online on a smartphone. Figure 11 shows
the effect of number of the particles on the performance of the positioning system. We
can see that with increasing particle number, the average positioning error decreased until
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Figure 10 Experiment environment.
Full-size DOI: 10.7717/peerjcs.704/fig-10

the number increased to 750. The computing time increased gradually with the increasing
particle number. Therefore, we set the number of particles to 750 in our PF algorithm.

After determine number of particles, we the collected the statistical positioning
information of each route. Take route 1 as an example, we captured 143 BLE location, and
detected 203 steps. Based on these collected data (143+203), we obtained 210 localization
results by using PF algorithm. The statistical positioning information of each route was
given in Table 3.

As shown in Fig. 12, we evaluated the quality of the positioning resulte using the
Cumulative Distribution Function (CDF).

Figure 12 shows the CDF of the PDR, Beacon, and PF positioning methods for each
route. For route 1, 80% of PF error is within approximately 1.9 m (80% of beacon error is
within approximately 2.3 m, and 80% of beacon error is within approximately 6.4 m). For
route 2, 80% of PF error is within approximately 2.5 m. For route 3, 80% of PF error is
within approximately 2.3 m. For route 4, 80% of PF error is within approximately 1.8 m.

We also compared the proposed method to PDR and BLE by using average positioning
errors. As shown in Table 4, we can see that the average positioning errors of the proposed
method for all the routes were less than that of PDR and BLE. For route 1, the average
positioning errors of PDR, BLE and proposed were 7.23m, 1.55m, and 1.29m, respectively.
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Figure 11 The effect of particles number on the performance of the positioning system.
Full-size DOI: 10.7717/peerjcs.704/fig-11

Table 3 The statistical positioning information of each route.

Step number of PDR Number of BLE location Number of PF location

Route 1 203 143 210
Route 2 91 63 97
Route 3 148 96 105
Route 4 196 131 204

The mean errors of the three methods for all the routes were 5.26 m, 1.84 m, and 1.47 m,
respectively. In PF-based data fusion, the average positioning error was reduced by 72.04%
and 19.89% as compared to PDR and BLE. The positioning results show that the proposed
PF-based data fusion algorithm can effectively improve the accuracy of indoor positioning
system.

The online positioning results of different positioning methods are shown in Fig. 13
showing Online positioning result. The red line is Ground truth. The green line represents
PDR only used. The blue line represents is BLE only used. The purple line is the result of
proposed method.

We can see that the PDR positioning error is large; the estimated trajectories deviate
sharply from the ground truth. The BLE positioning results weremore accurate that of PDR
due to our proposed algorithm. However, in some areas, BLE has occasional large errors.
For example, the bottom right of Route 1 and bottom left of Route 2, show significant
deviations. Our proposed PDR and BLE fusion method is more accurate than either PDR
or BLE alone. The estimated trajectories are consistent with the ground truth.
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Figure 12 The CDF of different routes. The blue line represents PDR. The red line represents BLE. The
black line is the result of proposed method. (A) Route 1, (B) Route 2, (C) Route 3, (D) Route 4.

Full-size DOI: 10.7717/peerjcs.704/fig-12

Table 4 The average positioning errors (m).

PDR BLE Proposed

Route 1 7.23 1.55 1.29
Route 2 2.6 2.01 1.67
Route 3 6.08 2.08 1.62
Route 4 5.12 1.7 1.3
Mean 5.26 1.84 1.47

AR-GIS visualization
We walked with the smartphone to the test the AR-GIS visualization, and recorded the
spatial information visualization results. The video of mobile augmented reality system
was uploaded on the website: https://youtu.be/XNhpaIWk1IQ.

The AR visualization effects are illustrated in Fig. 14, where each column represents
a different position. The first row presents the AR visualization effect when the mobile
phone is upright. It consists of situational information, the indoor map and localization
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Figure 13 Online positioning result. The red line is ground truth. The green line represents PDR only
used. The blue line represents is BLE only used. The purple line is the result of proposed method.

Full-size DOI: 10.7717/peerjcs.704/fig-13

results. In Fig. 14A, the lobby elevator is on the left side of the current position, so the text
was rendered on the left of AR view. In Fig. 14B three targets were detected, the texts were
displayed from top to bottom according to the distance from far to near. In Fig. 14C, the
office of Prof.Tu is on the right of the current position, so the label was rendered on the
right of the AR view.

The second row (Figs. 14D, 14E, 14F) shows the AR visualization results when the
mobile phone is placed horizontally. User can clearly perceive the indoor space and current
position from this perspective.

We discuss our approach as compared with two state-of-the-art AR systems: (Xu et
al., 2020; Khan et al., 2019). Xu et al. (2020) proposed an AR system for indoor/outdoor
navigation. The AR positioning signals are corrected continuously by the ground-truth
3D indoor/outdoor walkability network in a 3D model. However, it is necessity for their
tool to implement approaches through is a manual 3D drawing of indoor walkable space.
Khan et al. (2019) presented an AR system based on the correspondences between images.
However, failure becomes more likely due to frequent changes in indoor environment and
because reliable reference points are unavailable. Moreover, the AR application (Xu et al.,

Ma et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.704 19/25

https://peerj.com
https://doi.org/10.7717/peerjcs.704/fig-13
http://dx.doi.org/10.7717/peerj-cs.704


Figure 14 The results of AR-GIS visualization.
Full-size DOI: 10.7717/peerjcs.704/fig-14

2020) only offer the position spot onto the AR view, and the AR system (Khan et al., 2019)
only labels the facility’s name along the pathway. These twomethods can only provide local
spatial in-formation in fixed location for users. Compare with them, our AR and indoor
map fusion technique links rich indoor spatial information to real world scenes. Figure
14 presents a high-quality AR-GIS system that integrates rich spatial information with the
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real world tightly and rationally. It is not only technical but also aesthetical for conveying
spatial information.

CONCLUSIONS AND FUTURE WORK
In this paper, we designed a method for fusing AR view and indoor map in changing
environments during AR-GIS visualization that also considers the changes of the AR view
when the pose of the mobile phone shifts. We presented an innovative indoor positioning
approach that fuses BLE and PDR to enhance the accuracy of AR camera tracking. The
experiments in an office building of Shenzhen University demonstrate that dynamic
AR-GIS visualization techniques can display rich spatial information in real time on
mobile phones, while preserving a high accuracy in the AR-GIS fusion. The AR content
includes current position, indoor map and spatial information, which change as the real
scene changes. The layout of spatial information is rendered reasonable in AR view. This
AR-GIS visualization will be clear and easy to understand, which effectively optimizes and
enriches the spatial information in the visualization of indoor environment.

Though the AR-GIS system is shown indoor map onto the AR view, it can’t adapt to
the change of the scene size. Thus, in future work, we will try to process indoor map data
and improve the visualization technique method to realize the adaptive AR visualization.
Besides, the current application only labels the name of indoor scene, which can be further
advanced with more details about the spatial information. Furthermore, the smoothing
algorithm can be applied to enhance the accuracy of the device’s position.
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