
Submitted 1 April 2021
Accepted 26 August 2021
Published 17 September 2021

Corresponding author
Dongsoo Har, dshar@kaist.ac.kr

Academic editor
Alma Alanis

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.718

Copyright
2021 Kim et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Two-stage training algorithm for AI
robot soccer
Taeyoung Kim1, Luiz Felipe Vecchietti1, Kyujin Choi1, Sanem Sariel2 and
Dongsoo Har1

1Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and
Technology, Daejeon, South Korea

2Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey

ABSTRACT
In multi-agent reinforcement learning, the cooperative learning behavior of agents
is very important. In the field of heterogeneous multi-agent reinforcement learning,
cooperative behavior among different types of agents in a group is pursued. Learning
a joint-action set during centralized training is an attractive way to obtain such
cooperative behavior; however, this method brings limited learning performance with
heterogeneous agents. To improve the learning performance of heterogeneous agents
during centralized training, two-stage heterogeneous centralized training which allows
the training of multiple roles of heterogeneous agents is proposed. During training, two
training processes are conducted in a series. One of the two stages is to attempt training
each agent according to its role, aiming at the maximization of individual role rewards.
The other is for training the agents as a whole tomake them learn cooperative behaviors
while attempting to maximize shared collective rewards, e.g., team rewards. Because
these two training processes are conducted in a series in every time step, agents can learn
how tomaximize role rewards and team rewards simultaneously. The proposedmethod
is applied to 5 versus 5 AI robot soccer for validation. The experiments are performed
in a robot soccer environment using Webots robot simulation software. Simulation
results show that the proposed method can train the robots of the robot soccer team
effectively, achieving higher role rewards and higher team rewards as compared to other
three approaches that can be used to solve problems of training cooperativemulti-agent.
Quantitatively, a team trained by the proposedmethod improves the score concede rate
by 5% to 30% when compared to teams trained with the other approaches in matches
against evaluation teams.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Robotics
Keywords Multi-agent reinforcement learning, Heterogeneous agents, Centralized training,
Deep learning, Robotics

INTRODUCTION
Recently, deep reinforcement learning (DRL) has been widely applied to deterministic
games (Silver et al., 2018), video games (Mnih et al., 2015; Mnih et al., 2016; Silver et al.,
2016), sensor networks (Kim et al., 2020), and complex robotic tasks (Andrychowicz
et al., 2017; Hwangbo et al., 2019; Seo et al., 2019; Vecchietti et al., 2020; Vecchietti, Seo &
Har, 2020). Despite the breakthrough results achieved in the field of DRL, deep learning

How to cite this article Kim T, Vecchietti LF, Choi K, Sariel S, Har D. 2021. Two-stage training algorithm for AI robot soccer. PeerJ
Comput. Sci. 7:e718 http://doi.org/10.7717/peerj-cs.718

https://peerj.com/computer-science
mailto:dshar@kaist.ac.kr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.718


in multi-agent environments that require both cooperation and competition is still
challenging. Promising results have been for cooperative-competitive multi-agent games
such as StarCraft (Vinyals et al., 2019) and Dota (Berner et al., 2019). For multi-agent
problems such as multi-robot soccer (Liu et al., 2019), security (He, Dai & Ning, 2015;
Klima, Tuyls & Oliehoek, 2016), traffic control (Chu et al., 2019; Zhang et al., 2019), and
autonomous driving (Shalev-Shwartz, Shammah & Shashua, 2016; Sallab et al., 2017),
non-stationarity, partial observability, multi-agent training schemes, and heterogeneity
can be challenging issues (Nguyen, Nguyen & Nahavandi, 2020). To solve these challenges,
multi-agent reinforcement learning (MARL) techniques (Lowe et al., 2017; Sunehag et al.,
2017; Foerster et al., 2018; Vinyals et al., 2019; Liu et al., 2019; Samvelyan et al., 2019; Rashid
et al., 2020) have been intensively investigated.

When using the MARL, several works have used the centralized training in decentralized
execution (CTDE) framework (Lowe et al., 2017; Sunehag et al., 2017; Foerster et al., 2018;
Rashid et al., 2020). In the CTDE framework, local observations of agents, global state of
the environment, and joint-actions taken by the agents at each time step are available
during training to the centralized policy network, while only the local observations
of agents are available during execution. In other words, each agent selects its action,
that is the output of a policy network, without considering the full information of the
environment. To address the non-stationarity problem, multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al., 2017) was proposed using a CTDE framework and
the deep deterministic policy gradient (DDPG) actor-critic algorithm for continuous action
spaces (Lillicrap et al., 2015).When cooperative behavior is to be achieved, representing that
there is a cooperative reward that should be maximized by multiple agents, credit should
be assigned accordingly to each agent based on its contribution. To address this problem,
counterfactual multi-agent (COMA) (Foerster et al., 2018), value decomposition networks
(VDN) (Sunehag et al., 2017), andmonotonic value function factorization (QMIX) (Rashid
et al., 2020) have been proposed, using the CTDE framework combined with value-based
algorithms such as deep Q networks (DQN) (Mnih et al., 2013), deep recurrent Q networks
(DRQN) (Hausknecht & Stone, 2015), and dueling Q networks (Wang et al., 2016).

In this paper, a novel training method for MARL of heterogeneous agents, in which each
agent should choose its action in a decentralizedmanner, is proposed. The proposedmethod
addresses how to provide an optimal policy and maximize the cooperative behavior among
heterogeneous agents. To this end, during training, two training stages are conducted in a
series. The first stage is for making each agent learn to maximize its individual role reward
while executing its individual role. The second one is for making the agents as a whole
learn cooperative behavior, aiming at the maximization of team reward. The proposed
method is designed to be applied to MARL with heterogeneous agents in cooperative
or cooperative-competitive scenarios. In this paper, a cooperative-competitive Artificial
Intelligence (AI) robot soccer environment is used for experiments. The environment can
be described in relation to 5 versus 5 robot soccer game described in Hong et al. (2021).
In the robot soccer game, two teams of five robots capable of kick and jump behaviors
compete against each other, similarly to the StarCraft, so the game can be seen as a
micro-management problem. The policy for the proposed method and other methods

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


for comparisons are trained by using self-play (Heinrich, Lanctot & Silver, 2015; Lanctot
et al., 2017; Silver et al., 2017). Self-play in a competitive environment is used so that the
opponent team is kept at an appropriate level of difficulty at each training stage.

The main contributions of this paper are as follows
1. A framework for novel training method called two-stage heterogeneous centralized

training (TSHCT) aiming at centralized training of heterogeneous agents is proposed.
In the proposed method, there are two training stages that are conducted in a series.
The first stage is responsible for training individual behaviors by maximizing individual
role rewards. The second stage is for training cooperative behaviors by maximizing a
shared collective reward.

2. Experiments are conducted to compare the performance of the proposed method with
other baseline methods, COMA, VDN, and QMIX. The proposed method and the
baseline methods are trained with self-play. To compare the results obtained from
the experiments, total rewards (during training) and score/concede rates (against
different opponent teams) are presented. From the comparisons, we will show better
performance of the proposed method during game.

3. The proposed method aims at MARL with heterogeneous agents in cooperative and
cooperative-competitive scenarios. For experiments, a cooperative-competitive AI
robot soccer environment, where there are 5 robots with 3 different roles in each team
(one goalkeeper, two defenders, and two forwards), is used.
The remainder of this paper is organized as follows. ‘Background’ presents the concept

of the MARL, system modeling, and other methods which are used as baselines for
comparisons in the experiments. ‘Proposed Method’ introduces the proposed method in
details. ‘Simulation Results’ presents the simulation environment, ablation studies, and
game results of the AI robot soccer. ‘Conclusion’ concludes this paper.

BACKGROUND
In this section, the mathematical modeling of the proposed method is presented. Also,
other methods for cooperative MARL using the CTDE framework are presented.

System modeling
The cooperative-competitive multi-agent problem, specifically applied in this paper
to AI robot soccer, is modeled as a decentralized partially observable Markov
decision process (Dec-POMDP) (Oliehoek & Amato, 2016) that each agent has its own
observation of the environment. The Dec-POMDP can be formulated by an 8-tuple
G=< S,U ,P,r,Z ,O,n,γ >. The set of states and the set of actions are represented by S
and U respectively. Each team contains n agents. The observation function O(s,a), where
s and a∈ {1,...,n} are state and n agents, determines the observation z ∈Z that each agent
perceived individually at each time step. At each time step, the n agents choose their actions
ua ∈U , which is an action taken by the a-th agent, based on their action-observation history.
In this modeling, as recurrent neural networks (RNN) (Hochreiter & Schmidhuber, 1997)
is used by the MARL algorithm, the policy is conditioned on the joint action-observation
history as well as the current agent observation z . The state of the environment changes

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


according to a transition probability P . Unlike the partially observable stochastic game, all
agents in Dec-POMDP share a collective reward and an individual reward drawn from the
reward function r(s,u), where u is a joint-action which is a set of each agent’s action. The
discount factor of the MARL algorithm is represented by γ .

In MARL, as multiple agents act simultaneously in the environment based only on
their own action-observation history and do not know about the individual policy of each
agent, there exists a non-stationarity problem. The behaviors of other agents are changing
during training and can influence the reward received by each agent. To address this issue,
the system is modeled using a centralized training in decentralized execution (CTDE)
framework. In the CTDE framework, the full state of the environment can be accessed
in the training procedure to get the state-action value. On the other hand, only the local
observation can be accessed by the agent during execution. The joint-action from all agents
is also available during the training procedure by the centralized policy to alleviate the
non-stationarity issue.

In this paper, we focus on value-based MARL algorithms applied in environments
where a sense of cooperation is needed between agents, meaning that they share a collective
reward. The proposed algorithm is to be combined with deep recurrent Q-networks
(DRQN) (Hausknecht & Stone, 2015) and dueling deep Q-networks (Wang et al., 2016).
The DRQN algorithm, as proposed in Hausknecht & Stone (2015), addresses single-agent
with partially observable environments. The architecture consists of the DQN (Mnih et
al., 2015) combined with RNN. The DRQN approximates the state-action value function
Q(s,u), where s and u are a state and an action of single agent, with RNN to maintain an
internal state and aggregate observations over time. It also can be taken to approximate
Q(st ,ht−1,u), where st and ht−1 represent the observation at time step t and the hidden
state at time step t −1, which has information of previous states and acts as a memory.
The proposed method is also to be combined with the dueling deep Q-networks (Wang
et al., 2016). The dueling deep Q-networks is a neural network architecture designed for
value-based RL that has two streams in the computation of the state-action value. One
stream is for approximating the value function V (s) and the other is for approximating the
advantage function A(s,u). The value function V (s) depends only on state and presents
how good a state is. The advantage function A(s,u) depends on both state and action and
presents how advantageous it is to take an action u in comparison to the other actions at
the given state s. The value and the advantage are merged to get the final state-action value
Q(s,u) as follows

Q(s,u)=V (s)+A(s,u)−
∑

u′A(s,u
′)

N
, (1)

where u′ represents each possible action and N is the number of actions. In this paper,
the dueling deep Q-networks is combined with the RNN to handle the action-observation
history used as the input of the policy. In the architecture of dueling deep Q-networks with
the RNN, e.g., Dueling DRQN, the RNN is inserted right before the crossroad of streams
of computation. The dueling DRQN is compared with the DRQN as an ablation study in
‘Simulation Results’.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


In the following subsections, other methods relevant to comparisons are presented.
In this paper, we focus on methods that can be combined with off-policy value-based
algorithms and focus on the maximization of a joint state-action value, trying to assign
proper credit to individual agents on the shared reward received.

Counterfactual multi-agent policy gradients
Counterfactual multi-agent (COMA), introduced by Foerster et al. (2018), utilizes a single
centralized critic to train decentralized actors and deals with the challenge of themulti-agent
credit assignment problem. In the cooperative environments that are the main target for
the COMA, it is difficult to determine the contribution of each agent to the shared collective
reward received by the team. The centralized critic has access to the global state and the
actions of the agent to model the joint state-action value function.

Value decomposition network
The value decomposition network (VDN) (Sunehag et al., 2017) aims at learning a joint-
action value function Qtot (τ ,u), where τ is a joint-action observation history and u is
a joint-action. The Qtot (τ ,u) can be expressed as a sum of a-th agent’s individual value
functions Qa(τ a,ua;θa) as follow

Qtot (τ ,u)=
n∑

a=1

Qa(τ a,ua;θa), (2)

where each Qa(τ a,ua;θa) is a utility function of the a-th agent and θa is the policy of
the a-th agent. The loss function for the VDN is the same as that of the deep Q-network
(DQN) (Mnih et al., 2015), where Q is replaced by Qtot (τ ,u).

QMIX
QMIX (Rashid et al., 2020) is a deep multi-agent reinforcement learning method to be
trained using CTDE. It uses the additional global state information that is the input of a
mixing network. The QMIX is trained to minimize the loss, just like the VDN (Sunehag et
al., 2017), given as

L(θ)=
b∑

i=1

[(y toti −Qtot (τ ,u,s;θ))2], (3)

where b is the batch size of transitions sampled from the replay buffer and Qtot is output
of the mixing network and the target y toti = r + γmaxu′Qtot (τ ′,u′,s′;θ−), and θ− are
the parameters of a target network. The QMIX allows learning of joint-action-value
functions, which are equivalent to the composition of optimal Q-values of each agent. This
is achieved by imposing a monotonicity constraint on the mixing network. Monotonicity
can be enforced by the constraint on the relationship between Qtot and individual Q value
functions, given as

Qa :
∂Qtot

∂Qa
≥ 0,∀a∈A. (4)

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


Figure 1 MARL structure for AI robot soccer.
Full-size DOI: 10.7717/peerjcs.718/fig-1

PROPOSED METHOD
In heterogeneous multi-agent reinforcement learning, the main challenge can be described
as how to provide an optimal policy andmaximize cooperative behavior in a heterogeneous
multi-agent environment. In this scenario, the agents act independently and maximize not
only the individual reward but also a shared reward. To tackle this problem, a novel training
method called two-stage heterogeneous centralized training is proposed and described in
this section and to be applied to 5 versus 5 AI robot soccer.

MARL structure for AI robot soccer
TheMARL structure in 5 versus 5AI robot soccer is presented in Fig. 1. In theAI robot soccer
each robot has its role. The roles are goalkeeper, defender 1, defender 2, forward 1, and
forward 2 which are denoted as GK(gk), D1(d1), D2(d2), F1(f1), and F2(f2), respectively.
Each robot has individual observations and individual rewards according to its role in
soccer game. Each robot receives its individual observation orolet ,role ∈ {gk,d1,d2,f 1,f 2}
at each time step t and selects its action urolet according to a policy network which is trying
to maximizing individual role rewards r rolet and team reward r teamt . The policy network also
takes into consideration past individual observations and actions taken. The concatenation
of individual actions of the 5 robots forms a joint-action set Ut . By performing this
joint-action in the AI robot soccer environment, the simulator calculates the next global
state St+1, robot observation Ot+1, and reward Rt+1. It is noted that the global state is
available only during training.

TSHCT architecture
As shown in Fig. 2, the training procedure is divided into two stages. In the first stage,
agents of the same type (homogeneous agents, e.g., two agents as defenders) are trained.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 6/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-1
http://dx.doi.org/10.7717/peerj-cs.718


Figure 2 Overall architecture of two-stage heterogeneous centralized training. In the first stage, the
agents are trained using their individual role rewards, goalkeeper reward, defender reward, and forward
reward. A shared policy is used by defenders and by forwards. In the second stage, the agents are trained
using a collective team reward. The global state of the environment st is also used as an input of the team
mixing network, following the structure of a hypernetwork (Ha, Dai & Le, 2016).

Full-size DOI: 10.7717/peerjcs.718/fig-2

Decentralized execution is used during inference and a shared policy is used by the agents
of the same type. In the second training stage, all heterogeneous agents are trained jointly.
These two stages are executed in a serial learning structure.

To model each agent’s policy, the structure of DQN with gated recurrent unit(GRU)
(Chung et al., 2014) or the structure of Dueling Q-Networks with GRU is used in the
experiments. The policy network receives as input 40 subsequential frames with the
current individual observation of the agent o(Nn)

t and the last action chosen u(Nn)
(t−1), where

Nn is the n-th agent of theN -role (type). The output of the policy network is the state-action
value QNn . The action with the highest Q-value is chosen at each time step with epsilon
greedy exploration.

In training stage 1, the Q(RoleN )∀N ∈ {GK (goalkeeper),D12(defenders),F12(forwards)}
is calculated by adding Q-values QNn from the homogeneous agent network. In training
stage 2, the team mixing network combines the individual role rewards into the shared

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 7/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-2
http://dx.doi.org/10.7717/peerj-cs.718


collective reward. The mixing network is modeled as a hypernetwork (Ha, Dai & Le, 2016),
using feed-forward layers. The hypernetwork is conditioned on the global state St of
the environment and takes the values of Q(RoleGK ), Q(RoleD12), and Q(RoleF12) produced in
training stage 1 as inputs. The output of the mixing network is QTeam.

TSHCT learning equations
The proposedmethod is used tominimize the losses through the entire training. In training
stage 1, each role optimizer updates the weights of the policy network to minimize the
loss LRoleN (θ) in relation to the target yRoleN . The target yRoleN is calculated based on the
Bellman equation (Bellman, 1954) with the sum of the individual role rewards RewardRoleN
for the current time step and the Q-value estimated for the next state. The target and the
loss are given as follows

yRoleN =RewardRoleN +γmaxu′QRoleN (τ ′,u′,s′;θ−),

LRoleN (θ)=
b∑

i=1

[(yRoleNi −QRoleN (τ ,u,s;θ))2], (5)

where γ and θ− are the parameters of a target network, the discount factor and policy,
similar to the ones presented in DQN (Mnih et al., 2015) to stabilize the training procedure
and b is the batch size of episodes sampled from the replay buffer. In training stage 2, the
team optimizer updates the weights of mixing network and policy networks to minimize
the team loss in relation to the team target yTeam calculated with the total shared reward
RewardTotal , which is the sum of sparse cooperative team rewards and dense individual role
rewards. The team loss LTeam(θ) is given as follows

yTeam=RewardTotal+γmaxu′QTeam(τ ′,u′,s′;θ−),

LTeam(θ)=
b∑

i=1

[(yTeami −QTeam(τ ,u,s;θ))2]. (6)

Equations (5) and (6) are analogous to the minimum squared loss used in Mnih et al.
(2015). Using additivity (Sunehag et al., 2017) and monotonicity (Rashid et al., 2020),
the TSHCT trains heterogeneous agents by maximizing QTeam in stage 2, while learning
multiple roles by maximizing the Q-value of each individual role Q(RoleGK ), Q(RoleD12), and
Q(RoleF12) in stage 1.

TSHCT curriculum learning through self-play
To train a robust policy in a competitive-cooperative scenario that can work well against
multi-agent in the opponent team, curriculum learning is needed. In this paper, we use
self-play as a form of the implicit curriculum with the objective of learning robust AI
robot soccer strategies. The implicit self-play curriculum is implemented by updating the
opponent team when the number of episodes reaches a particular number. The opponent
team is kept updated and reference policies take turns. Using self-play, it is possible to
keep the opponent team at an appropriate level of competitivity, not too strong so that
the policy allows good behavior and not too easy so that the policy avoids weak behaviors.
The soccer strategy learned through self-play tends to lead to acceptable game performance

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


Figure 3 Specifications of the AI robot soccer environment. Robots with different roles, goalkeeper, de-
fender, or forward, have different mass, maximum linear velocity, and maximum torque.

Full-size DOI: 10.7717/peerjcs.718/fig-3

(Heinrich, Lanctot & Silver, 2015; Lanctot et al., 2017; Silver et al., 2017) as the result of the
automated curriculum.

SIMULATION RESULTS
In this section, the MARL environment used in the experiments and the results obtained
by the TSHCT and other baseline methods are described.

AI robot soccer MARL environment
To demonstrate the performance of the TSHCT, experiments are conducted in an AI
robot soccer environment with specifications presented in Fig. 3, which is developed with
Webots robot simulation software (Michel, 2004) and based on the environment described
in Hong et al. (2021). In this AI Soccer simulation game, two teams compete similarly to a
real soccer game, trying to kick the ball into the opponent’s goal area to score and to win
the game against the opponent team. In each team, there are 5 robots with 3 different roles
(one goalkeeper, two defenders, and two forwards). The AI robot soccer game is divided
into two 5 minute-long halves. For training, the game is divided up into episodes of 40
sequential frames. An episode is over whenever 40 sequential frames are processed.

Global state and observations
The global state, available only during centralized training and used as input to the mixing
network, contains information of all the soccer robots and the ball. Specifically, the state
vector contains the coordinates and orientations of all soccer robots, including robots of
the opponent team, and the ball coordinates. The coordinates are relative to the center of
the field (origin). The individual local observations of each robot are their relative positions
in the field and relative distances and orientations to other robots and to the ball within
their range of view. These observations are used as inputs of the policy networks.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 9/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-3
http://dx.doi.org/10.7717/peerj-cs.718


Action
The basic actions committed by the robots are move, jump and kick. They are achieved
by giving continuous control variables to the feet and legs. To achieve these behaviors a
discrete set of 20 actions is designed which is allowed to be taken by the agent at each time
step. A discrete set of actions is used so that the DRQN and the Dueling DRQN can be
used as the off-policy value-based algorithms for the experiments. The discrete action set
consists of actions of forward motion, backward motion, 6 directions of forward turns, 4
directions of backward turns, clockwise and counterclockwise turns, 2 kinds of forward
turn combined with kick, 2 kinds of forward motion combined with kick, stop combined
with kick, and stop.

Reward
To train AI soccer robots to perform their roles and cooperative behavior, individual role
rewards and a shared team reward are defined. Individual role rewards are a combination
of dense rewards associated with two pieces of information. One is the ball information
relative to the robot, such as distance, velocity, and angle. The other is the information of
the expected position which is defined for each role, i.e., default position where the robot
should be to play its role. The team reward is a combination of a sparse reward related to
scoring and dense rewards related to the distance and velocity between the ball and the
opponent’s goal.

Equations (7) and (8) show the mathematical modeling of the individual role reward
and the team reward. In Eq. (7), drp is the distance between the robot and its expected
role position, θrb and vrb are the relative angle and relative velocity between the robot
and the ball, dbg ,pre/cur is the distance between the ball and the opponent goal center at
previous/current time step, and isTouch is a boolean that is true when the robot touched
the ball within the last 10 time steps. In Eq. (8), dbg and vbg are distance and velocity
between the ball and the opponent goal center and isScore is 100 if the team scored against
the opponent team.

r role = e−drp+0.5e−θrb+0.5(1−e−vrb)+50(dbg ,pre−dbg ,cur )× isTouch. (7)

r team= 5e−dbg +5(1−e−vbg )+ isScore. (8)

Network hyperparameters
The neural network hyperparameters used in the experiments are as follows

• DRQN architecture: 2 layers with 128 hidden units, 1 layer of GRU with 128 hidden
units, and ReLU non-linearities.
• Dueling DRQN architecture: 1 layer with 128 hidden units, 1 layer of GRU with 128
hidden units, 2 layer with 128 hidden units for value prediction, 2 layer with 128 hidden
units for advantage prediction, and ReLU non-linearities.
• Mixing network architecture: 1 layer of mixing network with 32 hidden units, 2 layers
of hypernetworks with 32 hidden units, and ReLU non-linearities.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


• ADAM optimizer (Kingma & Ba, 2014) with learning rate set to 4×10−5 for both policy
and mixing networks.
• Discount factor γ set to 0.99.
• Target networks updated every 16,000 iterations.
• Epsilon used for exploration decreased by 0.025 every 104 iterations until it is kept at
0.05 at the end of training.
• Buffer size set to store 5×103 episodes.
• Batch size set to 64.

Results
Evaluation of TSHCT and baselines, COMA, VDN, and QMIX
In this section, the evaluation of the TSHCT and baseline methods, COMA, VDN, and
QMIX, are presented. The proposed method and baseline methods are trained for a total of
200k episodes using epsilon greedy exploration with self-play. The evaluation is conducted
by comparing the performances of 4 algorithms, TSHCT, COMA, VDN, and QMIX. The
performances are measured by matches against three evaluation teams, noted as Evaluation
Team 1, 2, and 3. As the result of the evaluation, comparisons of rewards and score-concede
rates are given. The ‘‘score’’ term means a goal scored by own team while the ‘‘concede’’
term representss a goal scored by the opponent team. The score-concede rate is defined as
the percentage of the number of scores divided by the sum of the number of scoring and
conceding.

In the first evaluation, the performances of the TSHCT and the baselines are obtained
by playing against the Evaluation Team 1, which is a team trained for 200k episodes with
COMA. The experimental result shows that the TSHCT is superior to COMA, VDN,
and QMIX algorithms after 80k episodes, as shown in Fig. 4, where the total reward is
defined as the sum of three individual rewards and the team reward. When the maximum
average total reward is defined as the maximum value of the average of total reward of
sequential 10,000 episodes, the maximum average total rewards of TSHCT, COMA, VDN,
and QMIX are 5.92, 4.63, 4.83, and 5.05, respectively. The score-concede rate is defined
as the maximum value of the averages of score-concede rates obtained over 10 sequential
games. The score-concede rates of TSHCT, COMA, VDN, and QMIX are 79.01%, 50.40%,
64.21%, and 67.30%, respectively, as shown in Fig. 5. It is observed that the TSHCT
improves the score-concede rate by 28.61% as compared to that of COMA.

For the second evaluation, the performances of the TSHCT and the baselines are
measured by playing against the Evaluation Team 2, which is a team trained for 200k
episodes with VDN. Experiment results presented in Fig. 6 show that the TSHCT is
superior to the baseline algorithms after 80k episodes. The maximum average total rewards
of TSHCT, COMA, VDN, and QMIX are 6.05, 4.50, 4.89, and 5.08, respectively. The
maximum averages of score-concede rate of TSHCT, COMA, VDN, and QMIX are
62.85%, 32.27%, 50.97%, and 60.85%, respectively, as shown in Fig. 7. It is observed that
the TSHCT improved the score-concede rate by 11.88% as compared to that of VDN.

For the third evaluation, the performances of the TSHCT and the baselines are obtained
by playing against the Evaluation Team 3, which is a team trained for 200k episodes with

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


Figure 4 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX. It is evaluated
against Evaluation Team 1.

Full-size DOI: 10.7717/peerjcs.718/fig-4

Figure 5 Comparison of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. It is evaluated against Evaluation Team 1.

Full-size DOI: 10.7717/peerjcs.718/fig-5

QMIX. Experiment results show that TSHCT outperforms the baseline algorithms after
60k episodes, as shown in Fig. 8. The maximum average total rewards of TSHCT, COMA,
VDN, and QMIX are 5.92, 4.50, 4.95, and 4.98, respectively. The maximum averages of
score-concede rate of TSHCT, COMA, VDN, and QMIX are 52.08%, 29.99%, 48.84%,
and 46.63%, respectively, as shown in Fig. 9. It is seen that the TSHCT improved the
performance by 5.45% as compared to that of QMIX. It is important to mention that
QMIX is the algorithm with the best performance when compared with the other baseline
methods, VDN and COMA. s

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 12/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-4
https://doi.org/10.7717/peerjcs.718/fig-5
http://dx.doi.org/10.7717/peerj-cs.718


Figure 6 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX. It is evaluated
against Evaluation Team 2.

Full-size DOI: 10.7717/peerjcs.718/fig-6

Figure 7 Comparisons of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. The score, concede, and score-concede rate are evaluated against Evaluation
Team 2.

Full-size DOI: 10.7717/peerjcs.718/fig-7

The final performances of the policies trained by the proposed method and the baseline
methods are compared by conducting 10 min matches. Table 1 summarizes the results and
statistics of these matches.

Ablation study: DRQN vs dueling DRQN
In AI robot soccer, several different sequences of actions can lead to similar reward values.
From this observation, an ablation study is conducted by combining the TSHCT with
dueling Q-network. Dueling Q-network often leads to better policy in the presence of
distinct actions leading to similar reward values (Wang et al., 2016). In this ablation study,
the traditional dueling Q-network architecture is combined with the RNN, which is named

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 13/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-6
https://doi.org/10.7717/peerjcs.718/fig-7
http://dx.doi.org/10.7717/peerj-cs.718


Figure 8 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX evaluated
against Evaluation Team 3.

Full-size DOI: 10.7717/peerjcs.718/fig-8

Figure 9 Comparison of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. The score, concede, and score-concede rate are evaluated against Evaluation
Team 3.

Full-size DOI: 10.7717/peerjcs.718/fig-9

here as Dueling DRQN. The proposed method combined with the Dueling DRQN is
compared with the TSHCT combined with the DRQN. The TSHCT with Dueling DRQN
is trained with 200k episodes using epsilon greedy exploration with self-play, similar to the
cases shown in Figs. 5, 7 and 9. For comparisons of rewards and score-concede rates, game
matches between the team trained by the TSHCT with DRQN, TSHCT-DRQN, and the
team trained by the TSHCT with Dueling DRQN, TSHCT-Dueling DRQN, are conducted.
The results of these matches are presented in Table 2.

In Fig. 10, the rewards obtained by the TSHCT with DRQN and the TSHCT with
Dueling DRQN are presented. Figure 10 shows the increasing trends of rewards. It is seen

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-8
https://doi.org/10.7717/peerjcs.718/fig-9
http://dx.doi.org/10.7717/peerj-cs.718


Table 1 Results and statistics of evaluationmatches for TSHCT against the baseline methods.

TSHCT vs COMA vsVDN vsQMIX

Score 7.09± 1.83 3.92± 1.38 3.82± 1.70
Concede 3.27± 1.54 4.23± 2.04 4.55± 0.89
Score difference 3.82 −0.30 −0.73
Score concede rate 68.4% 48.1% 45.6%

100K
episodes
trained
policy

Winning rate 100% 50% 20%
Score 5.55± 2.23 5.00± 1.13 3.45± 1.44
Concede 2.18± 1.59 2.82± 1.70 3.00± 1.41
Score difference 3.37 2.18 0.45
Score concede rate 71.8% 63.9% 53.5%

200k
episodes
trained
Policy

Winning rate 100% 90% 80%

Table 2 Results and statistics of evaluationmatches for TSHCT-Dueling DRQN against TSHCT-
DRQN.

TSHCT-Dueling DRQN vs TSHCT-DRQN

100k episodes trained policy 200k episodes trained policy

Score 5.09± 2.07 3.91± 1.78
Concede 3.82± 2.03 4.64± 2.19
Score difference 1.27 −0.73
Score concede rate 57.1% 45.7%

100k
episodes
trained
policy

Winning rate 60% 30%
Score 8.36± 2.64 5.82± 2.48
Concede 1.55± 1.30 2.27± 1.14
Score difference 6.81 3.55
Score concede Rate 84.4% 71.9%

100k
episodes
trained
policy

Winning rate 100% 80%

that the TSHCT with Dueling DRQN leads to a higher total reward as compared to the
TSHCT with DRQN. The maximum average score-concede rates of the team trained by
the TSHCT with Dueling DRQN against a team trained by the TSHCT with DRQN and
three evaluation teams are 65.59%, 81.49%, 81.52%, and 64.67%, respectively, as shown in
Fig. 11. The TSHCT with Dueling DRQN demonstrates improved score-concede rates over
Evaluation Team 1, 2, and 3 by 2.48%, 18.67%, and 12.59% as compared to that obtained
by the TSHCT with DRQN.

The policies trained by the TSHCT combined with DRQN and by the TSHCT combined
with Dueling DRQN are compared with game results. Table 2 lists the results of these
evaluation matches. For policies trained with the same number of training episodes, the
TSHCT combined with Dueling DRQN outperforms the TSHCT combined with DRQN,
achieving 60% and 80% winning rates with 100k episodes and 200k episodes, respectively.
For the cases in which one algorithm is trained with two times the number of episodes
of the opponent, i.e., 200k versus 100k, the algorithm that was trained for a longer time
achieves a higher winning rate. However, even for this case, the trained policy using the

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


Figure 10 Rewards of TSHCT with DRQN and Dueling DRQN during training for 200k episodes with
self-play.

Full-size DOI: 10.7717/peerjcs.718/fig-10

Figure 11 Comparison of score, concede, and score-concede rate obtained during training by TSHCT-
DRQN, TSHCT-Dueling DRQN, COMA, VDN, and QMIX. The score, concede, and score-concede rate
are evaluated against a team trained by the TSHCT with DRQN and three evaluation teams.

Full-size DOI: 10.7717/peerjcs.718/fig-11

TSHCT combined with Dueling DRQN is more robust, achieving a 30% winning rate and
a score-concede rate of 45.7%.

Discussion
Efficient exploration and reward modeling remain a big challenge in complex multi-agent
environments. In a game such as robot soccer, using only team rewards, e.g., a sparse
score/concede reward or a sparse win/lose reward after the game is finished, is not enough
for the agents to learn robust behavior. To deal with this problem, Vinyals et al. (2019)

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.718/fig-10
https://doi.org/10.7717/peerjcs.718/fig-11
http://dx.doi.org/10.7717/peerj-cs.718


use data from professional players at the beginning of the training in a supervised fashion
to train a Starcraft 2 agent. Without this supervised data, it is difficult for the models to
achieve a level capable of playing against good players and exploiting game strategies. In
this aspect, by the results obtained in the results section, additional information in the
form of individual role rewards that can be provided or learned unsupervised improves
the policies.

In relation to the improvement of team rewards during training, the results obtained in
the simulations indicate that it is difficult to train for cooperative behavior while performing
multiple roles. The results obtained by the proposed method and the baseline methods,
COMA, VDN, and QMIX, suggest that techniques that assign the contribution of each
robot in the reward received as well as the techniques that train individualized roles that
lead to stronger agents is needed. This can be addressed by the proposed method using two
training stages. The stage 1 induces the learning of individual roles while stage 2 causes
the learning of cooperative behavior and maximizing team rewards. From the observation
of graphs of the individual role rewards, as shown by reward plots in Figs. 4, 6 and 8, the
TSHCT achieves role rewards higher than those obtained by other algorithms. As robot
soccer is a game played against an opponent team, the main objective, more than having
high rewards during training, is to train multi-agent that performs well against opponents.
Observing the matches against evaluation teams, as shown in Figs. 5, 7 and Fig. 9, it is
noted that the proposed method is able to achieve substantially higher score-concede rate
when compared with other methods. These results suggest that the proposed method in
general works better than other methods. In the aspect of computational load, among the
proposed method and the baselines, the proposed method takes the second-longest time
to train the team for the same number of iterations because of its two stages.

In AI robot soccer, the policies are trained to maximize both individual role rewards
and a shared team reward. Individual role rewards are designed for the robots to learn
their roles, specifically to learn how to position and to learn how to control the ball to
perform passing and shooting. Team rewards are designed for the team to learn how to
score against the opponent team, avoid conceding, and also learn how to put pressure on
opponent robots during the game (keeping the ball near the opponent goal area as much
as possible during the game). The results obtained from simulation, using these rewards,
have shown that the robots are able to learn individual role rewards while trying to act
collaboratively. The GK learns to move to protect the goal against kicks of the opponent
team while trying to kick away if the ball is reachable. The defenders act mostly if the ball
is in the own field and try to recover the ball and kick the ball away from goal. When the
ball is in the opponent field, defenders mostly try to position themselves in the field to
avoid counter-attacks. Forwards are the most active players in the trained policies, trying
to always be near the ball and kick the ball along right direction into the opponent’s goal.

It is important to mention that, despite the results being obtained only in a simulated
environment, the final goal of the RL approaches is to transfer the policy in a simulation
to a real world scenario, such as playing a real robot competition in the RoboCup (Kitano
et al., 1995) contest. It is necessary to create a framework with the sensors available in the
real robots in real-time so that the work learned by simulation can be transferred to real

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


robots without the need of re-training or with little re-training. Important research works
have already been investigated while transferring the results obtained from simulation to
real robots (Peng et al., 2018). To train robust models, the most important aspects are to
respect the partially observable modeling of the robot soccer environment and to consider
the variability of real world scenarios. For such purpose, noise that affects the state, the
action, and the physics modeling should be added to the simulation environment so that
less fine tuning is needed when deploying the trained policy.

CONCLUSION
This paper deals with multi-agent reinforcement learning with heterogeneous agents. The
classic way to solve this problem is using the CTDE framework. However, the CTDE
framework is less efficient for heterogeneous agents in learning individual behaviors. This
paper presents the TSHCT, a novel heterogeneous multi-agent reinforcement learning
method that allows heterogeneous agents to learn multiple roles for cooperative behavior.
In the proposed method, there are two training stages that are conducted in a serial
manner. The first stage is for training individual behavior through maximizing individual
role rewards, while the second stage is for training cooperative behavior while maximizing a
shared team reward. The experiments are conducted with 5 versus 5 AI robot soccer which is
relevant to the cooperative-competitive multi-agent environment. The proposed method
is compared with other baseline methods that maximize the shared reward to achieve
cooperative behavior. The proposed method and baseline methods, COMA, VDN, and
QMIX, are combined with value-based algorithms, such as DQN and dueling Q-networks.

Comparisons of total rewards and score-concede rates are presented in the paper. The
results show that the TSHCT training method is superior to other baseline algorithms in
role training and learning cooperative behavior. Themaximum average score-concede rates
of the TSHCT in comparison with the COMA, VDN, and QMIX are 79.01%, 62.85%, and
52.08%, respectively, representing the improvement achieved by the TSHCT in competitive
AI robot soccer matches.

Because similar action-observation history leads to similar rewards in AI robot soccer,
the training process can be unstable. To address this issue, an ablation study comparing
the TSHCT combined with Dueling DRQN and DRQN is conducted. The performances of
the TSHCT with DRQN and Dueling DRQN are measured by total rewards, score-concede
rates, and match results. As a result, the TSHCT combined with Dueling DRQN achieves
better performance when compared to the TSHCT combined with DRQN. The maximum
average score-concede rate of the TSHCT with Dueling DRQN in comparison with the
COMA, VDN, and QMIX are 81.49%, 81.52%, and 64.67%, respectively. This result
represents an improvement of 2.48%, 18.67%, and 12.59% as compared to the case of the
TSHCT combined with DRQN.

Simulation results show that the TSHCT is able to train an AI robot soccer team
effectively, achieving higher individual role rewards and higher total rewards, as compared
to other approaches that can be used for training to get cooperative behavior in a multi-
agent environment. As future work, this framework is to be combined with actor-critic

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


policy-based multi-agent algorithms that can be applied in environments with continuous
actions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Institute for Information communications Technology
Promotion (IITP) grant funded by the Korean government (MSIT) (No.2020-0-00440,
Development of Artificial Intelligence Technology that continuously improves itself as the
situation changes in the real world). There was no additional external funding received for
this study. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Institute for Information communications Technology Promotion (IITP).
Korean government (MSIT): 2020-0-00440.
Development of Artificial Intelligence Technology.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Taeyoung Kim conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Luiz Felipe Vecchietti conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.
• Kyujin Choi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Sanem Sariel and Dongsoo Har analyzed the data, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code files are available at GitHub: https://github.com/ngng9957/TSHCT_dueling

REFERENCES
Andrychowicz M,Wolski F, Ray A, Schneider J, Fong R,Welinder P, McGrew B,

Tobin J, Abbeel P, ZarembaW. 2017.Hindsight experience replay. ArXiv preprint.
arXiv:1707.01495.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 19/22

https://peerj.com
https://github.com/ngng9957/TSHCT_dueling
http://arXiv.org/abs/1707.01495
http://dx.doi.org/10.7717/peerj-cs.718


Bellman R. 1954. The theory of dynamic programming. Technical report, Randcorp
santa monica ca.

Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D, Fischer
Q, Hashme S, Hesse C. 2019. Dota 2 with large scale deep reinforcement learning.
ArXiv preprint. arXiv:1912.06680.

Chu T,Wang J, Codecà L, Li Z. 2019.Multi-agent deep reinforcement learning for large-
scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems
21(3):1086–1095.

Chung J, Gulcehre C, Cho K, Bengio Y. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. ArXiv preprint. arXiv:1412.3555.

Foerster J, Farquhar G, Afouras T, Nardelli N,Whiteson S. 2018. Counterfactual multi-
agent policy gradients. In: Proceedings of the AAAI conference on artificial intelligence.

HaD, Dai A, Le QV. 2016.Hypernetworks. ArXiv preprint. arXiv:1609.09106.
Hausknecht M, Stone P. 2015. Deep recurrent q-learning for partially observable mdps.

ArXiv preprint. arXiv:1507.06527.
He X, Dai H, Ning P. 2015. Improving learning and adaptation in security games by

exploiting information asymmetry. In: 2015 IEEE conference on computer commu-
nications (INFOCOM). Piscataway: IEEE, 1787–1795.

Heinrich J, Lanctot M, Silver D. 2015. Fictitious self-play in extensive-form games. In:
International conference on machine learning, vol. 35. 7-9 July 2015. Lille, France:
PMLR, 805–813.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Hong C, Jeong I, Vecchietti LF, Har D, Kim JH. 2021. AI world cup: robot soccer-based
competitions. IEEE Transactions on Games Epub ahead of print 2021 11 March
DOI 10.1109/TG.2021.3065410.

Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V, Hutter M. 2019.
Learning agile and dynamic motor skills for legged robots. Science Robotics 4(26).

Kim T, Vecchietti LF, Choi K, Lee S, Har D. 2020.Machine learning for advanced
wireless sensor networks: a review. IEEE Sensors Journal.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint.
arXiv:1412.6980.

Kitano H, AsadaM, Kuniyoshi Y, Noda I, Osawa E. 1995. RoboCup: the robot world
cup initiative. Available at https://www.robocup.org/ (accessed on 15 June 2021).

Klima R, Tuyls K, Oliehoek F. 2016.Markov security games: learning in spatial security
problems. In: NIPS workshop on learning, inference and control of multi-agent systems.
1–8.

Lanctot M, Zambaldi V, Gruslys A, Lazaridou A, Tuyls K, Pérolat J, Silver D, Graepel
T. 2017. A unified game-theoretic approach to multiagent reinforcement learning.
ArXiv preprint. arXiv:1711.00832.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D,Wierstra D.
2015. Continuous control with deep reinforcement learning. ArXiv preprint.
arXiv:1509.02971.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 20/22

https://peerj.com
http://arXiv.org/abs/1912.06680
http://arXiv.org/abs/1412.3555
http://arXiv.org/abs/1609.09106
http://arXiv.org/abs/1507.06527
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TG.2021.3065410
http://arXiv.org/abs/1412.6980
https://www.robocup.org/
http://arXiv.org/abs/1711.00832
http://arXiv.org/abs/1509.02971
http://dx.doi.org/10.7717/peerj-cs.718


Liu S, Lever G, Merel J, Tunyasuvunakool S, Heess N, Graepel T. 2019. Emergent
coordination through competition. ArXiv preprint. arXiv:1902.07151.

Lowe R,Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. 2017.Multi-agent actor-critic
for mixed cooperative-competitive environments. ArXiv preprint. arXiv:1706.02275.

Michel O. 2004. Cyberbotics Ltd. Webots: professional mobile robot simulation.
International Journal of Advanced Robotic Systems 1(1):5 DOI 10.5772/5618.

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu
K. 2016. Asynchronous methods for deep reinforcement learning. In: International
conference on machine learning, vol. 48 20-22 June 2016. New York, New York, USA:
PMLR, 1928–1937.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Ried-
miller M. 2013. Playing atari with deep reinforcement learning. ArXiv preprint.
arXiv:1312.5602.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A,
Riedmiller M, Fidjeland AK, Ostrovski G. 2015.Human-level control through deep
reinforcement learning. Nature 518(7540):529–533 DOI 10.1038/nature14236.

Nguyen TT, Nguyen ND, Nahavandi S. 2020. Deep reinforcement learning for multia-
gent systems: a review of challenges, solutions, and applications. IEEE Transactions
on Cybernetics 50(9):3826–3839 DOI 10.1109/TCYB.2020.2977374.

Oliehoek FA, Amato C. 2016. A concise introduction to decentralized POMDPs. Cham:
Springer.

Peng XB, Andrychowicz M, ZarembaW, Abbeel P. 2018. Sim-to-real transfer of robotic
control with dynamics randomization. In: 2018 IEEE international conference on
robotics and automation (ICRA). Piscataway: IEEE, 3803–3810.

Rashid T, SamvelyanM, DeWitt CS, Farquhar G, Foerster J, Whiteson S. 2020.
Monotonic value function factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research 21(178):1–51.

Sallab AE, AbdouM, Perot E, Yogamani S. 2017. Deep reinforcement learning frame-
work for autonomous driving. Electronic Imaging 2017(19):70–76.

SamvelyanM, Rashid T, DeWitt CS, Farquhar G, Nardelli N, Rudner TG, Hung C.-M.,
Torr PH, Foerster J, Whiteson S. 2019. The starcraft multi-agent challenge. ArXiv
preprint. arXiv:1902.04043.

SeoM, Vecchietti LF, Lee S, Har D. 2019. Rewards prediction-based credit as-
signment for reinforcement learning with sparse binary rewards. IEEE Access
7:118776–118791 DOI 10.1109/ACCESS.2019.2936863.

Shalev-Shwartz S, Shammah S, Shashua A. 2016. Safe, multi-agent, reinforcement
learning for autonomous driving. ArXiv preprint. arXiv:1610.03295.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser
J, Antonoglou I, Panneershelvam V, Lanctot M. 2016.Mastering the game
of Go with deep neural networks and tree search. Nature 529(7587):484–489
DOI 10.1038/nature16961.

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L,
Kumaran D, Graepel T. 2018. A general reinforcement learning algorithm that

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 21/22

https://peerj.com
http://arXiv.org/abs/1902.07151
http://arXiv.org/abs/1706.02275
http://dx.doi.org/10.5772/5618
http://arXiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://arXiv.org/abs/1902.04043
http://dx.doi.org/10.1109/ACCESS.2019.2936863
http://arXiv.org/abs/1610.03295
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.7717/peerj-cs.718


masters chess, shogi, and Go through self-play. Science 362(6419):1140–1144
DOI 10.1126/science.aar6404.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert
T, Baker L, Lai M, Bolton A. 2017.Mastering the game of go without human
knowledge. Nature 550(7676):354–359 DOI 10.1038/nature24270.

Sunehag P, Lever G, Gruslys A, CzarneckiWM, Zambaldi V, Jaderberg M, Lanctot M,
Sonnerat N, Leibo JZ, Tuyls K. 2017. Value-decomposition networks for cooperative
multi-agent learning. ArXiv preprint. arXiv:1706.05296.

Vecchietti LF, Kim T, Choi K, Hong J, Har D. 2020. Batch prioritization in multigoal
reinforcement learning. IEEE Access 8:137449–137461
DOI 10.1109/ACCESS.2020.3012204.

Vecchietti LF, SeoM, Har D. 2020. Sampling rate decay in hindsight experience replay
for robot control. IEEE Transactions on Cybernetics Epub ahead of print 2020 21
May DOI 10.1109/TCYB.2020.2990722.

Vinyals O, Babuschkin I, CzarneckiWM,MathieuM, Dudzik A, Chung J, Choi
DH, Powell R, Ewalds T, Georgiev P. 2019. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature 575(7782):350–354
DOI 10.1038/s41586-019-1724-z.

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N. 2016. Dueling network
architectures for deep reinforcement learning. In: International conference on machine
learning. PMLR, 1995–2003.

Zhang H, Feng S, Liu C, Ding Y., Zhu Y, Zhou Z, ZhangW, Yu Y, Jin H, Li Z. 2019.
Cityflow: a multi-agent reinforcement learning environment for large scale city
traffic scenario. In: The world wide web conference. 3620–3624.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 22/22

https://peerj.com
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1038/nature24270
http://arXiv.org/abs/1706.05296
http://dx.doi.org/10.1109/ACCESS.2020.3012204
http://dx.doi.org/10.1109/TCYB.2020.2990722
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.7717/peerj-cs.718

