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ABSTRACT
The International Cricket Council (ICC) uses the Duckworth-Lewis-Stern (DLS)
method for resource compensation in interrupted games, which is an upgraded version
of the Duckworth-Lewis (D/L) method. In order to compensate resources, the D/L
method uses a generic resource table for all teams without considering both teams’
past performance, venue of the match, and players participating in that match. That is
why teams cannot strategize according to their strengths and play according to D/L’s
requirements. This paper presents a method for Player-aware Resource Compensation
in Interrupted Cricket Matches (PRCICM). The PRCICM model is dynamic because
it allocates a different number of resources to different teams based on their resource
usage in the past, players involved in the match and venue of the match. The proposed
method eliminates the need to find the generalized scoring patterns with a player-driven
approach. A team-specific approach is more appropriate because of teams’ different
formations and playing approaches.

Subjects Algorithms and Analysis of Algorithms, Data Science
Keywords OR in sports, Sports, Cricket, Regression, Resource compensation

INTRODUCTION
In cricket, a set of 22 players is involved in a game divided into two equal groups of 11.
Cricket has different international formats, such as Test Cricket, One Day International
(ODI), and Twenty 20 (T20). T10 and 4-day cricket formats are also used in different
leagues at the domestic level. A set of six legal balls bowled to a batsman by a bowler is
called an over. Bowlers bowl their quota of bowling in terms of overs. A bowler can bowl
a maximum of 60 deliveries in an ODI match. This means that one can bowl a maximum
of 10 overs. There are multiple ways to dismiss a batman end their inning like run out,
bowled, etc. Whenever a batsman gets out, the batting team has lost a wicket. For further
and in-depth understanding of the rules of cricket, the below referred web page is a great
resource (MCC, 2018). The International Cricket Council (ICC), the governing body of
cricket, organizes global cricketing events such as the World Cup, the Champions Trophy,
and the International Test Championship. The ICC has also established the ranking systems
of players and teams for every game format, and players have been categorized accordingly
(Ranking, 2018). The ICC has announced that a league-based structure will be imposed on
international tours. There will be separate leagues for all formats, and it will also act as a
pathway to qualify for the World Cup (Media, 2018).
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The ICC had adopted a system called Duckworth-Lewis (D/L) method for helping them
settle matches affected by natural causes such as rain and bad light (ICC, 2018). The D/L
method was first introduced in ODIs in January 1997 and is also used in T20s. In the D/L
method, when an ongoing match is affected, the algorithm considers the existing scenario
and gives its estimation after plotting it on a resource table. If interruptions occur in the
first innings of a match, then the remaining overs of the match are reset to a new value
to conclude the match within the specified limited time. Also, if rain starts pouring at the
end of the first inning or the start of the second inning of a match, then the target score
and overs for the second inning are reset for getting match results within the given time
constraints. Two scenarios can occur if the interruptions occur in the second inning and
the game cannot continue. If the team has played 40% of the overs, then the D/L method
can predict the winner of the match; otherwise, the match is abandoned with no result. A
similar approach is taken if the match is affected by bad light or any other natural calamity.

In the D/L method, when a match is interrupted in a match’s first innings, the D/L
algorithm uses information such as the wickets lost, current score, remaining overs,
and the average ODI score. This data is plotted on a resource table to compensate for
the lost resources in terms of overs. The interruption in the second innings makes the
algorithm choose the first innings score rather than the average ODI score for generating
the resource table. That resource table is also used to calculate Net Run Rate (NRR) by
analyzing the consumed team resources at the end of a match (Duckworth & Lewis, 2004).
The Entertainment and Sports Programming Network has built its model to calculate the
impact of each run and wicket on a match. This model also predicts the match’s outcome
based on the previous record of players involved in the game (Team, 2019).

D/L methods assign each wicket a resource value and do not care about who the batter
is. In cricket terms, the D/Lmethod will assign the same number of resources to Virat Kohli
and Chris Martin if they come to bat at the same batting position in a match. Different
teams can have different types of batters at different positions. Furthermore, one teammay
choose to play aggressively at the start and try to finish the game early, while the other
may choose to preserve wickets until the end and then play aggressively. That is why D/L’s
approach of finding a scoring pattern that gets impacted by all teams rather than a specific
team is not the right way to allocate resources.

In order to solve the issues mentioned above, this paper proposes a resource
compensation algorithm called Player-aware Resource Compensation in Interrupted
Cricket Matches (PRCICM). The proposed algorithm consists of two parts. The first is to
find the scoring pattern of individual teams and calculate how much weightage an over has
in a team’s inning. The second part is assigning weightage to each player’s wicket based on
their career average, host country average, and the average of the last five matches.

In summary, the contribution of the proposed work includes:

• Different scoring patterns: PRCICM assigns different over weightage to different
teams to help them strategize according to their strength rather than D/L’s generalized
percentage.
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• Player’s worth: Instead of assigning worth to each batting position, PRCICM, using
multiple linear regression, allocates worth to each player. That helps accurately measure
the most critical and less critical wickets in an inning.
• Impact of the host country: Inclusion of average in the host country as a performance
indicator for player evaluationmakes sure that if a player struggles in any of the countries,
then his wicket will have less importance in that specific country.

RELATED WORK
Cricket is the second most followed sport in the world. It is played between two teams,
and the team that scores the most runs is declared the winner (Worldatlas, 2018), i.e., it is
a zero-sum sport. When the match is affected by bad weather conditions, D/L is used to
compensate for lost resources (Duckworth & Lewis, 1998). It was devised by two English
statisticians, Frank Duckworth and Tony Lewis. The paper was initially proposed in 1997,
and later on, Professor Steven Stern was added to it, and it was renamed in 2014 to its
current title. Initially, cricket used to rely on Average-Run-Rate andMost Productive Overs
methods, and these two methods were intrinsically flawed.

In 1992, the World Cup Semi-final was interrupted by rain when South Africa needed
22 runs from 13 balls. The target was revised using the Most Productive Overs method and
gave South Africa a target of 21 runs of just one ball, thus robbing them of any chance of
making it to the World Cup Final. This game gave Duckworth the much-needed impetus
to work on the model (Staff, 2007).

Duckworth-Lewis-Stern (DLS) method is based on resources. Each team has two
essential resources, i.e., overs and wickets, to score as many runs to outscore the opponent
as cricket is a zero-sum game. The DLS method exploits these available resources’ close
correspondence with its final score (Australia, 2006).

Disadvantages of generalized resource allocation
After introducing the D/L method, criticism started pouring, and a revised method was
introduced in 2004 (Clarke & Allsopp, 2001). Even after the perceived improvements, the
new method is well criticized by critiques. A survey of the D/L method shows that this
method is biased. Studies show that the D/L method favors the team batting first, and
teams also use that for gaining an unfair sporting advantage. That study also shed light on
how D/L is influenced by wickets rather than runs and run rate (Shah et al., 2015). Another
criticism of the D/L method is that the flow of resources is not the same in both innings,
and the team batting 2nd can also benefit from that by quickly achieving the D/L par score.
In 2009, SE Stern generated separate resource tables differently (Stern, 2009).

Researchers behind the D/L method again defended their mechanism by calling other
methods unfair and giving examples of the behavior of the D/L method in some matches
with comparison to other proposed methods (Duckworth & Lewis, 2015). Stern also
criticized the D/L approach with examples that this method is unfair and the reactive
approach of calculating the target is unsuitable. He compared some other proposed
methods with D/L and concluded that although D/L is simpler, it still competes with others
(Stern, 2016). In the same year, a researcher also proposed a methodology that evaluates
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the form of teams and home advantage. This method has over by over prediction accuracy
of 82% in the 2nd inning (Asif & McHale, 2016). The core issue with D/L is that it starts
forecasting after 20 overs. Recently a poster paper claimed that neural networks, Naive
Bayes, and Random Forest have better accuracy than the D/L method. Besides optimizing
the resource table, they claimed that their model has the same accuracy at ten overs as D/L
has at 20 (Abbas & Haider, 2017).

Influence of T20 on scoring patterns
When T20 cricket arrived, the primary issue with the D/L method was that it was not
designed according to the game’s shortest format. Scoring patterns are different in both
formats, and batters are less cautious about losing their wicket. A simulator is proposed
by researchers for twenty-twenty international (T20I) cricket matches. The good thing
about it is that it considers players but does not account for its current form. But for the
second innings, these simulation results are dynamic but biased (Davis, Perera & Swartz,
2015). Studies show that the starting of a match has a different approach than the later
part. Usually, powerplay overs add more runs to the game than regular overs because of
the aggressive nature of opening batters and the applied fielding restrictions (Silva, Manage
& Swartz, 2015). McHale and Asif (2013) declared D/L better than all previously proposed
methods, but they suggested that the best method to predict the outcome of a cricket match
should be the one that works in T20I and ODIs. They proposed a method in 2013 and
came up with a better approach in 2016 (McHale & Asif, 2013). Historical data of players
and venues has its worth, and by using that, a match can be predicted (Cricviz, 2019).

Importance of condition and players
Usually, conditions have a significant impact on players’ performances in cricket. That’s
why a region-based ranking method is proposed (Daud et al., 2018). Some researchers
developed a simulator that takes some historical and instantaneous data points to simulate
the game. They also take individual characteristics of batters but leave the bowlers for
future work (Sankaranarayanan, Sattar & Lakshmanan, 2014). Statistical algorithms such
as Naïve Bayes are also used to predict the match’s outcome with the help of historical
data (Singh, Singla & Bhatia, 2015). A team’s performance depends on how the team is
formulated, and it also indicates their preferences to win matches. A method has also been
proposed to calculate the number of deliveries expected to be bowled in a competition
based on the players involved and their strength (Tyagi et al., 2020). In 2017, a method
was proposed to calculate the precedence. This can show the strengths and weaknesses of
a team and could also be helpful to understand their strategy (Ahmad et al., 2017). Some
people have treated player prediction as a classification problem, while others have done
the same using regression analysis (Kalpdrum & Niravkumar, 2018; Anik et al., 2018).

PRCICM DESIGN FOR WEIGHTAGE ALLOCATION AND
SCORE CALCULATION
Figure 1 shows the flow of PRCICM. PRCICM method requires data for two purposes: to
evaluate how a team plays in different periods of a match, and the other is to evaluate how
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Figure 1 Architecture of PRCICMmethod.
Full-size DOI: 10.7717/peerjcs.917/fig-1

much a player’s worth is in his team. Ball by ball data of matches mentioned as matches
data in Fig. 1 helps understand the team’s performances, and inning by inning data of
players helps evaluate players with respect to other players in playing 11. Inning data does
not have some of the required features for this task. That is why career average, average in
last five matches and average in host country were extracted.
On the other hand, matches consist of ball-by-ball data, which means that the dataset has
multiple samples of a team playing in any period of the match. All those samples were
aggregated into a single value for a single over. Multiple linear regression determines the
expected performance of a player, and that score then results in the weightage of each
player. Multiple linear regression was applied on inning data, and that data was divided by
the host country. Player weightage along with aggregated over data results in how much
a team is worth in any given scenario, and that worth, with the help of Duckworth and
Lewis’s proposed equations, gives the final result.

The following data sets are used for this research:
i. Inning by inning data of 148 players from top 10 ODI teams
ii. Ball by ball data of all ODI matches from 01/01/2006 to 14/12/2019
The dataset (i) was taken fromKaggle. Ball by ball data numbered as (ii) was downloaded

from https://cricsheet.org/.
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Figure 2 Accumulated over by over weightage.
Full-size DOI: 10.7717/peerjcs.917/fig-2

Over aggregation
Individually for all teams, each over of the innings was assigned a value or worth by the
following formula:

OW=
Runs Scored in that over

Total Runs Scored :
×C (1)

In Eq. (1) C is a constant, and its value is 50. This value indicates that deliveries and
wickets have an equal share in total resources at the beginning of the inning. The assumption
that led to Eq. (1) was that each team could have a different resource usage strategy, giving
them the freedom to change or continue their playing style.

Figure 2 validates the assumption mentioned above as it can be seen that Bangladesh
has a very different trajectory than Australia and Pakistan. Also, it can be seen that initial
overs contribute less to Pakistan’s inning, and Pakistan’s over weightage is almost similar
to Australia. Still, in the last part of the inning, Pakistan’s trajectory is more inclined toward
Bangladesh’s scoring pattern.

Player weightage allocation
The weightage of a player indicates how much that player will contribute to the team’s
total score in the next match in the form of a percentage. The Player Weightage Allocation
is a way to identify the importance of a player in his team. Dataset(i) is the source of this
experiment, and it helped in calculating the weightage of a player using past performances.
One crucial factor involved in this process is calculating the weightage of players based on
playing conditions. In order tomeasure the condition-wise impact, a list of 10 countries was
created. That list includes Pakistan, India, Sri Lanka, Australia, England, South Africa, New
Zealand, West Indies, UAE, and Bangladesh. Nine of the chosen countries were selected
based on the official ODI ranking. Since there were no matches played in Afghanistan,
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Table 1 VIF of features for each country.

Country Overall Last 5 Matches Host Country

Pakistan 6.573117 7.158426 2.082441
India 6.507897 3.712919 4.912342
Sri Lanka 5.637875 4.060742 3.683128
Australia 6.199958 4.775388 3.597006
England 5.498104 4.724606 3.408363
South Africa 6.898698 5.016591 4.606784
New Zealand 7.030213 4.894000 3.601747
West Indies 6.277596 3.981354 3.475201
UAE 5.734885 4.236799 3.322601
Bangladesh 6.020243 4.792490 3.905624

Afghanistan is not part of the list. In the recent past, UAE has hosted a significant number
of matches. That’s why the UAE was also included in the list.

Only innings played in that particular country were considered for each country in the
list. Since cricket teams also have bowlers and they don’t have batting as their core skill,
there was a possibility that there could be bias if all the innings of a batter were in the
training dataset while all the data of a bowler was included in the testing dataset. In order to
remove this bias, each player’s innings data was separated into two parts. One part consists
of 80% of the innings, while the other has 20% of his inning data. These separate datasets
of all players were combined to form two complete datasets for training and testing. If a
player had played only one inning in any country, in that case, he was not considered a
part of any of both datasets.

At the time of model selection, there are several options to consider. One thing that
impacted the model selection decision is that the dataset is divided into ten parts. Each part
must be evaluated on its accuracy and will have no impact on others. From the accuracy
and prediction point of view, it can be a linear or non-linear model, but after some analysis,
we found out that linear regression is working well with our data, and having different
algorithms for different countries might not be a good approach because of different
calculation criteria. Previously, in Net Run Rate and team or player ranking calculation,
International Cricket Council didn’t use different criteria based on playing condition or
country. D/L also maintains that in their approach and PRCICM is also based on that
approach.

In order to check multicollinearity, VIF was used on each country’s dataset separately,
and the score for each parameter in their respective dataset is presented in Table 1.
According to (O’brien, 2007), this score is satisfactory, and there is no need to reevaluate
the independent variables.

The training dataset of each country was then passed to multiple linear regression
separately to find out the weightage of each parameter in the dataset. Runs were used as
the dependent variable, while career average, average of last five matches, and average
in the host country were independent variables. Since each country has separate datasets
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Table 2 Country wise weightage of parameters.

Country Equation

Pakistan Runs= 0.492847 * Overall−0.19427 * Last 5 Matches+
0.115698 * Host Country+ 17.32622

India Runs= 0.38272 * Overall−0.03755 * Last 5 Matches+
0.218038 * Host Country+ 12.15356

Sri Lanka Runs= 0.6636162 * Overall+ 0.01683079 * Last 5 Matches
− 0.05041108 * Host Country+ 6.261548

Australia Runs= 0.5222344 * Overall+ 0.05455908 * Last 5 Matches
+ 0.06997351* Host Country+ 8.619372

England Runs= 0.6795543 * Overall− 0.05491578 * Last 5 Matches
+ 0.08635106 * Host Country+ 7.504847

South Africa Runs= 0.4389146 * Overall+ 0.08165265 * Last 5 Matches
− 0.00648676 * Host Country+ 11.98543

New Zealand Runs= 0.6025601 * Overall− 0.0251784 * Last 5 Matches
+ 0.00478968 * Host Country+ 10.10386

West Indies Runs= 0.6103091 * Overall− 0.01049663 * Last 5 Matches
− 0.00174947 * Host Country+ 9.342105

UAE Runs= 0.3208915 * Overall+ 0.01092727 * Last 5 Matches
+ 0.17579547 * Host Country+ 12.13873

Bangladesh 0.5355541 * Overall+ 0.08445139 * Last 5 Matches+
0.12409565 * Host Country+ 5.17619

for training and testing, multiple linear regression generates separate equations for every
country. The generated equation for each country is given below in Table 2.

This equation can predict the score of any player in any of the countries mentioned in
Table 2 with the help of the player’s stats. If a player is on his international debut, then the
player’s record that he is replacing will be used as his stats. Some of the variables negatively
relate to the score in some countries. For instance, the average of the last five matches in
Pakistan has the strongest negative relationship compared to other negative values, and
West Indies has two negatively impacting parameters. There could be a slight chance that
the predicted score of a player turns out to be a negative value if any of the players have a
bigger value of the negatively impacting parameter. Although none of the predicted values
was negative during testing, to remove this exception, the absolute value of the prediction
was taken. It will have no impact on normal predictions but assign the negative value as a
non-negative to the player.

The predicted score of each player in a team was used to calculate G50. G50 represents
the total expected score of a team if they utilize all their resources. A team in cricket has
11 players, so G50 for a team will be the sum of all 11 players playing on any given day.
Suppose S is the predicted score of each player in a team, then for each predicted score, the
equation below shows the formula to calculate G50.

G50=
11∑
K=1

|SK| (2)
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In order to calculate the weightage of each player, his expected score is divided by G50.
Suppose W is the weightage of each player then for each player P in the playing eleven:

WP= SP∗D/G50 (3)

In Eq. (3) D is a constant, and its value is 50. This weightage was combined with over’s
worth, already stored in the dataset (ii), then used in the PRCICM method to determine
how many resources a team has before and after an interruption.

Resource compensation
PRCICM method is a resource compensation algorithm that takes values of lost resources
and then assigns a score that the teamunder consideration gets for those resources. PRCICM
method changes the underlying working of the DLS method and uses a different method
to assign resources to each wicket and over. Instead of using a one-size-fits-all approach,
the PRCICM method treats each team and player separately and uses a generalized but
more dynamic approach than DLS.

At the beginning of a match, each team has 100% resources. Resources were divided into
two parts one is for players, and the other is for overs. When either ends, total resources
became 0 as the team has either no batter to send in for batting or they have no over
available to bat. The worth of each over and every player is calculated using Eqs. (1) and
(3), respectively, so at the beginning of any match total worth that any of both teams
involved in a match can be calculated using the equation below:

R=
∑

OW +
∑

WP (4)

D/L denotes R1 as the resources of the team batting first, and R2 represents the resources
of the team batting 2nd. If an over has bowled in a match, then the worth of that over will
be subtracted from R. Similarly, if any player has lost his wicket, in that case, the worth of
that player will also be subtracted from the total resources of the team.

As the match progresses and a team starts consuming overs, their total resources will
also reduce, as described above, but what if they don’t lose any wickets even until the 49th
over of a match. In order to cope with this anomaly, another formula is proposed that only
focuses on the total remaining worth of players and reduces their total worth accordingly.
Suppose PRES is the total worth of all not-out players in a team’s inning at the interruption,
and OB is the total number of overs that the team has faced before the interruption, while
C is the total allocated overs to that inning.

PLOSS= PRES ∗OB/C (5)

Equation (5) helps reduce resources so that even if a team has ten wickets in hand at the
interruption, the total consumable number of resources represents the extent to which the
players in the team can take the target rather than just relying on their possible potential.
That is the reason to subtract the value of PLOSS from R.

PRCICM method allocates total resources to a team using Eq. (4). It then subtracts the
value of consumed overs, the worth of each player that has lost their wicket, and PLOSS
from R. This subtraction returns the total resources that the team still has. In order to
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calculate how many resources a team has been deprived of, the value of R is calculated
before and after interruption and then passed on to the proposed equations of D/L. D/L
has two equations for two conditions based on resources. If R2 ≤ R1, then:

T= SR2/R1 (6)

In the case of R2≥ R1, the proposed equation is:

T= S+G50(R2−R1) (7)

In Eqs. (6) and (7), T denotes target while R1 and R2 are team one and two resources,
respectively. D/L uses the average ODI total as G50, but the PRCICMmethod has a different
way to calculate this value, as described in Eq. (2). With these equations, predefined rules
to set the value of T were also used in the PRCICM method. Pseudocode for resource
calculation is given below:

Pseudocode to calculate remaining resources using PRCICM.

Initialization
1. reg ←get host country’s equation from Table 2
2. list ←list of all players in team
3. diction← dictionary (player, score)
4. oConsumed←Sum of consumed over’s worth from dataset (ii)
5. for all player p in list do
6. data←dataset (i)
7. pavg ← current career average of p
8. lfm← average runs scored in last five matches by p
9. cavg ← average in host country by p
10. diction[p]← absolute (reg.perdict (pavg,lfm,cavg ))
11. end for
12. G50←diction.sum ()
13. D← 50
14. for all score s in diction do
15. WP ←diction[s]*D/G50
16 end for
17. outlist ←list of all players who got out
18. PRES← 50
19. for all player p in outlist do
20. PRES← PRES - WP
21. end for
22. Calculate PLOSS Using Eq. (5)
23. PRES← PRES - PLOSS
24. ORES← 50
25. ORES←ORES - oConsumed
26. R←ORES + PRES
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Figure 3 Accuracy of country’s equation.
Full-size DOI: 10.7717/peerjcs.917/fig-3

PERFORMANCE EVALUATION
In this section, we evaluated the performance of the proposed PRCICM method and
compared the results with DLS’s results in actual cricket matches. Other performance
indicators were also discussed to differentiate between both methods.

Evaluation of allocated resources to players
Multiple linear regression assigned weightage to the parameters under consideration. Since
the dataset is divided into the country-wise inning, every country has its weightage for
every parameter, and their accuracy was checked separately. Kalpdrum & Niravkumar
(2018) predicts scores using classification and sets class boundaries with a difference of 24
runs. That is why the accuracy of the proposed method in this paper is measured using
that similar criterion.

A total of 1,896 predictions were made on the testing dataset of each country using the
equation of that country mentioned in Table 2. The accuracy of each country’s equation is
calculated as shown in Fig. 3.

Every country has accuracy greater than 80% except Pakistan and South Africa. One
benefit of the doubt in Pakistan’s case that can be given to the model is that the dataset
is small, but that can’t be the case in South Africa’s evaluation. So further investigation
indicates that the countries in which batters score 50 or more runs more frequently have
less accuracy than others. This is also true for the opposite assumption: countries where
batters score 50 or more runs less frequently have more accuracy than others.

Figure 4 shows the percentage of scores greater than 49 in the testing dataset of each
country. It is evident that the three countries, Australia, Sri Lanka, and Bangladesh have
the most accuracy but have the least percentage of scores greater than 49. In comparison,
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Figure 4 Country wise score comparison.
Full-size DOI: 10.7717/peerjcs.917/fig-4

the three countries with the worst accuracy, Pakistan, India, and South Africa, have the
most percentage of 49 plus scores in their respective countries.

This argument gets further validation with another experiment. If the above-written
arguments were correct, then there should be an increase in the accuracy of each country’s
predictions when there are no scores greater than 49 in the testing and training dataset.
This experiment was performed, and Fig. 5 shows the accuracy of the equations. The
accuracy of each country’s prediction has increased, but South Africa and India’s accuracy
has increased the most. For both these countries, the correct predictions of the models were
almost the same in both scenarios. Still, the number of wrong predictions saw a significant
drop, resulting in more accuracy.

Predictions are required in a match’s context, and the predicted score is the criteria
to assign weightage and calculate G50. That is why the model is also evaluated from a
match’s perspective. A maximum of 11 players can be part of a team, so total predictions
were divided by 11 to get the total number of matches, and then the correct number of
predictions was divided by that number. That can be interpreted as the expected number
of correct predictions in a match.

Figure 6 shows that every country has nine correct predictions per match except for
Pakistan, India, and South Africa, and 2–3 predictions can go wrong in a match. As
addressed above, those players who perform better than expectations are usually not so
accurately predicted. That means a player with higher ability gets lower weightage than
expected. These assigned weights are calculated to use in the PRCICM method, and the
PRCICMmethod deducts the full weightage of a player from the team’s resources when he
gets out. Thus, those wrong predictions can’t significantly impact the PRCICM method.
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Figure 5 Accuracy of country’s equation without 50 or more scores.
Full-size DOI: 10.7717/peerjcs.917/fig-5

Figure 6 Correct predictions per match.
Full-size DOI: 10.7717/peerjcs.917/fig-6

Analysis of PRCICM method in comparison with DLS
ICC uses DLS for resetting targets in interrupted matches. Although the creators of D/L
and some others have suggested it for calculating victory points that can be an alternate
for NRR, its primary job is to adjust targets based on available and lost resources in a
match. PRCICM method is a proposed alternative to the DLS method. With the help of
the player’s weightage and over’s worth PRCICMmethod was applied to all the matches in
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Figure 7 Comparison of PRCICM and DLS in CWC 2019.
Full-size DOI: 10.7717/peerjcs.917/fig-7

the cricket world cup 2019 where ICC used the DLS method. Figure 7 shows a comparison
of the PRCICM method with the DLS method.

PRCICM method uses players as resources, so every player’s data in playing 11 of both
teams must be available. Some players are not available in the dataset, but they were part
of actual teams in the aforementioned matches. That’s why their replacement players were
used using information from their respective team’s world cup squad. In Afghanistan vs.
South Africa, Muhammad Shahzad was considered a part of the Afghanistan team instead
of Ikram Alikhil, and Dale Steyn’s stats were used instead of Beuran Hendricks. Suranga
Lakmal was the missing player from Sri Lanka vs. Afghanistan match in the dataset, so
Jeffrey Vandersay was his replacement for testing purposes. In Pakistan vs. India’s match,
Shaheen Afridi and Junaid Khan replaced Wahab Riaz and Muhammad Amir.

In the first match, the match was reduced to 48 overs because of rain interruption.
Rain interrupted at 20th over of Afghanistan’s inning, so both methods evaluated the lost
resources similarly, and the difference between PRCICM’s target score and DLS’s target is
only one run. In this kind of scenario where interruption occurs in the 1st inning, both the
DLS and PRCICM method considers the lost resources of the 2nd team because they also
have fewer overs to play because of interruption.

The interruption scenario of 2nd match, Sri Lanka vs. Afghanistan, is similar to this.
However, the DLS method weighs a bit more in favor of Afghanistan’s loss of 9 overs and
reduced Sri Lanka’s target, but the PRCICMmethod’s resource worth is different than DLS,
increasing Sri Lanka’s target. This result is debatable, and based on their interpretation of
the game, experts can interpret this differently based on their cricketing instincts. The third
match was between Pakistan and India. According to the PRCICM method’s evaluation,
Pakistan has lost more resources because of interruption, but DLS assigns a lesser number
to lost resources in this case. That is why there is a difference between bothmodels’ allocated
scores. That shows how the PRCICM method works typically in these scenarios and does
not produce any result that can be deemed an odd result. Although PRCICM uses D/L’s
equation, resource allocation of both methods is different, and PRCICM has separate over

Zia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.917 14/18

https://peerj.com
https://doi.org/10.7717/peerjcs.917/fig-7
http://dx.doi.org/10.7717/peerj-cs.917


weightage for each country and uses a very dynamic player weightage allocation method.
That gives the PRCICM method the ability to evaluate the team’s resources based on
their inning trajectory in the past combined with players’ weightage based on their past
performances and the country they are playing in.

In order to get good results from the DLS method, the team has to plan their inning
according to DLS’s generalized resource table that is used for every team, but the PRCICM
method has the resources generalized for every team separately. That is why who got
out impacts the PRCICM method, and it caters to changes in the batting order, but DLS
does not bother that. In the scenario of Sri Lanka vs. Zimbabwe match, mentioned by the
creators of DLS, when applied to the Indian team that played the group match vs. Pakistan
in cricket world cup 2019 and instead of sending Kohli in, Chahal bats at number 3. That
impacted the final target by four runs.

As investigated by stern D/L under estimated lower-order partnerships, the match stern
mentioned is checked using the same Indian team mentioned above in English conditions.
PRCICM method suggests that the Indian lower order did not have what stern expected
from the lower order. That is why the PRCICM method produces a result more inclined
toward D/L than DLS in that scenario.

PRCICM method failed in one extreme case scenario defined by D/L that if team A and
B hit six runs off every ball and then interruption happens at the end of 25th over of 2nd
inning, the realistic target is 901 runs. PRCICM methods assigned a target of 904 runs to
the Indian team used in previous experiments. From D/L’s perspective, this is a failure
because they think if both teams are equal all the time, then, in the end, both should have
been equal, but PRCICM is a prediction-based model, and in this scenario, the prediction
was India is three runs short.

The famous 2003 world cup final that justifies the D/L method was also passed as a test
case to the PRCICM method. India was losing the match by 20 runs according to D/L, but
the PRCICM method increased this margin to 66 runs. In this case, the PRCICM method
is by far closer to reality.

CONCLUSION
In this paper, we have proposed PRCICM, an algorithm to compensate resources in
interrupted matches. In contrast to D/L’s one size fits all approach, PRCICM assigns
weightage to each player and team separately, resulting in resource compensation closer
to reality. Over by over weightage assignment helps find scoring patterns for teams, and
multiple linear regression is used to calculate the expected impact of players. In the case of
the PRCICM method, teams can develop strategies without worrying about batting order
because it is aware of players involved in a match and detects the changing dependency on
any player in a team. PRCICM can serve the game better as it understands the capability of
players involved in the match, and it will assign them resources accordingly. This resource
allocation will produce results closer to reality and bring more fairness to the game. The
disadvantage of PRCICM is that it needs player-specific data too. This means that if a player
is new to the game, PRCICM will not have sufficient data about that particular player, and
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that could result in wrong resource allocation. PRCICM is practically adaptable and can be
used by ICC for compensating resources. There is no obstacle in implementing PRCICM.

In the future, we plan to propose a more detailed 2nd inning specific approach to
perform resource compensation for teams and also for the worth calculation of players
and overs. That will help understand the difference in scoring patterns between a team
batting first and second. Furthermore, PRCICM needs a detailed domestic to international
performance conversion analysis to remove the need for replacement players.
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