

A peer-reviewed version of this preprint was published in PeerJ
on 19 September 2016.

View the peer-reviewed version (peerj.com/articles/cs-86), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working
Group. 2016. Software citation principles. PeerJ Computer Science 2:e86
https://doi.org/10.7717/peerj-cs.86

https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86

SOFTWARE CITATION PRINCIPLES1

ARFON M. SMITH1, DANIEL S. KATZ2, KYLE E. NIEMEYER3, AND THE FORCE11 SOFTWARE CITATION2

WORKING GROUP3

Abstract. Software is a critical part of modern research and yet there is little support across the

scholarly ecosystem for its acknowledgement and citation. Inspired by the activities of the FORCE11

working group focused on data citation, this document summarizes the recommendations of the

FORCE11 Software Citation Working Group and its activities between June 2015 and April 2016.

Based on a review of existing community practices, the goal of the working group was to produce

a consolidated set of citation principles that may encourage broad adoption of a consistent policy

for software citation across disciplines and venues. Our work is presented here as a set of software

citation principles, a discussion of the motivations for developing the principles, reviews of existing

community practice, and a discussion of the requirements these principles would place upon different

stakeholders. Working examples and possible technical solutions for how these principles can be

implemented will be discussed in a separate paper.

1. Software citation principles4

The main contribution of this document are the software citation principles, written fairly con-5

cisely in this section and discussed further later in the document (§6). In addition, we also motivate6

the creation of these principles (§2), describe the process by which they were created (§3), summa-7

rize use cases related to software citation (§4), and review related work (§5). We also lay out the8

necessary future work (§7).9

(1) Importance: Software should be considered a legitimate and citable product of research.10

Software citations should be accorded the same importance in the scholarly record as citations11

of other research products, such as publications and data; they should be included in the12

metadata of the citing work, for example in the reference list of a journal article, and should13

not be omitted or separated. Software should be cited on the same basis as any other research14

product such as a paper or a book, that is, authors should cite the appropriate set of software15

products just as they cite the appropriate set of papers.16

(2) Credit and Attribution: Software citations should facilitate giving scholarly credit and nor-17

mative and legal attribution to all contributors to the software, recognizing that a single style or18

mechanism of attribution may not be applicable to all software.19

(3) Unique Identification: A software citation should include a method for identification that is20

machine actionable, globally unique, interoperable, and recognized by at least a community of21

the corresponding domain experts, and preferably by general public researchers.22

(4) Persistence: Unique identifiers and metadata describing the software and its disposition should23

persist – even beyond the lifespan of the software they describe.24

Corresponding author: Daniel S. Katz2, d.katz@ieee.org.
1 GitHub, Inc., San Francisco, CA, USA.
2 National Center for Supercomputing Applications (NCSA) & Electrical and Computer Engineering (ECE) Depart-

ment & School of Information Sciences (iSchool), University of Illinois at Urbana–Champaign, Urbana, IL, USA.
3 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

mailto:d.katz@ieee.org

SOFTWARE CITATION PRINCIPLES 2

(5) Accessibility: Software citations should facilitate access to the software itself and to its as-25

sociated metadata, documentation, data, and other materials necessary for both humans and26

machines to make informed use of the referenced software.27

(6) Specificity: Software citations should facilitate identification of, and access to, the specific28

version of software that was used. Software identification should be as specific as necessary,29

such as using version numbers, revision numbers, or variants such as platforms.30

2. Motivation31

As the process of research1 has become increasingly digital, research outputs and products have32

grown beyond simply papers and books to include software, data, and other electronic components33

such as presentation slides, posters, (interactive) graphs, maps, websites (e.g., blogs and forums), and34

multimedia (e.g., audio and video lectures). Research knowledge is embedded in these components.35

And papers and books themselves are also becoming increasingly digital, allowing them to become36

executable and reproducible. As we move towards this future where research is performed in and37

recorded as a variety of linked digital products, the characteristics and properties that developed38

for books and papers need to be applied to all digital products and possibly adjusted. Here, we are39

concerned specifically with the citation of software products. The challenge is not just the textual40

citation of software in a paper, but the more general identification of software used within the41

research process. This work focuses on making software a citable entity in the scholarly ecosystem.42

While software products represent a small fraction of the sum total of research output, this work43

together with other efforts such as the FORCE11 Data Citation Principles [12, 55] collectively44

represent an effort to better describe (and cite) all outputs of research.45

Software and other digital resources currently appear in publications in very inconsistent ways.46

For example, a random sample of 90 articles in the biology literature found seven different ways that47

software was mentioned, including simple names in the full-text, URLs in footnotes, and different48

kinds of mentions in references lists: project names or websites, user manuals, publications that49

describe or introduce the software [27]. Table 1 shows examples of these varied forms of software50

mentions and the frequency with which they were encountered. Many of these kinds of mentions51

fail to perform the functions needed of citations, and their very diversity and frequent informality52

undermines the integration of software work into bibliometrics and other analyses. Studies on data53

and facility citation have shown similar results [28, 42, 47].54

Table 1. Varieties of software mentions in publications, from Howison and Bullard [27].

Mention Type Count (n=286) Percentage

Cite to publication 105 37%

Cite to users manual 6 2%

Cite to name or website 15 5%

Instrument-like 53 19%

URL in text 13 5%

In-text name only 90 31%

Not even name 4 1%

There are many reasons why this lack of both software citations in general and standard practices55

for software citation are of concern:56

• Understanding Research Fields: Software is a product of research, and by not citing it, we leave57

holes in the record of research of progress in those fields.58

1We use the term “research” in this document to include work intended to increase human knowledge and benefit

society, in science, engineering, humanities, and other areas.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 3

• Credit: Academic researchers at all levels, including students, postdocs, faculty, and staff,59

should be credited for the software products they develop and contribute to, particularly when60

those products enable or further research done by others.2 Non-academic researchers should61

also be credited for their software work, though the specific forms of credit are different than62

for academic researchers.63

• Discovering Software: Citations enable the specific software used in a research product to be64

found. Additional researchers can then use the same software for different purposes, leading to65

credit for those responsible for the software.66

• Reproducibility: Citation of specific software used is necessary for reproducibility, but is not67

sufficient. Additional information such as configurations and platform issues are also needed.68

3. Process of creating principles69

The FORCE11 Software Citation Working Group [18] was created in April 2015 with the70

following mission statement:71

The software citation working group is a cross-team committee leveraging the perspectives72

from a variety of existing initiatives working on software citation to produce a consolidated73

set of citation principles in order to encourage broad adoption of a consistent policy for74

software citation across disciplines and venues. The working group will review existing75

efforts and make a set of recommendations. These recommendations will be put of for76

endorsement by the organizations represented by this group and others that play an77

important role in the community.78

The group will produce a set of principles, illustrated with working examples, and79

a plan for dissemination and distribution. This group will not be producing detailed80

specifications for implementation although it may review and discuss possible technical81

solutions.82

The group gathered members (see Appendix A) in April and May 2015, and then began work in83

June. This materialized as a number of meetings and offline work by group members to document84

existing practices in member disciplines; gather materials from workshops and other reports; review85

those materials, identifying overlaps and differences; create a list of use cases related to software86

citation, recorded in Appendix B; and subsequently draft an initial version of this document. The87

draft Software Citation Principles document was discussed in a day-long workshop and presented at88

the FORCE2016 Conference [20] in April 2016. Members of the workshop and greater FORCE1189

community gave feedback, which we recorded here in Appendix C. This discussion led to some90

changes in the use cases and discussion, although the principles themselves were not modified. We91

also plan to initiate a follow-on working group that will work with stakeholders to ensure that these92

principles impact the research process.93

The process of creating the software citation principles began by adapting the FORCE11 Data94

Citation Principles [12]. These were then modified based on discussions of the FORCE11 Software95

Citation Working Group (see Appendix A for members), information from the use cases in §4, and96

the related work in §5.97

We made the adaptations because software, while similar to data in terms of not traditionally98

having been cited in publications, is also different than data. In the context of research (e.g., in99

science), the term “data” usually refers to electronic records of observations made in the course of100

a research study (“raw data”) or to information derived from such observations by some form of101

processing (“processed data”), as well as the output of simulation or modeling software (“simulated102

2Providing recognition of software can have tremendous economic impact as demonstrated by the role of Text

REtrieval Conference (TREC) in information retrieval [48].

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 4

data”). Some confusion about the distinction between software and data comes in part from the103

much wider scope of the term “data” in computing and information science, where it refers to104

anything that can be processed by a computer. In that sense, software is just a special kind of data.105

Because of this, citing software is not the same as citing data. A more general discussion about106

these distinctions is currently underway [37].107

The principles in this document should guide further development of software citation mecha-108

nisms and systems, and the reader should be able to look at any particular example of software109

citation and see if it meets the principles. While we strive to offer practical guidelines that acknowl-110

edge the current incentive system of academic citation, a more modern system of assigning credit is111

sorely needed. It is not that academic software needs a separate credit system from that of academic112

papers, but that the need for credit for research software underscores the need to overhaul the system113

of credit for all research products. One possible solution for a more complete description of the114

citations and associated credit is the transitive credit proposed by Katz and Smith [33, 38].115

In the next section (§4), we provide some detailed context in which software citation is important,116

by means of use cases. In §5, we summarize and analyze a large amount of previous work and117

thinking in this area. In §6, we discuss issues related to the principles stated in §1, and finally, in118

§7 we discuss the work needed to lead to these software citation principles being applied.119

4. Use cases120

We documented and analyzed a set of use cases related to software citation in [19] (recorded121

in Appendix B for completeness). Table 2 summarizes these use cases and makes clear what the122

requirements are for software citation in each case. Each example represents a particular stakeholder123

performing an activity related to citing software, with the given metadata as information needed to124

do that. In that table, we use the following definitions:125

• “Researcher” includes both academic researchers (e.g., postdoc, tenure-track faculty member)126

and research software engineers.127

• “Publisher” includes both traditional publishers that publish text and/or software papers as well128

as archives such as Zenodo that directly publish software.129

• “Funder” is a group that funds software or research using software.130

• “Indexer” examples include Scopus, Web of Science, Google Scholar, and Microsoft Academic131

Search.132

• “Domain group/library/archive” includes the Astronomy Source Code Library (ASCL) [4],133

bioCADDIE [7], Computational Infrastructure for Geodynamics (CIG) [10], libraries, institu-134

tional archives, etc.135

• “Repository” refers to public software repositories such as GitHub, Netlib, Comprehensive R136

Archive Network (CRAN), and institutional repositories.137

• “Unique identifier” refers to unique, persistent, and machine-actionable identifiers such as a138

DOI, ARK, or PURL.139

• “Description” refers to some description of the software such as an abstract, README, or other140

text description.141

• “Keywords” refers to keywords or tags used to categorize the software.142

• “Reproduce” can mean actions focused on reproduction, replication, verification, validation,143

repeatability, and/or utility.144

• “Citation manager” refers to people and organizations that create scholarly reference manage-145

ment software and websites including Zotero, Mendeley, EndNote, RefWorks, BibDesk, etc.,146

that manage citation information and semi-automatically insert those citations into research147

products.148

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 5

All use cases assume the existence of a citable software object, typically created by the authors/149

developers of the software. Developers can achieve this by, e.g., uploading a software release to150

figshare [15] or Zenodo [24] to obtain a DOI. Necessary metadata should then be included in a151

CITATION file [62] or machine-readable CITATION.jsonld file [38]. When software is not freely152

available (e.g., commercial software) or when there is no clear identifier to use, alternative means153

may be used to create citable objects as discussed in §6.9.154

Table 2. Use cases and basic metadata requirements for software citation, adapted
from [19]. Solid circles (•) indicate that the use case depends on that metadata, while
plus signs (+) indicate that the use case would benefit from that metadata if available.

Basic requirements

Use case U
n
iq

u
e

id
en

ti
fi
er

S
o
ft

w
ar

e
n
am

e

A
u
th

o
r(

s)

C
o
n
tr

ib
u
to

r
ro

le

V
er

si
o
n

n
u
m

b
er

R
el

ea
se

d
at

e

L
o
ca

ti
o
n
/r

ep
o
si

to
ry

In
d
ex

ed
ci

ta
ti
o
n
s

S
o
ft

w
ar

e
li
ce

n
se

D
es

cr
ip

ti
o
n

K
ey

w
o
rd

s

Example stakeholder(s)

1. Use software for a paper • • • • • • + + Researcher

2. Use software in/with new software • • • • • • + + Researcher, software engineer

3. Contribute to software • • • + • • • + + Researcher, software engineer

4. Determine use/citations of software • • • Researcher, software engineer

5. Get credit for software development • • • + • • + Researcher, software engineer

6. “Reproduce” analysis • • • • • + + Researcher

7. Find software to implement task • • • • • + + + Researcher, software engineer

8. Publish software paper • • • • • • Publisher

9. Publish papers that cite software • • • • • • • Publisher

10. Build catalog of software • • • • • • • + + + Indexer

11. Build software catalog/registry • • • • + + Domain group, library, archive

12. Show scientific impact of holdings • • • Repository

13. Show how funded software has been used • • • Funder, policy maker

14. Evaluate contributions of researcher • • + • • Evaluator, funder

15. Store software entry • • • • • • + + Citation manager

16. Publish mixed data/software packages • • • • • • + + + Repository, library, archive

In some cases, if particular metadata are not available, alternatives may be provided. For example,155

if the version number and release date are not available, the download date can be used. And the156

contact name/email is an alternative to the location/repository.157

5. Related work158

With approximately 50 working group participants (see Appendix A) representing a range of159

research domains, the working group was tasked to document existing practices in their respective160

communities. A total of 47 documents were submitted by working group participants, with the161

life sciences, astrophysics, and geosciences being particularly well-represented in the submitted162

resources.163

5.1. General community/non domain-specific activities. Some of the most actionable work has164

come from the UK Software Sustainability Institute (SSI) in the form of blog posts written by their165

community fellows. For example, in a blog post from 2012, Jackson discusses some of the pitfalls166

of trying to cite software in publications [31]. He includes useful guidance for when to consider167

citing software as well as some ways to help “convince” journal editors to allow the inclusion of168

software citations.169

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 6

Wilson suggests that software authors include a CITATION file that documents exactly how the170

authors of the software would like to be cited by others [62]. While this is not a formal metadata171

specification (e.g., it is not machine readable) this does offer a solution for authors wishing to give172

explicit instructions to potential citing authors and as noted in the motivation section (§2), there is173

evidence that authors follow instructions if they exist [28].174

In a later post on the SSI blog, Jackson gives a good overview of some of the approaches package175

authors have taken to automate the generation of citation entities such as BibTEX entries [32], and176

Knepley et al. do similarly [39].177

While not usually expressed as software citation principles, a number of groups have developed178

community guidelines around software and data citation. Van de Sompel et al. [57] argue for179

registration of all units of scholarly communication, including software. In “Publish or be damned?180

An alternative impact manifesto for research software” [9], Chue Hong lists nine principles as part181

of “The Research Software Impact Manifesto.” In the “Science Code Manifesto” [5], the founding182

signatories cite five core principles (Code, Copyright, Citation, Credit, Curation) for scientific183

software.184

Perhaps in recognition of the broad range of research domains struggling with the challenge185

of better recognizing the role of software, funders and agencies in both the US (e.g., NSF, NIH,186

Alfred P. Sloan Foundation) and UK (e.g., SFTC, JISC, Wellcome Trust) have sponsored or hosted187

a number of workshops with participants from across a range of disciplines, specifically aimed at188

discussing issues around software citation [56, 2, 53, 45, 49, 3]. In many cases these workshops189

produced strong recommendations for their respective communities on how best to proceed. In190

addition, a number of common themes arose in these workshops, including (1) the critical need191

for making software more “citable” (and therefore actions authors and publishers should take to192

improve the status quo), (2) how to better measure the impact of software (and therefore attract193

appropriate funding), and (3) how to properly archive software (where, how, and how often) and194

how this affects what to cite and when.195

Most notable of the community efforts are those of WSSSPE [63] and SSI [54], who between them196

have run a series of workshops aimed at gathering together community members with an interest197

in (1) defining the set of problems related to the role of software and associated people in research198

settings, particularly academia, (2) discussing potential solutions to those problems, (3) beginning to199

work on implementing some of those solutions. In each of the three years that WSSSPE workshops200

have run thus far, the participants have produced a report [34, 35, 36] documenting the topics201

covered. Section 5.8 and Appendix J in the WSSSPE3 report [36] has some preliminary work202

and discussion particularly relevant to this working group. In addition, a number of academic203

publishers such as APA [43] have recommendations for submitting authors on how to cite software,204

and journals such as F1000Research [14], SoftwareX [52], Open Research Computation [46], and205

the Journal of Open Research Software allow for submissions entirely focused on research software.206

5.2. Domain-specific community activities. One approach to increasing software “citability” is207

to encourage the submission of papers in standard journals describing a piece of research software,208

often known as software papers (see §6.2). While some journals (e.g., Transactions on Mathematical209

Software (TOMS), Bioinformatics, Computer Physics Communications, F1000Research, Seismo-210

logical Research Letters, Electronic Seismologist) have traditionally accepted software submissions,211

the American Astronomical Society (AAS) has recently announced they will accept software pa-212

pers in their journals [1]. Professional societies are in a good position to change their respective213

communities, as the publishers of journals and conveners of domain-specific conferences; as pub-214

lishers they can change editorial policies (as AAS has done) and conferences are an opportunity to215

communicate and discuss these changes with their communities.216

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 7

In astronomy and astrophysics: The Astronomy Source Code Library (ASCL) [4], is a website217

dedicated to the curation and indexing of software used in the astronomy-based literature. In218

2015, the AAS and GitHub co-hosted a workshop [45] dedicated to software citation, indexing,219

and discoverability in astrophysics. More recently, a Birds of a Feather session was held at the220

Astronomical Data Analysis Software and Systems (ADASS) XXV conference [3] that included221

discussion of software citation.222

In the life sciences: In May 2014, the NIH held a workshop aimed at helping the biomedical223

community discover, cite, and reuse software written by their peers. The primary outcome of this224

workshop was the Software Discovery Index Meeting Report [59] which was shared with the com-225

munity for public comment and feedback. The authors of the report discuss what framework would226

be required for supporting a Software Discovery Index including the need for unique identifiers,227

how citations to these would be handled by publishers, and the critical need for metadata to describe228

software packages.229

In the geosciences: The Ontosoft [23] project describes itself as “A Community Software Com-230

mons for the Geosciences.” Much attention was given to the metadata required to describe, discover,231

and execute research software. The NSF-sponsored Geo-Data Workshop 2011 [21] revolved around232

data lifecycle, management, and citation. The workshop report includes many recommendations233

for data citation.234

5.3. Existing efforts around metadata standards. Producing detailed specifications and recom-235

mendations for possible metadata standards to support software citation was not within the scope236

of this working group. However some discussion on the topic did occur and there was significant237

interest in the wider community to produce standards for describing research software metadata.238

Content specifications for software metadata vary across communities, and include DOAP [13],239

an early metadata term set used by the Open Source Community, as well as more recent commu-240

nity efforts like Research Objects [6], The Software Ontology [41], EDAM Ontology [29], Project241

CRediT [11], the OpenRIF Contribution Role Ontology [25], Ontosoft [23], RRR/JISC guide-242

lines [22], or the terms and classes defined at Schema.org related to the SoftwareApplication243

class. In addition, language-specific software metadata schemes are in widespread use, including244

the Debian package format [30], Python package descriptions [58], and R package descriptions [60],245

but these are typically conceived for software build, packaging, and distribution rather than citation.246

CodeMeta [8] has created a crosswalk among these software metadata schemes and an exchange247

format that allows software repositories to effectively interoperate.248

6. Discussion249

In this section we discuss some the issues and concerns related to the principles stated in Section 1.250

6.1. What software to cite. The software citation principles do not define what software should251

be cited, but rather, how software should be cited. What software should be cited is the decision252

of the author(s) of the research work in the context of community norms and practices, and in253

most research communities, these are currently in flux. In general, we believe that software254

should be cited on the same basis as any other research product such as a paper or book; that is,255

authors should cite the appropriate set of software products just as they cite the appropriate set of256

papers, perhaps following the FORCE11 Data Citation Working Group principles, which state, “In257

scholarly literature, whenever and wherever a claim relies upon data, the corresponding data should258

be cited.” [12]259

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

https://schema.org
https://schema.org/SoftwareApplication

SOFTWARE CITATION PRINCIPLES 8

Some software which is, or could be, captured as part of data provenance may not be cited.260

Citation is partly a record of software important to a research outcome3, where provenance is a261

record of all steps (including software) used to generated particular data within the research process.262

Research results, including data, increasingly depend on software [26], and thus may depend on263

the specific version used [50, 61]. Furthermore, errors in software or environment variations can264

affect results [44, 51]. This implies that for a data research product, provenance data will include265

some of the cited software. Similarly, the software metadata recorded as part of data provenance266

will overlap the metadata recorded as part of software citation for the software that was used in the267

work. The data recorded for reproducibility should also overlap the metadata recorded as part of268

software citation. In general, we intend the software citation principles to cover the minimum of269

what is necessary for software citation for the purpose of software identification. Some use cases270

related to citation (e.g., provenance, reproducibility) might have additional requirements beyond the271

basic metadata needed for citation, as Table 2 shows.272

6.2. Software papers. Currently, and for the foreseeable future, software papers are being pub-273

lished and cited, in addition to software itself being published and cited, as many community norms274

and practices are oriented towards citation of papers. As discussed in the Importance principle (1)275

and the discussion above, the software itself should be cited on the same basis as any other research276

product; authors should cite the appropriate set of software products. If a software paper exists and277

it contains results (performance, validation, etc.) that are important to the work, then the software278

paper should also be cited. We believe that a request from the software authors to cite a paper279

should typically be respected, and the paper cited in addition to the software.280

6.3. Derived software. The goals of software citation include the linked ideas of crediting those281

responsible for software and understanding the dependencies of research products on specific282

software. In the Importance principle (1), we state that “software should be cited on the same basis283

as any other research product such as a paper or a book; that is, authors should cite the appropriate284

set of software products just as they cite the appropriate set of papers.” In the case of one code that is285

derived from another code, citing the derived software may appear to not credit those responsible for286

the original software, nor recognize its role in the work that used the derived software. However, this287

is really analogous to how any research builds on other research, where each research product just288

cites those products that it directly builds on, not those that it indirectly builds on. Understanding289

these chains of knowledge and credit have been part of the history of science field for some time,290

though more recent work is suggesting more nuanced evaluation of the credit chains [11, 38].291

6.4. Software peer review. Adherence to the software citation principles enables better peer292

reviews through improved reproducibility. However, since the primary goal of software citation is293

to identify the software that has been used in a scholarly product, the peer review of software itself294

is mostly out of scope in the context of software citation principles. For instance, when identifying295

a particular software artifact that has been used in a scholarly product, whether or not that software296

has been peer-reviewed is irrelevant. One possible exception would be if the peer-review status of297

the software should be part of the metadata, but the working group does not believe this to be part298

of the minimal metadata needed to identify the software.299

6.5. Citation format in reference list. Citations in references in the scholarly literature are for-300

matted according to the citation style (e.g., AMS, APA, Chicago, MLA) used by that publication.301

(Examples illustrating these styles have been published by Lipson [40]; the follow-on Software302

Citation Implementation Group will provide suggested examples.) As these citations are typically303

3Citation can be used for many purposes, including for software: which software has been used in the work, which

software has influenced the work, which software is the work superseding, which software is the work disproving, etc.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 9

sent to publishers as text formatted in that citation style, not as structured metadata, and because304

the citation style dictates how the human reader sees the software citation, we recommend that all305

text citation styles support the following: a) a label indicating that this is software, e.g., [Software],306

potentially with more information such as [Software: Source Code], [Software: Executable], or307

[Software: Container], and b) support for version information, e.g., Version 1.8.7.308

6.6. Citations limits. This set of software citation principles, if followed, will cause the number of309

software citations in scholarly products to increase, thus causing the number of overall citations to310

increase. Some scholarly products, such as journal articles, may have strict limits on the number of311

citations they permit, or page limits that include reference sections. Such limits are counter to our312

recommendation, and we recommend that publishers using strict limits for the number of citations313

add specific instructions regarding software citations to their author guidelines to not disincentivize314

software citation. Similarly, publishers should not include references in the content counted against315

page limits.316

6.7. Unique identification. The Unique Identification principle (3) calls for “a method for identifi-317

cation that is machine actionable, globally unique, interoperable, and recognized by a community.”318

What this means for data is discussed in detail in the “Unique Identification” section of a report by319

the FORCE11 Data Citation Implementation Group (DCIG) [55], which calls for “unique identifica-320

tion in a manner that is machine-resolvable on the Web and demonstrates a long-term commitment321

to persistence.” This report also lists examples of identifiers that match these criteria including322

DOIs, PURLs, Handles, ARKS, and NBNs. For software, we recommend the use of DOIs as the323

unique identifier due to their common usage and acceptance, particularly as they are the standard324

for other digital products such as publications.325

While we believe there is value in including the explicit version (e.g., Git SHA1 hash, Subversion326

revision number) of the software in any software citation, there are a number of reasons that a327

commit reference together with a repository URL is not recommended for the purposes of software328

citation:329

(1) Version numbers/commit references are not guaranteed to be permanent. Projects can be330

migrated to new version control systems (e.g., SVN to Git). In addition, it is possible to331

overwrite/clobber a particular version (e.g., force-pushing in the case of Git).332

(2) A repository address and version number does not guarantee that the software is available at333

a particular (resolvable) URL, especially as it is possible for authors to remove their content334

from, e.g., GitHub.335

(3) A particular version number/commit reference may not represent a “preferred” point at which336

to cite the software from the perspective of the package authors.337

We recognize that there are certain situations where it may not be possible for follow the338

recommended best-practice. For example, if (1) the software authors did not register a DOI339

and/or release a specific version, or (2) the version of the software used does not match what is340

available to cite. In those cases, falling back on a combination of the repository URL and version341

number/commit hash would be an appropriate way to cite the software used.342

Note that the “unique” in a UID means that it points to a unique, specific software version.343

However, multiple UIDs might point to the same software. This is not recommended, but is344

possible. We strongly recommend that if there is already a UID for a version of software, no345

additional UID should be created. Multiple UIDs can lead to split credit, which goes against the346

Credit and Attribution principle (2).347

Software versions and identifiers. There are at least three different potential relationships between348

identifiers and versions of software.349

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 10

(1) An identifier can point to a specific version of a piece of software.350

(2) An identifier can point to the piece of software, effectively all versions of the software.351

(3) An identifier can point to the latest version of a piece of software.352

It is possible that a given piece of software may have identifiers of all three types. And in addition,353

there may be one or more software papers, each with an identifier.354

While we often need to cite a specific version of software, we may also need a way to cite the355

software in general and to link multiple releases together, perhaps for the purpose of understanding356

citations to the software. The principles in §1 are intended to be applicable at all levels, and to357

all types of identifiers, such as DOIs, RRIDs, etc., though we again recommend when possible the358

use of DOIs that identify specific versions of source code. We note that RRIDs were developed359

by the FORCE11 Resource Identification Initiative [16] and have been discussed for use to identify360

software packages (not specific versions), though the FORCE11 Resource Identification Technical361

Specifications Working Group [17] says “Information resources like software are better suited to362

the Software Citation WG.” There is currently a lack of consensus on the use of RRIDs for software.363

6.8. Types of software. The principles and discussion in this document have generally been written364

to focus on software as source code. However, we recognize that some software is only available as365

an executable, a container, or a virtual machine image, while other software may be available as a366

service. We believe the principles apply to all of these forms of software, though the implementation367

of them will certainly differ based on software type. When software is accessible as both source368

code and another type, we recommend that the source code be cited.369

6.9. Access to software. The Accessibility principle (5) states that “software citations should370

permit and facilitate access to the software itself.” This does not mean that the software must be371

freely available. Rather, the metadata should provide enough information that the software can be372

accessed. If the software is free, the metadata will likely provide an identifier that can be resolved373

to a URL pointing to the specific version of the software being cited. For commercial software, the374

metadata should still provide information on how to access the specific software, but this may be a375

company’s product number or a link to a web site that allows the software be purchased. As stated376

in the Persistence principle (4), we recognize that the software version may no longer be available,377

but it still should be cited along with information about how it was accessed.378

6.10. What an identifier should resolve to. While citing an identifier that points to, e.g., a GitHub379

repository can satisfy the principles of Unique Identification (3), Accessibility (5), and Specificity380

(6), such a repository cannot guarantee Persistence (4). Therefore, we recommend that the software381

identifier should resolve to a persistent landing page that contains metadata and a link to the382

software itself, rather than directly to the source code files, repository, or executable. This ensures383

longevity of the software metadata—even perhaps beyond the lifespan of the software they describe.384

This is currently offered by services such as figshare [15] and Zenodo [24], which both generate385

persistent DataCite DOIs for submitted software. In addition, such landing pages can contain both386

human-readable metadata (e.g., the types shown by Table 2) as well as content-negotiable formats387

such as RDF or DOAP [13].388

6.11. Updates to these principles. As this set of software citation principles has been created389

by the FORCE11 Software Citation Working Group, which will cease work and dissolve after390

publication of these principles, any updates will require a different FORCE11 working group to391

make them. As mentioned in §7, we expect a follow-on working group to be established to392

promote the implementation of these principles, and it is possible that this group might find items393

that need correction or addition in these principles. We recommend that this Software Citation394

Implementation Working Group be charged, in part, with updating these principles during its395

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 11

lifetime, and that FORCE11 should listen to community requests for later updates and respond by396

creating a new working group.397

7. Future work398

Software citation principles without clear worked-through examples are of limited value to399

potential implementers, and so in addition to this principles document, the final deliverable of this400

working group will be an implementation paper outlining working examples for each of the use401

cases listed in §4.402

Following these efforts, we expect that FORCE11 will start a new working group with the goals of403

supporting potential implementers of the software citation principles and concurrently developing404

potential metadata standards, loosely following the model of the FORCE11 Data Citation Working405

Group. Beyond the efforts of this new working group, additional effort should be focused on406

updating the overall academic credit/citation system.407

Acknowledgements408

While D. S. Katz prepared this material while employed at the NSF, any opinion, finding, and409

conclusions or recommendations expressed in this material are those of the authors and do not410

necessarily reflect the views of the NSF.411

Appendix A. Working Group Membership412

Alberto Accomazzi, Harvard-Smithsonian CfA413

Alice Allen, Astrophysics Source Code Library414

Micah Altman, MIT415

Jay Jay Billings, Oak Ridge National Laboratory416

Carl Boettiger, University of California, Berkeley417

Jed Brown, University of Colorado Boulder418

Sou-Cheng T. Choi, NORC at the University of Chicago & Illinois Institute of Technology419

Neil Chue Hong, Software Sustainability Institute420

Tom Crick, Cardiff Metropolitan University421

Mercè Crosas, IQSS, Harvard University422

Scott Edmunds, GigaScience, BGI Hong Kong423

Christopher Erdmann, Harvard-Smithsonian CfA424

Martin Fenner, DataCite425

Darel Finkbeiner, OSTI426

Ian Gent, University of St Andrews, recomputation.org427

Carole Goble, The University of Manchester, Software Sustainability Institute428

Paul Groth, Elsevier Labs429

Melissa Haendel, Oregon Health and Science University430

Stephanie Hagstrom, FORCE11431

Robert Hanisch, National Institute of Standards and Technology, One Degree Imager432

Edwin Henneken, Harvard-Smithsonian CfA433

Ivan Herman, World Wide Web Consortium (W3C)434

James Howison, University of Texas435

Lorraine Hwang, University of California, Davis436

Thomas Ingraham, F1000Research437

Matthew B. Jones, NCEAS, University of California, Santa Barbara438

Catherine Jones, Science and Technology Facilities Council439

Daniel S. Katz, University of Illinois (co-chair)440

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 12

Alexander Konovalov, University of St Andrews441

John Kratz, California Digital Library442

Jennifer Lin, Public Library of Science443

Frank Löffler, Louisiana State University444

Brian Matthews, Science and Technology Facilities Council445

Abigail Cabunoc Mayes, Mozilla Science Lab446

Daniel Mietchen, National Institutes of Health447

Bill Mills, TRIUMF448

Evan Misshula, CUNY Graduate Center449

August Muench, American Astronomical Society450

Fiona Murphy, Independent Researcher451

Lars Holm Nielsen, CERN452

Kyle E. Niemeyer, Oregon State University (co-chair)453

Karthik Ram, University of California, Berkeley454

Fernando Rios, Johns Hopkins University455

Ashley Sands, University of California, Los Angeles456

Soren Scott, Independent Researcher457

Frank J. Seinstra, Netherlands eScience Center458

Arfon Smith, GitHub (co-chair)459

Kaitlin Thaney, Mozilla Science Lab460

Ilian Todorov, Science and Technology Facilities Council461

Matt Turk, University of Illinois462

Miguel de Val-Borro, Princeton University463

Daan Van Hauwermeiren, Ghent University464

Stijn Van Hoey, Ghent University465

Belinda Weaver, The University of Queensland466

Nic Weber, University of Washington iSchool467

Appendix B. Software citation use cases468

This appendix records an edited, extended description of the use cases discussed in §4, originally469

found in [19]. This discussion is not fully complete, and in some cases, it may not be fully self-470

consistent, but it is part of this paper as a record of one of the inputs to the principles. We expect471

that the follow-on Software Citation Implementation Group will further develop these use cases,472

including explaining in more detail how the software citation principles can be applied to each as473

part of working with the stakeholders to persuade them to actually implement the principles in their474

standard workflows.475

B.1. Researcher who uses someone else’s software for a paper. One of the most common use476

cases may be researchers who use someone else’s software and want to cite it in a technical paper.477

This will be similar to existing practices for citing research artifacts in papers.478

“Requirements” for researcher:479

• Name of software480

• Names of software authors/contributors481

• Software version number and release date, or download date482

• Location/repository, or contact name/email (if not publicly available)483

• Citable DOI of software484

• Format for citing software in text and in bibliography485

Possible steps:486

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 13

(1) Software developers create CITATION file and associate with source code release/repository.487

(2) Researcher finds and uses software for research paper.488

(3) Researcher identifies citation metadata file (e.g., “CITATION” file) associated with down-489

loaded/installed software source code or in online repository/published location. CITATION490

file includes necessary citation metadata. CITATION file may include BibTeX entry, suggested491

citation format492

(4) Researcher cites software appropriately, e.g., in methodology section; reference included in493

bibliography.494

B.2. Researcher who uses someone else’s software for new software. In this case, a researcher495

develops new software that incorporates or depends on existing software. In order to credit the496

developer(s), the researcher will include citations in his/her source code, documentation, or other497

metadata in a similar manner to papers498

Requirements for researcher:499

• Name of software500

• Names of software authors/contributors501

• Software version number and release date502

• Location/repository503

• Citable DOI of software504

• Format for citing software in source code, documentation, or citation metadata file505

Possible steps:506

(1) Assume that software developers have created a CITATION file and associated with the source507

code release/repository.508

(2) Researcher finds and uses software in the development of new software.509

(3) Researcher identifies citation metadata file (e.g., “CITATION” file) associated with down-510

loaded/installed software source code or in online repository/published location. CITATION511

file includes necessary citation metadata. CITATION file may include BibTeX entry, suggested512

citation format.513

(4) Researcher cites software in source code, documentation, or other metadata-containing file.514

B.3. Researcher who contributes to someone else’s software (open source project). A re-515

searcher wants to contribute to someone else’s software in the manner in which their contributions516

will be accepted and recognized.517

Possible steps:518

(1) Researcher finds information about the software, and how contributors will be recognized519

(2) Researcher possibly submit a Contributor License Agreement (CLA) or Copyright Assignment520

Agreement (CAA) to allow the contributed content to be distributed with the software being521

contributed to522

(3) Researcher contributes to the software523

(4) Software maintainers accept contribution, recognize researcher’s contribution, and update the524

software metadata as appropriate525

B.4. Researcher who wants to know who uses the researcher’s software. This case is similar to526

a researcher who wants to find other papers/publications that cite a particular paper. A researcher527

wants to gauge the usage of her software within or across communities and measure its impact on528

research for both credit and funding.529

Requirements:530

• Uniquely identify software531

• Indexed citations of software532

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 14

• Indexed papers that use software533

Steps:534

(1) Researcher finds software official name or unique DOI in metadata associated with down-535

loaded/installed source code or in online repository/published location.536

(2) Researcher searches for software, may use online indexer (e.g., Scopus, Web of Science, Google537

Scholar) using software name or DOI.538

(3) Online indexer presents entry for software with list of citations, if any. Ideally, entry will also539

include metadata contained in software CITATION file and citation example.540

B.5. Researcher gets credit for software development at the academic/governmental institu-541

tion, in professional career, etc. This case describes the need for a researcher who has contributed542

to software (by design, software engineering, development, testing, patching, documentation, train-543

ing, evangelizing, etc.) to have their software work recognized by their employer or colleagues for544

the purpose of career advancement and increased professional reputation.545

Requirements for researcher:546

• Name of software547

• Names of software authors/contributors548

• Location/repository549

• Citable DOI of software550

• Format for citing software in an official CV, in a departmental/institutional review report, etc.551

• Role in the software creation, that is linked to version or component552

• Role in contributing to the software as a “package” (not just lines of code) development of553

benchmarks, testing, documentation, tutorials etc.554

B.6. Researcher who wants to “reproduce” another person/group’s analysis. When a re-555

searcher wants to understand or verify a research results from another researcher, they would556

like to use the same software. Note that accessing the exact same software is necessary but not557

sufficient for reproducibility.558

Requirements for researcher:559

• Name of software560

• Location/repository for the exact release that was used561

• DOI or other persistent handle for that specific release562

• Release has all components necessary for reproducing the work (Note: this ideally also means563

sample inputs and outputs)564

B.7. Researcher who wants to find a piece of software to implement a task. This is the case565

where a research is looking for software to use but wants to understand whether it is being used in566

a scholarly fashion. For example, a researcher searches through a software repository and finds a567

package that might be useful. They look to find whether it has been used by others in the scientific568

literature.569

Requirements570

• Either the software documentation page has a reference to existing literature that makes use of571

it.572

• There is a mechanism to look it up.573

B.8. Publisher wants to publish a software paper. This case asks what information regarding574

software is needed for a publisher who wants to publish a paper describing that software.575

Requirements576

• Name of software577

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 15

• Names of software authors/contributors578

• Location/repository579

• Citable DOI of software580

• Format for citing software in JATS, for example, as well as references in the text itself581

B.9. Publisher who wants to publish papers that cite software. This case asks what information582

regarding software is needed for a publisher who wants to publish papers that cite that software.583

Requirements for publisher:584

• Name of software585

• Names of software authors/contributors586

• Location/repository587

• Citable DOI of software588

• Format for citing software in, e.g., JATS, as well as references in the text itself589

B.10. Indexer (e.g., Scopus, WoS, Scholar, MS Academic Search) who wants to build a catalog590

of software. Provide an index over the software that is used within the research domain. Track how591

that software is being used by different groups of researchers and to what ends.592

Requirements:593

• Uniquely identify pieces of software used by the research literature594

• Connect authors and organizations to that software595

• Connect various software versions together596

B.11. Domain group (e.g., ASCL, bioCADDIE), Libraries, and Archives (e.g., University597

library, laboratory archive, etc.) wants to build a catalog/registry of institutional or domain598

software. There are two different examples here: One is building a catalog/archive of software599

produced by those affiliated with the institution. The other is along the lines of Sayeed Choudhury’s600

note that “data are the new special collections.” An institution may choose to build a catalog/archive601

of many things within a single topic or subject in order to secure all the software on a certain topic602

or build a collection that may draw users to their establishment, much like special collections now603

do for university libraries and archives.604

B.12. Repository showing scientific impact of holdings. A repository that archives and/or main-605

tains a collection of software. The repository would like to address usage and impact of software606

in its holding. Usage would aid potential users whether the software is being actively maintained607

or developed or has been superseded. Both would help repository know how to direct resources,608

e.g., maintenance, training etc. This is similar to the case of a funder wanting to know the impact609

of funded work.610

Requirements:611

• Code name, or a unique identifier612

• Relationships to previous versions613

• Connect to repository614

• Connect to research615

B.13. Funder who wants to know how software they funded has been used. This use case is616

similar to “Repository showing scientific impact of holdings”, where a funder wants to find out the617

use and impact and software that they supported. It is also similar to “Researcher who wants to618

know who uses the researcher’s software.”619

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 16

B.14. Evaluator or funder wants to evaluate contributions of a researcher. In this use case, an620

evaluator (e.g., academic administrator) or funder wants to evaluate the contributions of a researcher621

who develops software. This case is related to those where researchers want to get credit for software622

development, or where organizations want to evaluate the impact of software itself.623

B.15. Reference management system used by researchers to author a manuscript. Reference624

management systems may need to be updated to internally understand that their is a software625

reference type, and to be able to output references to software in common formats.626

Requirements for reference manager:627

• Names of software authors/contributors628

• Software version number and release date629

• Location/repository630

• Citable DOI of software or paper recommended for citation631

• Format for citing software in citation metadata file632

• Citation metadata tags embedded in DOI landing page/software project page for easy ingest633

Possible steps:634

(1) Reference management system such as EndNote, Mendeley, Zotero, etc. builds affordances for635

software references.636

(2) Researcher finds software citation and adds it to their reference manager library, by (a) importing637

from the CITATION file (e.g., BibTeX, RIS), or (b) clicking on, e.g., an “add to Zotero library”638

widget in web browser.639

(3) Researcher writes a paper and uses the reference manager to generate citations or bibliography.640

B.16. Repository wants to publish mixed data/software packages. Domain and institutional data641

repositories have both data and software artifacts, and want to link these together in a provenance642

trace that can be cited. Sometimes the software is a separately identified artifact, but at other times643

software is included inside of data packages, and the researcher wants to cite the combined product.644

Use cases not adopted in the table:645

Researcher who benchmarks someone else’s software with or without modification on one or646

many hardware platforms for publication. This case describes the need for a researcher who647

has contributed to software (by design, software engineering, development, testing, patching, doc-648

umentation, training, evangelizing, etc.) to have their software work recognized by their employer649

or colleagues for the purpose of career advancement and increased professional reputation.650

Requirements for researcher:651

• Name of software652

• Names of software authors/contributors653

• Software version number and release date654

• Location/repository655

• Citable DOI of software or paper recommended for citation656

• Format for citing software in source code or citation metadata file657

Possible steps:658

(1) Software developers create CITATION file and associate with source code release/repository.659

(2) Researcher finds and uses software in the development of new software.660

(3) Researcher identifies citation metadata file (e.g., CITATION file) associated with down-661

loaded/installed software source code or in online repository/published location. CITATION662

file includes necessary citation metadata. CITATION file may include BibTeX entry, suggested663

citation format.664

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 17

(4) Researcher cites software in source code, documentation, or other metadata-containing file.665

After review of this use case, we decided that based on the title this falls under use case 1, where666

a researcher uses someone else’s software for a paper. Unlike use case 1, which is general in terms667

of the use of software, here the use leads to a benchmarking study—but the outcome in both cases668

is a paper that needs to cite the software.669

Researcher who wants to publish about a piece of software. The research wants to publish about670

a version of software they have produced. A key part of this use case is to be able to connect the671

given narrative to a specific version of the software in questions and connect that in large story.672

Requirements:673

• Name of software674

• Names of software authors/contributors675

• Location/repository676

• Citable DOI of Software677

• Links to older versions of software678

This is similar to use case 1, other than the fact that the software developer(s) and paper author(s)679

will likely be the same person/people here.680

Researcher wants to record the software that generated some data. This is the case where a681

researcher is using some software to perform an analysis, either of a physical sample or of data. The682

researcher needs to know which version was used, for example in case a bug was fixed. Note that683

knowing the software and its version is not sufficient to determine the “conditions” of the analysis,684

but they are essential.685

Requirement: The analysis, or the generated data, has information about the software used.686

This is also similar to use case 1, except in that case the research output is a paper, while here the687

output is a dataset.688

Researcher who wants to reproduce experience of use of a particular software implementation689

in context. Researcher is engaged in historical/cultural research, e.g., a study of video games as690

cultural artifacts.691

Requirements:692

• Name of software693

• Software version number694

• Documentation of the execution environment/context695

• Location/repository for virtual machine (or equivalent) comprising both software and execution696

environment/context697

• Persistent identifier associated with virtual machine instance (or equivalent) comprising both698

software and execution environment/context699

Possible steps:700

(1) Researcher obtains persistent ID from citation701

(2) Research uses a persistent ID resolution service to resolve ID to a location of an executable VM702

instance in a repository703

(3) Researcher obtains VM in the repository, executes it, and interacts with software704

This overlaps use case 6 (reproducing analysis), and so we decided not to include this as a distinct705

use case.706

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

SOFTWARE CITATION PRINCIPLES 18

Appendix C. Feedback following FORCE2016707

This appendix contains a record of comments made by the FORCE11 community on the draft708

Software Citation Principles, either directly via Hypothesis on the draft document4 posted following709

the FORCE2016 conference [20] or via GitHub issues5, and the responses to these comments.710

C.1. On unique identification: I know this suggestion of a single unique identifier comes from711

the DOI perspective where it works pretty well, but I’m wondering if something different in the way712

of identification should be used for software. For creative works generally there is the FRBR model713

(https://en.wikipedia.org/wiki/Functional_Requirements_for_Bibliographic_Records) which de-714

fines several levels for a creative entity - “work”, “expression”, “manifestation”, and “item”. I715

think something along these lines are particularly relevant for software - it is useful to be able to716

locate all uses of a particular piece of software no matter what version (the “work” level - software717

identified by a particular name and purpose over a period of time), but it is also important to specify718

the particular version used in any given work (“expression” - the source code at the time of use)719

and in some cases also the platform (“manifestation” - the compiled bytes including libraries, for720

example a docker image). “Item” probably isn’t relevant for software. That is, I think a software721

citation perhaps could use THREE distinct unique identifiers, one for the work itself, one for the722

specific version (source code), and possibly an additional one for the actual downloadable binary723

image that can be run. Rather than leave it implicit I think recognizing the different levels of citable724

record would be helpful here. #F11SC725

Reply: I interpret the requirement for “global uniqueness” as referring to the identifier itself. Two726

different people can have the same name (not globally unique) but cannot share a single ORCID727

(globally unique). Global uniqueness of the identifier does not preclude multiple identifiers pointing728

to the same person. I think the suggestion of differentiating between different software expressions/729

manifestations/items is a reasonable one, but I don’t think it relaxes the requirement for identifiers730

to be globally unique.731

Our response: We agree that there are valid points here, but on balance we don’t feel that the732

rewards from implementing this outweigh the practical challenges.733

C.2. On accessibility: Should this document address this in further detail? For example, “permit734

and facilitate access” could be explored further. Should this be done through open access licensing?735

repositories? Who’s responsible for providing this access?736

I am also wondering if this is a separate issue since “citing” traditionally pointed to publications737

but did not necessarily address access. DOI, for example is stated, but doesn’t guarantee “access”,738

so does this simply restating point 3, or should it provide something new?739

Our response: We agree that accessibility should receive further attention, which the follow-on740

group focusing on implementation will provide. However, this is out of scope for the document741

outlining the principles.742

To the second point, accessibility provides information about access, but does not guarantee743

access itself (e.g., paywalled article).744

C.3. On specificity: I am wondering if this should be folded into number 3 “Unique Identification”.745

Both seem to deal with the issue of identification and access.746

Our response: A unique software identifier can point to the specific version/variant of software,747

but it can also identify other things (collection of versions, repository, etc.), while this principle748

deals with the need to identify the specific version of software used (via citation).749

4https://www.force11.org/software-citation-principles

5https://github.com/force11/force11-scwg/issues

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

https://en.wikipedia.org/wiki/Functional_Requirements_for_Bibliographic_Records
https://www.force11.org/software-citation-principles
https://github.com/force11/force11-scwg/issues

SOFTWARE CITATION PRINCIPLES 19

C.4. On academic credit: A lot of software that were developed by non-academic engineers also750

contribute to academic research indirectly. Their names and contributions should also be credited.751

So removing “Academic” makes more sense?752

Reply: This is a good point, though I think academic and non-academic credit are different, so753

perhaps we can add to this regarding non-academic credit, rather than removing “academic”.754

Reply: I agree with Daniel on this. Keep Academic and add non-academic.755

Our response: We’ve made the bullet more general, just about credit, discussing academic credit756

and adding a sentence about non-academic credit as well.757

C.5. On citations in text: Although the focus here is on citations in the references, as a publisher,758

our experience is that most common practice of “citation” of data and software for authors is759

typically in the main body of the text. In order to encourage software to be treated and valued760

as a first-class research object, it is important that citations to it be positioned in the references as761

citations to articles and books are. However, it would be a missed opportunity if we did not leverage762

current practices of authors. This will also likely arise during implementation, as it has for the Data763

Citation Implementation Publisher Early Adopters Pilot. This could be addressed in future work on764

implementation.765

Our response: In the principles, we propose that software should be cited in the references766

list, to recognize the primary role of software in research. However, this practice is not mutually767

exclusive with also referencing/citing software in the main body of a paper—as long as the software768

is cited in the references.769

C.6. On unique identification: Clearer instructions will be needed for authors on which version770

to cite. For BioMed Central journals, we ask authors to cite two versions of the software, an771

archived version (e.g., on Zenodo) as well as the current version (e.g., on GitHub). This is to ensure772

accessibility. However, if repositories and archives were to include a persistent link to the current773

version of the software, publishers could then instruct authors to cite only software with a UID,774

which wouldn’t point to a current version, but would point to the version(s) used and would be a more775

accurate version of scientific record. Related to this point is the idea of group object identifiers. A776

need for group identifiers has been identified in the area of data (e.g., in the case of meta-analyses),777

and one could also identify a use case for these in the case of software, collecting metadata around all778

versions of a given software package. See blog here (https://blog.datacite.org/to-better-understand-779

research-communication-we-need-a-groid-group-object-identifier/).780

Our response: We recommend citing the specific version of the software that was used. We781

expect that the unique identifier (e.g., DOI) will point to a landing page that directs to the repository/782

current version. However, this is more of a convenience issue that the software developers should783

address, rather than the author citing the software they used.784

C.7. On future work: For implementation we would recommend both consulting with adopters785

as well as developing metadata standards simultaneously rather than developing metadata standards786

and then pursuing early adopters implementation. The work early adopters are doing now for data787

citation will be able to be leveraged for software citation and the changes needed to do so could788

happen now. There is no need to wait on approval of new tagging for a specific metadata standard.789

Many publishers will have their own preferred metadata standards and so implementation could790

begin now with publishers, as long as we know what we want to capture. Future implementation791

groups might also consider levels of contribution. This is particularly relevant for software. Who792

is considered an author? For example, to what extent should authors of pull requests receive793

attribution? This might be considered in an FAQs group, or possibly an early adopters group.794

Our response: We agree that metadata standards should be developed with the input of adopters,795

and have updated this text accordingly.796

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

https://blog.datacite.org/to-better-understand-research-communication-we-need-a-groid-group-object-identifier/
https://blog.datacite.org/to-better-understand-research-communication-we-need-a-groid-group-object-identifier/
https://blog.datacite.org/to-better-understand-research-communication-we-need-a-groid-group-object-identifier/

SOFTWARE CITATION PRINCIPLES 20

C.8. Additional thoughts (not sure what section this applies to): The principles do not address797

virtual machines. As these are becoming more common and relevant when addressing the repro-798

ducibility of research, it is important this “form” of software is acknowledged. The question remains799

in which cases should authors cite the current version, which the static archived version, and in800

which the virtual machine? In this way software is very much a unique evolving research object801

and might not fit perfectly into the same citation practices and structure as other research objects.802

In addition, software citation could possibly occur within the virtual machine. This could be added803

as a use case.804

Our response: We feel this has been addressed in Section 5.8, with the explicit addition of virtual805

machines in addition to executables and containers. This is also an issue that should be addressed806

further by the follow-on implementation working group.807

C.9. On persistence of identifier vs. persistence of software: The persistence principle outlined808

in (4) is a key element in making software citeable. Where software has become part of the record809

of science not only the identifier and metadata of the software should be persistent, it should also810

be the goal to keep a persistent copy of the source code, where applicable. This links with the811

accessibility principle (5).812

There are still many open questions about how to resolve package dependencies in the long term,813

therefore I would not make the persistent access to code a hard requirement but may add something814

more specific towards preserving the record of science.815

Our response: Our goal is for software citations to point to (persistent) archived source code,816

but we are not—nor could we—require this.817

C.10. Granularity of the citation: One of the key issues with any citation, whether document,818

individual, or software is the specificity of what is being cited. In the case of publications, there is819

almost zero specificity most of the time.820

It’s very easy to cite an entire package even though one function was used. Part of this problem821

is being solved in the Python world through this project (https://github.com/duecredit/duecredit).822

Any citation should have the ability to specify more than just the obvious, but even the obvious823

would be a good starting point.824

The citation/url should therefore allow for greater specificity within a code base. In general825

though, a provenance record of the workflow would be significantly more useful than a citation from826

a research perspective.827

Our response: We agree that greater specificity is desirable in some cases, but we do not believe828

this rises to the level of what should be specified or discussed in the principles at this time.829

C.11. “Software citations should permit . . . access to the software itself”: Under the “Access”830

header, the data declaration states that:831

Data citations should facilitate access to the data themselves832

Under the same header, the software declaration states:833

Software citations should permit and facilitate access to the software itself834

The addition of “permit” suggests that software citations should also grant the user with permission835

to access the software. Is this intentional?836

It doesn’t seem like a good idea to make access a requirement for discovery, so “permit” might837

not be helpful in this sentence.838

Our response: To avoid confusion, we removed “permit and” from the accessibility principle.839

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

https://github.com/duecredit/duecredit

SOFTWARE CITATION PRINCIPLES 21

C.12. Access to software: free vs commercial: The section talks about software that is “free” as840

well as “commercial” software. I am not sure whether this is about free as in freedom (or just gratis841

or freely available), since it is compared with commercial software, which is unrelated in general,842

see http://www.gnu.org/philosophy/words-to-avoid.html#Commercial843

I suppose that “free” should be replaced by “gratis” and “commercial” be replaced by “non-free”844

in that section.845

Our response: We think this is sufficiently clear as written.846

References847

[1] AAS Editorial Board. Policy statement on software. http://journals.aas.org/policy/software.html. Accessed: 2016-848

02-17.849

[2] S. Ahalt, T. Carsey, A. Couch, R. Hooper, L. Ibanez, R. Idaszak, M. B. Jones, J. Lin, and E. Robinson. NSF850

workshop on supporting scientific discovery through norms and practices for software and data citation and851

attribution. Technical report, National Science Foundation, Apr. 2015. Available at: http://dl.acm.org/citation.852

cfm?id=2795624.853

[3] A. Allen, G. B. Berriman, K. DuPrie, J. Mink, R. Nemiroff, T. Robitaille, L. Shamir, K. Shortridge,854

M. Taylor, P. Teuben, and J. Wallin. Improving software citation and credit. Technical report, arXiv, 2015.855

arXiv:1512.07919 [cs.DL].856

[4] Astrophysics Source Code Library. http://ascl.net. Accessed: 2016-02-21.857

[5] N. Barnes, D. Jones, P. Norvig, C. Neylon, R. Pollock, J. Jackson, V. Stodden, and P. Suber. Science code858

manifesto. http://sciencecodemanifesto.org. Accessed: 2016-04-18.859

[6] S. Bechhofer, I. Buchan, D. D. Roure, P. Missier, J. Ainsworth, J. Bhagat, P. Couch, D. Cruickshank, M. Delderfield,860

I. Dunlop, M. Gamble, D. Michaelides, S. Owen, D. Newman, S. Sufi, and C. Goble. Why linked data is not861

enough for scientists. Future Generation Computer Systems, 29(2):599–611, 2013.862

[7] biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE). https://biocaddie.org. Accessed:863

2016-03-06.864

[8] C. Boettiger and M. B. Jones. Minimal metadata schemas for science software and code, in JSON and XML.865

https://github.com/codemeta/codemeta. Accessed: 2016-03-25.866

[9] N. Chue Hong. Publish or be damned? An alternative impact manifesto for research software. http:867

//www.software.ac.uk/blog/2011-05-02-publish-or-be-damned-alternative-impact-manifesto-research-software.868

Accessed: 2016-02-17.869

[10] Computational Infrastructure for Geodynamics. https://geodynamics.org.870

[11] Consortia Advancing Standards in Research Administration Information. http://casrai.org/CRediT. Accessed:871

2016-02-17.872

[12] Data Citation Synthesis Group, M. Martone (ed). Joint declaration of data citation principles. Final document,873

FORCE11, San Diego CA, 2014. https://www.force11.org/group/joint-declaration-data-citation-principles-final.874

[13] E. Dumbill. DOAP: Description of a project. https://github.com/edumbill/doap/. Accessed: 2016-03-31.875

[14] F1000Research. http://f1000research.com/for-authors/article-guidelines/software-tool-articles. Accessed: 2016-876

03-28.877

[15] figshare. https://figshare.com/. Accessed: 2016-06-23.878

[16] FORCE11 Resource Identification Initiative. https://www.force11.org/group/resource-identification-initiative.879

[17] FORCE11 Resource Identification Technical Specifications Working Group. https://www.force11.org/group/880

resource-identification-technical-specifications-working-group.881

[18] FORCE11 Software Citation Working Group. https://www.force11.org/group/software-citation-working-group.882

[19] FORCE11 Software Citation Working Group. Software citation use cases. https://docs.google.com/document/d/883

1dS0SqGoBIFwLB5G3HiLLEOSAAgMdo8QPEpjYUaWCvIU, 2016. Accessed: 2016-02-10.884

[20] FORCE2016 Conference. Portland, OR, https://www.force11.org/meetings/force2016.885

[21] P. Fox and R. Signell. NSF geo-data informatics: Exploring the life cycle, citation and integration of geo-886

data workshop report. Final document, Rensselaer Polytechnic Institute, 2011. http://tw.rpi.edu/web/workshop/887

community/GeoData2011.888

[22] I. Gent, C. Jones, and B. Matthews. Guidelines for persistently identifying software using DataCite. a JISC889

research Data Spring project. http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-890

identification.pdf, Sept. 2015. Accessed: 2016-04-25.891

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

http://www.gnu.org/philosophy/words-to-avoid.html#Commercial
http://journals.aas.org/policy/software.html
http://dl.acm.org/citation.cfm?id=2795624
http://dl.acm.org/citation.cfm?id=2795624
http://dl.acm.org/citation.cfm?id=2795624
http://arxiv.org/abs/1512.07919
http://ascl.net
http://sciencecodemanifesto.org
https://biocaddie.org
https://github.com/codemeta/codemeta
http://www.software.ac.uk/blog/2011-05-02-publish-or-be-damned-alternative-impact-manifesto-research-software
http://www.software.ac.uk/blog/2011-05-02-publish-or-be-damned-alternative-impact-manifesto-research-software
http://www.software.ac.uk/blog/2011-05-02-publish-or-be-damned-alternative-impact-manifesto-research-software
https://geodynamics.org
http://casrai.org/CRediT
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://github.com/edumbill/doap/
http://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://figshare.com/
https://www.force11.org/group/resource-identification-initiative
https://www.force11.org/group/resource-identification-technical-specifications-working-group
https://www.force11.org/group/resource-identification-technical-specifications-working-group
https://www.force11.org/group/resource-identification-technical-specifications-working-group
https://www.force11.org/group/software-citation-working-group
https://docs.google.com/document/d/1dS0SqGoBIFwLB5G3HiLLEOSAAgMdo8QPEpjYUaWCvIU
https://docs.google.com/document/d/1dS0SqGoBIFwLB5G3HiLLEOSAAgMdo8QPEpjYUaWCvIU
https://docs.google.com/document/d/1dS0SqGoBIFwLB5G3HiLLEOSAAgMdo8QPEpjYUaWCvIU
https://www.force11.org/meetings/force2016
http://tw.rpi.edu/web/workshop/community/GeoData2011
http://tw.rpi.edu/web/workshop/community/GeoData2011
http://tw.rpi.edu/web/workshop/community/GeoData2011
http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-identification.pdf
http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-identification.pdf
http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-identification.pdf

SOFTWARE CITATION PRINCIPLES 22

[23] Y. Gil, V. Ratnakar, and D. Garijo. OntoSoft: Capturing scientific software metadata. In Proceedings of the Eighth892

ACM International Conference on Knowledge Capture (K-CAP), Oct. 2015. http://dx.doi.org/10.1145/2815833.893

2816955.894

[24] GitHub. Making your code citable with GitHub & Zenodo. https://guides.github.com/activities/citable-code/,895

2014. Accessed: 2016-03-10.896

[25] K. Gutzman, S. Konkiel, M. White, M. Brush, V. Ilik, M. Conlon, M. Haendel, and K. Holmes. Attribution of897

work in the scholarly ecosystem. figshare, Apr. 2016. http://dx.doi.org/10.6084/m9.figshare.3175198.v1.898

[26] J. E. Hannay, H. P. Langtangen, C. MacLeod, D. Pfahl, J. Singer, and G. Wilson. How do scientists develop and899

use scientific software? In Proc. 2009 ICSE Workshop on Soft. Eng. for Computational Sci. and Eng., SECSE,900

pages 1–8, Vancouver, BC, 2009. IEEE.901

[27] J. Howison and J. Bullard. Software in the scientific literature: Problems with seeing, finding, and using software902

mentioned in the biology literature. Journal of the Association for Information Science and Technology, 2015. In903

press. http://dx.doi.org/10.1002/asi.23538.904

[28] Y.-H. Huang, P. W. Rose, and C.-N. Hsu. Citing a data repository: A case study of the protein data bank. PLoS905

ONE, 10(8):1–17, 08 2015. http://dx.doi.org/10.1371/journal.pone.0136631.906

[29] J. Ison, M. Kalaš, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J. Malone, R. Lopez, S. Pettifer, and P. Rice.907

EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics,908

29(10):1325–1332, 2013. http://dx.doi.org/10.1093/bioinformatics/btt113.909

[30] I. Jackson and C. Schwarz. Debian policy manual. https://www.debian.org/doc/debian-policy/ch-controlfields.910

html. Accessed: 2016-04-17.911

[31] M. Jackson. How to cite and describe software. http://www.software.ac.uk/how-cite-and-describe-software. Ac-912

cessed: 2016-02-17.913

[32] M. Jackson. Oh research software, how shalt I cite thee? http://www.software.ac.uk/blog/2014-07-30-oh-research-914

software-how-shalt-i-cite-thee. Accessed: 2016-02-17.915

[33] D. S. Katz. Transitive credit as a means to address social and technological concerns stemming from citation and916

attribution of digital products. Journal of Open Research Software, 2(1):e20, 2014. http://dx.doi.org/10.5334/jors.917

be.918

[34] D. S. Katz, S.-C. T. Choi, H. Lapp, K. Maheshwari, F. Löffler, M. Turk, M. Hanwell, N. Wilkins-Diehr, J. Hether-919

ington, J. Howison, S. Swenson, G. Allen, A. Elster, B. Berriman, and C. Venters. Summary of the first workshop920

on sustainable software for science: Practice and experiences (WSSSPE1). Journal of Open Research Software,921

2(1):e6, 2014. http://dx.doi.org/10.5334/jors.an.922

[35] D. S. Katz, S.-C. T. Choi, N. Wilkins-Diehr, N. Chue Hong, C. C. Venters, J. Howison, F. J. Seinstra, M. Jones,923

K. Cranston, T. L. Clune, M. de Val-Borro, and R. Littauer. Report on the second workshop on sustainable924

software for science: Practice and experiences (WSSSPE2). Journal of Open Research Software, 4(1):e7, 2016.925

http://doi.org/10.5334/jors.85.926

[36] D. S. Katz, S. T. Choi, K. E. Niemeyer, J. Hetherington, F. Löffler, D. Gunter, R. Idaszak, S. R. Brandt, M. A.927

Miller, S. Gesing, N. D. Jones, N. Weber, S. Marru, G. Allen, B. Penzenstadler, C. C. Venters, E. Davis, L. Hwang,928

I. Todorov, A. Patra, and M. de Val-Borro. Report on the third workshop on sustainable software for science:929

Practice and experiences (WSSSPE3). Technical report, arXiv, 2016. arXiv:1602.02296 [cs.SE].930

[37] D. S. Katz, K. E. Niemeyer, A. M. Smith, W. L. Anderson, C. Boettiger, K. Hinsen, M. Hucka, F. Löffler, T. Pollard,931

and F. Rios. Software vs data. https://github.com/danielskatz/software-vs-data, Accessed 2016-08-21.932

[38] D. S. Katz and A. M. Smith. Implementing transitive credit with JSON-LD. Journal of Open Research Software,933

3:e7, 2015. http://dx.doi.org/10.5334/jors.by.934

[39] M. G. Knepley, J. Brown, L. C. McInnes, and B. F. Smith. Accurately citing software and algorithms used in935

publications. figshare, http://dx.doi.org/10.6084/m9.figshare.785731.v1, 2013.936

[40] C. Lipson. Cite Right, Second Edition: A Quick Guide to Citation Styles–MLA, APA, Chicago, the Sciences,937

Professions, and More. Chicago Guides to Writing, Editing, and Publishing. University of Chicago Press, 2011.938

[41] J. Malone, A. Brown, A. L. Lister, J. Ison, D. Hull, H. Parkinson, and R. Stevens. The Software Ontology (SWO):939

a resource for reproducibility in biomedical data analysis, curation and digital preservation. Journal of Biomedical940

Semantics, 5(1):1–13, 2014. http://dx.doi.org/10.1186/2041-1480-5-25.941

[42] M. Mayernik, K. Maull, and D. Hart. Tracing the use of research resources using persistent citable identifiers.942

https://share.renci.org/SI2PI2015/2015_SI2PI_Posters/mayernik_SI2poster_Feb2015.pdf, 2015. Poster presented943

at NSF SI2 PI Meeting, Arlington, VA, Accessed: 2016-03-03.944

[43] T. McAdoo. http://blog.apastyle.org/apastyle/2015/01/how-to-cite-software-in-apa-style.html.945

[44] A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. Shining light into black boxes. Science,946

336(6078):159–160, 2012.947

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

http://dx.doi.org/10.1145/2815833.2816955
http://dx.doi.org/10.1145/2815833.2816955
http://dx.doi.org/10.1145/2815833.2816955
https://guides.github.com/activities/citable-code/
http://dx.doi.org/10.6084/m9.figshare.3175198.v1
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1371/journal.pone.0136631
http://dx.doi.org/10.1093/bioinformatics/btt113
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.software.ac.uk/how-cite-and-describe-software
http://www.software.ac.uk/blog/2014-07-30-oh-research-software-how-shalt-i-cite-thee
http://www.software.ac.uk/blog/2014-07-30-oh-research-software-how-shalt-i-cite-thee
http://www.software.ac.uk/blog/2014-07-30-oh-research-software-how-shalt-i-cite-thee
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5334/jors.an
http://doi.org/10.5334/jors.85
http://arxiv.org/abs/1602.02296
https://github.com/danielskatz/software-vs-data
http://dx.doi.org/10.5334/jors.by
http://dx.doi.org/10.6084/m9.figshare.785731.v1
http://dx.doi.org/10.1186/2041-1480-5-25
https://share.renci.org/SI2PI2015/2015_SI2PI_Posters/mayernik_SI2poster_Feb2015.pdf
http://blog.apastyle.org/apastyle/2015/01/how-to-cite-software-in-apa-style.html

SOFTWARE CITATION PRINCIPLES 23

[45] L. Norén. Invitation to comment on a proposal for a cohesive research software citation-enabling platform.948

http://astronomy-software-index.github.io/2015-workshop/. Accessed: 2016-02-17.949

[46] Open Research Computation. http://www.openresearchcomputation.com. Accessed: 2016-03-28.950

[47] M. A. Parsons, R. Duerr, and J.-B. Minster. Data citation and peer review. Eos, Transactions American Geophysical951

Union, 91(34):297–298, 2010. http://dx.doi.org/10.1029/2010EO340001.952

[48] B. R. Rowe, D. W. Wood, A. N. Link, and D. A. Simoni. Economic impact assessment of NIST’s Text REtrieval953

Conference (TREC) program. Final report, National Institute of Standards and Technology, 2010. http://trec.nist.954

gov/pubs/2010.economic.impact.pdf [Accessed 2016-04-17].955

[49] Software for Science: Getting Credit for Code. https://geodynamics.org/cig/projects/saga/, 2015. Accessed: 2016-956

04-06.957

[50] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig. Ten simple rules for reproducible computational research.958

PLoS Comp Biol, 9(10):e1003285, Oct. 2013.959

[51] D. A. W. Soergel. Rampant software errors may undermine scientific results [version 2; referees: 2 approved].960

F1000Research, 3:303, 2015.961

[52] SoftwareX. http://www.journals.elsevier.com/softwarex/. Accessed: 2016-03-28.962

[53] Software Credit Workshop. http://www.software.ac.uk/software-credit, 2015. Accessed: 2016-04-06.963

[54] SSI Workshops. http://www.software.ac.uk/community/workshops. Accessed: 2016-03-31.964

[55] J. Starr, E. Castro, M. Crosas, M. Dumontier, R. R. Downs, R. Duerr, L. Haak, M. Haendel, I. Herman, S. Hodson,965

J. Hourclé, J. E. Kratz, J. Lin, L. H. Nielsen, A. Nurnberger, S. Proell, A. Rauber, S. Sacchi, A. Smith, M. Taylor,966

and T. Clark. Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer967

Science, 1:e1, 5 2015. https://dx.doi.org/10.7717/peerj-cs.1.968

[56] S. Sufi, N. P. Chue Hong, S. Hettrick, M. Antonioletti, S. Crouch, A. Hay, D. Inupakutika, M. Jackson, A. Pawlik,969

G. Peru, J. Robinson, L. Carr, D. De Roure, C. Goble, and M. Parsons. Software in reproducible research: Advice970

and best practice collected from experiences at the collaborations workshop. In Proc. 1st ACM SIGPLAN Work. on971

Reproducible Research Methodologies and New Publication Models in Comp. Eng., TRUST ’14, pages 2:1–2:4,972

Edinburgh, United Kingdom, June 2014. ACM.973

[57] H. Van de Sompel, S. Payette, J. Erickson, C. Lagoze, and S. Warner. Rethinking scholarly communication: Build-974

ing the system that scholars deserve. D-Lib Magazine, 10(9), Sept. 2004. http://www.dlib.org/dlib/september04/975

vandesompel/09vandesompel.html.976

[58] G. Ward and A. Baxter. Distributing python modules. https://docs.python.org/2/distutils/setupscript.html#977

additional-meta-data. Accessed: 2016-04-17.978

[59] O. White, A. Dhar, V. Bonazzi, J. Couch, and C. Wellington. NIH Software Discovery Index Meeting Report.979

Copies of archived content from final document, NIH, 2014. http://www.softwarediscoveryindex.org/ & https:980

//gist.github.com/mhucka/44921ea1e9a01697dbd0591d872b7b22.981

[60] H. Wickham. R Packages. O’Reilly Media, Sebastopol, CA, first edition, 2015.982

[61] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D. Haddock, K. D. Huff,983

I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson. Best practices for scientific computing.984

PLoS Biol, 12(1):e1001745, 2014.985

[62] R. Wilson. Encouraging citation of software – introducing CITATION files. http://www.software.ac.uk/blog/2013-986

09-02-encouraging-citation-software-introducing-citation-files. Accessed: 2016-02-17.987

[63] WSSSPE Workshops. http://wssspe.researchcomputing.org.uk/. Accessed: 2016-03-16.988

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2169v4 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016

http://astronomy-software-index.github.io/2015-workshop/
http://www.openresearchcomputation.com
http://dx.doi.org/10.1029/2010EO340001
http://trec.nist.gov/pubs/2010.economic.impact.pdf
http://trec.nist.gov/pubs/2010.economic.impact.pdf
http://trec.nist.gov/pubs/2010.economic.impact.pdf
https://geodynamics.org/cig/projects/saga/
http://www.journals.elsevier.com/softwarex/
http://www.software.ac.uk/software-credit
http://www.software.ac.uk/community/workshops
https://dx.doi.org/10.7717/peerj-cs.1
http://www.dlib.org/dlib/september04/vandesompel/09vandesompel.html
http://www.dlib.org/dlib/september04/vandesompel/09vandesompel.html
http://www.dlib.org/dlib/september04/vandesompel/09vandesompel.html
https://docs.python.org/2/distutils/setupscript.html#additional-meta-data
https://docs.python.org/2/distutils/setupscript.html#additional-meta-data
https://docs.python.org/2/distutils/setupscript.html#additional-meta-data
http://www.softwarediscoveryindex.org/
https://gist.github.com/mhucka/44921ea1e9a01697dbd0591d872b7b22
https://gist.github.com/mhucka/44921ea1e9a01697dbd0591d872b7b22
https://gist.github.com/mhucka/44921ea1e9a01697dbd0591d872b7b22
http://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
http://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
http://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
http://wssspe.researchcomputing.org.uk/

