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We present a CUDA based implementation of a decision tree construction algorithm within

the gradient boosting library XGBoost. The tree construction algorithm is executed entirely

on the GPU and shows high performance with a variety of datasets and settings, including

sparse input matrices. Individual boosting iterations are parallelized, combining two

approaches. An interleaved approach is used for shallow trees, switching to a more

conventional radix sort based approach for larger depths. We show speedups of between

3-6x using a Titan X compared to a 4 core i7 CPU, and 1.2x using a Titan X compared to 2x

Xeon CPUs (24 cores). We show that it is possible to process the Higgs dataset (10 million

instances, 28 features) entirely within GPU memory. The algorithm is made available as a

plug-in within the XGBoost library and fully supports all XGBoost features including

classification, regression and ranking tasks.
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ABSTRACT8

We present a CUDA based implementation of a decision tree construction algorithm within the gradient

boosting library XGBoost. The tree construction algorithm is executed entirely on the GPU and shows

high performance with a variety of datasets and settings, including sparse input matrices. Individual

boosting iterations are parallelized, combining two approaches. An interleaved approach is used for

shallow trees, switching to a more conventional radix sort based approach for larger depths. We show

speedups of between 3-6x using a Titan X compared to a 4 core i7 CPU, and 1.2x using a Titan X

compared to 2x Xeon CPUs (24 cores). We show that it is possible to process the Higgs dataset (10

million instances, 28 features) entirely within GPU memory. The algorithm is made available as a plug-in

within the XGBoost library∗and fully supports all XGBoost features including classification, regression and

ranking tasks.
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1 INTRODUCTION19

Gradient boosting is an important tool in the field of supervised learning, providing state of the art20

performance on classification, regression and ranking tasks. XGBoost is an implementation of a gener-21

alised gradient boosting algorithm that has become a tool of choice in machine learning competitions.22

This is due to its excellent predictive performance, highly optimised multicore and distributed machine23

implementation and the ability to handle sparse data.24

Despite good performance relative to existing gradient boosting implementations, XGBoost can be25

very time consuming to run. Common tasks can take hours or even days to complete. Building highly26

accurate models using gradient boosting also requires extensive parameter tuning. In this process the27

algorithm must be run many times to explore the effect of parameters such as the learning rate and L1/L228

regularisation terms on cross validation accuracy. By far the most time-consuming part of the XGBoost29

algorithm is the construction of decision trees within each boosting iteration. This paper describes and30

evaluates a GPU algorithm for accelerating decision tree construction within individual boosting iterations31

in the single machine XGBoost setting.32

Graphics processing units (GPUs) have recently been used to accelerate compute intensive tasks in33

machine learning and many other fields through the utilisation of their specialised SIMD architecture.34

We show that GPUs are an effective tool for accelerating the gradient boosting process and can provide35

significant speed advantages.36

GPU accelerated decision tree algorithms have been tried before with moderate success. Our unique37

contributions are as follows. We describe a completely GPU based implementation that scales to arbitrary38

numbers of leaf nodes and exhibits stable performance characteristics on a range of datasets and settings.39

We experiment with novel approaches to processing interleaved subsets of data on GPUs and develop40

a massively parallel tree construction algorithm that natively handles sparse data. We also provide a41

feature complete implementation for classification, regression and learning to rank tasks in the open42

source XGBoost library.143

1https://github.com/dmlc/xgboost/tree/master/plugin/updater_gpu
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2 BACKGROUND AND RELATED WORK44

We review the basic strategy of tree boosting for machine learning and revisit the derivation of the45

XGBoost algorithm, before considering the execution model and memory architecture of GPUs as well46

as languages and libraries for GPU computing. Our GPU-based implementation makes extensive use47

of high-performance GPU primitives and we discuss these next. We briefly discuss the effect of using48

single-precision floating point arithmetic before reviewing related work on GPU-based induction of49

decision trees from data.50

2.1 Tree Boosting Algorithms51

XGBoost is a supervised learning algorithm that implements a process called boosting to yield accurate52

models. Supervised learning refers to the task of inferring a predictive model from a set of labelled53

training examples. This predictive model can then be applied to new unseen examples. The inputs to54

the algorithm are pairs of training examples (~x0,y0),(~x1,y1)...(~xn,yn) where ~x is a vector of features55

describing the example and y is its label. Supervised learning can be thought of as learning a function56

F(~x) = y that will correctly label new input instances.57

Supervised learning may be used to solve classification or regression problems. In classification58

problems the label y takes a discrete (categorical) value. For example we may wish to predict if a59

manufacturing defect occurs or does not occur based on attributes recorded from the manufacturing60

process, such as temperature or time, that are represented in~x. In regression problems the target label y61

takes a continuous value. This can be used to frame a problem such as predicting temperature or humidity62

on a given day.63

XGBoost is at its core a decision tree boosting algorithm. Boosting refers to the ensemble learning64

technique of building many models sequentially, with each new model attempting to correct for the65

deficiencies in the previous model. In tree boosting each new model that is added to the ensemble is66

a decision tree. We explain how to construct a decision tree model and how this can be extended to67

generalised gradient boosting with the XGBoost algorithm.68

2.1.1 Decision Trees69

Decision tree learning is a method of predictive modelling that learns a model by repeatedly splitting70

subsets of the training examples (also called instances) according to some criteria. Decision tree inducers71

are supervised learners that accept labelled training examples as an input and generate a model that may72

be used to predict the labels of new examples.73

In order to construct a decision tree we start with the full set of training instances and evaluate all74

possible ways of creating a binary split among those instances based on the input features in~x. We choose75

the split that produces the most meaningful separation of the target label y. Different measures can be76

used to evaluate the quality of a split. After finding the ”best” split we can create a node in the tree that77

partitions training instances down the left or right branch according to some feature value. The subsets of78

training instances can then be recursively split to continue growing the tree to some maximum depth or79

until the quality of the splits is below some threshold. The leaves of the tree will contain predictions for80

the target label y. For categorical labels the prediction can be set as the majority class from the training81

instances that end up in that leaf. For regression tasks, the label prediction can be set as the mean of the82

training instances in that leaf.83

To use the tree for prediction we can input an unlabelled example at the root of the tree and follow the84

decision rules until the example reaches a leaf. The unlabelled example can be labelled according to the85

prediction of that leaf.86

Figure 1 shows an example decision tree that can predict whether or not an individual owns a house.87

The decision is based on their age and whether or not they have a job. The tree correctly classifies all88

instances from Table 1.89

Decision tree algorithms typically expand nodes from the root in a greedy manner in order to maximise

some criterion measuring the value of the split. For example, decision tree algorithms from the C4.5

family (Quinlan, 2014), designed for classification, use information gain as the split criterion. Information

gain describes a change in entropy H from some previous state to a new state. Entropy is defined as

H(T ) =� ∑
y2Y

P(y) logb P(y)
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Instance Age Has job Owns house

0 12 N N

1 32 Y Y

2 25 Y Y

3 48 N N

4 67 N Y

5 18 Y N

Table 1. Example training instances

Age<22

N Age<65

Has job?

Y N

Y

Y N

Y N

Y N

Figure 1. Example decision tree

Age<22

N Age<65

Has job?

Y N

Y

Y N

Y N

Y N

Age<36

Has job?

Y N

Y

Y N

Y N

Figure 2. Decision Tree Ensemble

Where T is a set of labelled training instances, y 2 Y is an instance label and P(y) is the probability of

drawing an instance with label y from T . Information gain is defined as

IG(T,Tle f t ,Tright) = HT � (nle f t/ntotal)åH(Tle f t)� (nright/ntotal)åH(Tright)

Here Tle f t and Tright are the subsets of T created by a decision rule. ntotal , nle f t and nright refer to the90

number of examples in the respective sets.91

Many different criteria exist for evaluating the quality of a split. Any function can be used that92

produces some meaningful separation of the training instances with respect to the label being predicted.93

In order to find the split that maximises our criterion we can enumerate all possible splits on the input94

instances for each feature. In the case of numerical features and assuming the data has been sorted, this95

enumeration can be performed in O(nm) steps, where n is the number of instances and m is the number96

of features. A scan is performed from left to right on the sorted instances, maintaining a running sum97

of labels as the input to the gain calculation. We do not consider the case of categorical features in this98

paper because XGBoost encodes all categorical features using one hot encoding and transforms them into99

numerical features.100

Another consideration when building decision trees is applying some form of regularisation to prevent101

overfitting. Overfitting on training data leads to poor model generalisation ability and poor performance102

on test data. Given a sufficiently large decision tree it is possible to generate unique decision rules for103

every instance in the training set such that each training instance is correctly labelled. This results in104

100% accuracy on the training set but may perform poorly on new data. For this reason it is necessary to105

limit the growth of the tree during construction or apply pruning after construction.106

2.1.2 Gradient Boosting107

Decision trees produce easy to interpret models useful for a variety of problems, but their accuracy can be108

considerably improved when many trees are combined into an ensemble learner. For example, given an109

input instance to be classified, we can test it against many trees built on different subsets of the training set110

and return the mode of all predictions. This has the effect of reducing classifier error because it reduces111

variance in the estimate of the classifier.112

Figure 2 shows an ensemble of two decision trees. We can predict the output label using all trees by113

taking the most common class prediction or some weighted average of all predictions.114

Ensemble learning methods can also be used to reduce the bias component in the classification error115

of the base learner. Boosting is an ensemble method that creates ensemble members sequentially. The116

newest member is created to compensate for the instances incorrectly labelled by the previous learners.117
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Gradient boosting is a variation on boosting which represents the learning problem as gradient descent

on some arbitrary differentiable loss function that measures the performance of the model on the training

set. More specifically, the boosting algorithm executes M boosting iterations to learn a function F(x)
that outputs predictions ŷ = F(x) minimising some loss function L(y, ŷ). At each iteration we add a new

estimator f (x) to try to correct the prediction of y for each training instance.

Fm+1(x) = Fm(x)+ f (x) = y

We can correct the model by setting f (x) to:

f (x) = y�Fm(x)

This fits the model f (x) for the current boosting iteration to the residuals y�Fm(x) of the previous118

iteration. In practice, we approximate f (x), for example by using a depth limited decision tree.119

This iterative process can be shown to be a gradient descent algorithm when the loss function is the

squared error:

L(y,F(x)) =
1

2
(y�F(x))2

The loss over all training instances can be written as

J = ∑
i

L(yi,F(xi))

We seek to minimise J by adjusting F(xi). The gradient for a particular instance xi is given by

dJ

dF(xi)
=

d ∑i L(yi,F(xi))

dF(xi)
=

dL(yi,F(xi))

dF(xi)
= Fm(xi)� yi

We can see that the residuals are the negative gradient of the squared error loss function:

f (x) = y�Fm(x) =�
dL(y,F(x))

dF(x)

By adding a model that approximates this negative gradient to the ensemble we move closer to a local120

minimum of the loss function, thus implementing gradient descent.121

2.1.3 Generalised Gradient Boosting and XGBoost122

Here we derive the XGBoost algorithm following the explanation in (Chen and Guestrin, 2016). XGBoost123

is a generalized gradient boosting implementation that includes a regularisation term, used to combat124

overfitting, as well as support for arbitrary differentiable loss functions.125

Instead of optimising plain squared error loss, an objective function with two parts is defined, a loss

function over the training set as well as a regularisation term which penalises the complexity of the model:

Ob j = ∑
i

L(yi, ŷi)+∑
k

Ω( fk)

L(yi, ŷi) can be any convex differentiable loss function that measures the difference between the prediction

and true label for a given training instance. Ω( fk) describes the complexity of tree fk and is defined in the

XGBoost algorithm (Chen and Guestrin, 2016) as

Ω( fk) = γT +
1

2
λw2 (1)

where T is the number of leaves of tree fk and w are the leaf weights (i.e., the predicted values stored126

at the leaf nodes). When Ω( fk) is included in the objective function we are forced to optimize for a127

less complex tree that simultaneously minimizes L(yi, ŷi). This helps to reduce overfitting. γT provides128

a constant penalty for each additional tree leaf and λw2 penalises extreme weights. γ and λ are user129

configurable parameters.130
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Given that boosting proceeds in an iterative manner we can state the objective function for the current

iteration m in terms of the prediction of the previous iteration ŷi
(m�1) adjusted by the newest tree fk:

Ob jm = ∑
i

L(yi, ŷi
(m�1)+ fk(xi))+∑

k

Ω( fk)

We can then optimise to find the fk which minimises our objective.131

Taking the Taylor expansion of the above function to the second order allows us to easily accommodate

different loss functions:

Ob jm ' ∑
i

[L(yi, ŷi
(m�1))+gi fk(x)+

1

2
hi fk(x)

2]+∑
k

Ω( fk)+ constant

Here, gi and hi are the first and second order derivatives respectively of the loss function for instance i:132

gi =
dL(yi, ŷi

(m�1))

dŷi
(m�1)

hi =
d2L(yi,ŷi

(m�1))

d(ŷi
(m�1))2

Note that the model ŷi
(m�1) is left unchanged during this optimisation process. The simplified objective

function with constants removed is

Ob jm = ∑
i

[gi fk(x)+
1

2
hi fk(x)

2]+∑
k

Ω( fk)

We can also make the observation that a decision tree predicts constant values within a leaf. fk(x) can133

then be represented as wq(x) where w is the vector containing scores for each leaf and q(x) maps instance134

x to a leaf.135

The objective function can then be modified to sum over the tree leaves and the regularization term

from Equation 1:

Ob jm =
T

∑
j=1

[(∑
i2I j

gi)wq(x)+
1

2
(∑

i2I j

hi)w
2
q(x)]+ γT +

1

2
λ

T

∑
j=1

w2

Here, I j refers to the set of training instances in leaf j. The sums of the derivatives in each leaf can be136

defined as follows:137

G j = ∑
i2I j

gi H j = ∑i2I j
hi

Also note that wq(x) is a constant within each leaf and can be represented as w j. Simplifying we get

Ob jm =
T

∑
j=1

[G jw j +
1

2
(H j +λ )w2

j ]+ γT (2)

The weight w j for each leaf minimises the objective function at

∂Ob jm

∂w j

= G j +(H j +λ )w j = 0

The best leaf weight w j given the current tree structure is then

w j =�
G j

H j +λ

Using the best w j in Equation 2 the objective function for finding the best tree structure then becomes

Ob jm =�
1

2

T

∑
j=1

G2
j

H j +λ
+ γT (3)

Equation 3 is used in XGBoost as a measure of the quality of a given tree.138

5/28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2911v1 | CC BY 4.0 Open Access | rec: 4 Apr 2017, publ: 4 Apr 2017



Feature Value 0.1 0.4 0.5 0.6 0.9 1.1

gi 0.1 0.8 0.2 -1.1 -0.2 -0.5

hi 1.0 1.0 1.0 1.0 1.0 1.0

GL 0.0 0.1 0.9 1.1 0.0 -0.2

HL 0.0 1.0 2.0 3.0 4.0 5.0

Table 2. Enumerating Splits

Instance Id f0 f1 f2

0 0.32 399 10.1

1 0.27 521 11.3

2 0.56 896 13.0

3 0.11 322 9.7

Table 3. Example Data Matrix

Instance Id f0 f1 f2

0 1 0 0

1 1 0 0

2 0 0 1

3 0 1 0

Table 4. Sparse Data Matrix

2.1.4 Growing a tree139

Given that it is intractable to enumerate through all possible tree structures we greedily expand the tree

from the root node. In order to evaluate the usefulness of a given split we can look at the contribution of a

single leaf node j to the objective function from Equation 3:

Ob jlea f =�
1

2

G2
j

H j +λ
+ γ

We can then consider the contribution to the objective function from splitting this leaf into two leaves:

Ob jsplit =�
1

2

G2
jL

H jL +λ
+

G2
jR

H jR +λ
+2γ

The improvement to the objective function from creating the split is then defined as

Gain = Ob jsplit �Ob jlea f

which yields

Gain =
1

2
[

G2
L

HL +λ
+

G2
R

HR +λ
�

(GL +GR)
2

HL +HR +λ
]� γ (4)

The quality of any given split separating a set of training instances is evaluated using the gain function in140

Equation 4. The gain function represents the reduction in the objective function from Equation 3 obtained141

by taking a single leaf node j and partitioning it into two leaf nodes. This can be thought of as the increase142

in quality of the tree obtained by creating the left and right branch as compared to simply retaining the143

original node. This formula is applied at every possible split point and we expand the split with maximum144

gain. We can continue to grow the tree while this gain value is positive. The γ regularisation cost at each145

leaf will prevent the tree arbitrarily expanding. The split point selection is performed in O(nm) time146

(given n training instances and m features) by scanning left to right through all feature values in a leaf in147

sorted order. A running sum of GL and HL is kept as we move from left to right, as shown in Table 2. GR148

and HR are inferred from this running sum and the node total.149

Table 2 shows an example set of instances in a leaf. We can assume we know the sums G and H150

within this node as these are simply the GL or GR from the parent split. Therefore we have everything we151

need to evaluate Gain for every possible split within these instances and select the best.152

2.1.5 XGBoost: Data Format153

Tabular data input to a machine learning library such as XGBoost or Weka (Hall et al., 2009) can be154

typically described as a matrix with each row representing an instance and each column representing a155

feature as shown in Table 3. If f2 is the feature to be predicted then an input training pair (~xi,yi) takes the156

form (( f 0i, f 1i), f 2i) where i is the instance id. A data matrix within XGBoost may also contain missing157
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values. One of the key features of XGBoost is the ability to store data in a sparse format by implicitly158

keeping track of missing values instead of physically storing them. While XGBoost does not directly159

support categorical variables, the ability to efficiently store and process sparse input matrices allows us to160

process categorical variables through one hot encoding. Table 4 shows an example where a categorical161

feature with three values is instead encoded as three binary features. The zeros in a one hot encoded data162

matrix can be stored as missing values. XGBoost users may specify values to be considered as missing in163

the input matrix or directly input sparse formats such as libsvm files to the algorithm.164

2.1.6 XGBoost: Handling Missing Values165

Representing input data using sparsity in this way has implications on how splits are calculated. XGBoost’s166

default method of handling missing data when learning decision tree splits is to find the best ”missing167

direction” in addition to the normal threshold decision rule for numerical values. So a decision rule168

in a tree now contains a numeric decision rule such as f 0 ÿ 5.53 but also a missing direction such as169

missing = right that sends all missing values down the right branch. For a one hot encoded categorical170

variable where the zeros are encoded as missing values this is equivalent to testing ”one vs all” splits for171

each category of the categorical variable.172

The missing direction is selected as the direction which maximises the gain from Equation 4. When173

enumerating through all possible split values we can also test the effect on our gain function of sending174

all missing examples down the left or right branch and select the best option. This is slightly complicated175

to implement in practice as we do not know the gradient statistics of the missing values for any given176

feature we are working on, although we do know the sum of all the gradient statistics for the current node.177

The XGBoost algorithm handles this by performing two scans over the input data, the second being in178

the reverse direction. In the first left to right scan the gradient statistics for the left direction are the scan179

values maintained by the scan, the gradient statistics for the right direction are the sum gradient statistics180

for this node minus the scan values. Hence, the right direction implicitly includes all of the missing values.181

When scanning from right to left the reverse is true and the left direction includes all of the missing values.182

The algorithm then selects the best split from either the forwards or backwards scan.183

2.2 Graphics Processing Units184

The purpose of this paper is to describe how to efficiently implement decision tree learning for XGBoost185

on a GPU. GPUs can be thought of at a high level as having a shared memory architecture with multiple186

SIMD (single instruction multiple data) processors. These SIMD processors operate in lockstep typically187

in batches of 32 ”threads” (Matloff, 2011). GPUs are optimised for high throughput and work to188

hide latency through the use of massive parallelism. This is in contrast to CPUs which use multiple189

caches, branch prediction and speculative execution in order to optimize latency with regards to data190

dependencies (Baxter, 2013). GPUs have been used to accelerate a variety of tasks traditionally run on191

CPUs, providing significant speedups for parallelizable problems with a high arithmetic intensity. Of192

particular relevance to machine learning is the use of GPUs to train extremely large neural networks.193

It was shown in 2013 that 1 billion parameter networks could be trained in a few days on three GPU194

machines (Coates et al., 2013). However, to the best of our knowledge, GPUs have not been used for195

gradient boosting previously.196

2.2.1 Languages and Libraries197

The two main languages for general purpose GPU programming are CUDA and OpenCL. CUDA was198

chosen for the implementation discussed in this paper due to the availability of optimised and production199

ready libraries. The GPU tree construction algorithm would not be possible without a strong parallel200

primitives library. We make extensive use of scan, reduce and radix sort primitives from the CUB (Merrill201

and NVIDIA-Labs, 2016) and Thrust (Hoberock and Bell, 2017) libraries. These parallel primitives are202

described in detail in Section 2.3. The closest equivalent to these libraries in OpenCL is the Boost Compute203

library. Several bugs were encountered when attempting to use Boost Compute and the performance of its204

sorting primitives lagged considerably behind CUB/Thrust. At the time of writing this paper OpenCL was205

not a practical option for this type of algorithm.206

2.2.2 Execution model207

CUDA code is written as a kernel to be executed by many thousands of threads. All threads execute208

the same kernel function but their behaviour may be distinguished through a unique thread ID. Listing 1209
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Listing 1. Example CUDA Kernel

g l o b a l void example ( f l o a t ∗d a , f l o a t ∗d b ,

f l o a t ∗ d o u t p u t , i n t n ){

i n t g l o b a l t i d = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

i f ( g l o b a l t i d < n ){
d o u t p u t [ g l o b a l t i d ] = d a [ g l o b a l t i d ] + d b [ g l o b a l t i d ] ;

}
}

shows an example kernel adding values from two arrays into an output array. Indexing is determined by210

the global thread ID and any unused threads are masked off with a branch statement.211

Threads are grouped according to thread blocks that typically each contain some multiple of 32212

threads. A group of 32 threads is known as a warp. Thread blocks are queued for execution on hardware213

streaming multiprocessors. Streaming multiprocessors switch between different warps within a block214

during program execution in order to hide latency. Global memory latency may be hundreds of cycles and215

as such it is important to launch sufficiently many warps within a thread block to facilitate latency hiding.216

A thread block provides no guarantees about the order of thread execution unless explicit memory217

synchronization barriers are used. Synchronisation across thread blocks is not generally possible within a218

single kernel launch. Device wide synchronization is achieved by multiple kernel launches. For example,219

if a global synchronisation barrier is required within a kernel, the kernel must be separated into two220

distinct kernels where synchronisation occurs between the kernel launches.221

2.2.3 Memory architecture222

CUDA exposes three primary tiers of memory for reading and writing. Device wide global memory,223

thread block accessible shared memory and thread local registers.224

• Global memory Global memory is accessible by all threads and has the highest latency. Input225

data, output data and large amounts of working memory are typically stored in global memory.226

Global memory can be copied from the device (i.e., the GPU) to the host computer and vice versa.227

Bandwidth of host/device transfers is much slower than that of device/device transfers and should be228

avoided if possible. Global memory is accessed in 128 byte cache lines on current GPUs. Memory229

accesses should be coalesced in order to achieve maximum bandwidth. Coalescing refers to the230

grouping of aligned memory load/store operations into a single transaction. For example, a fully231

coalesced memory read occurs when a warp of 32 threads loads 32 contiguous 4 byte words (128232

bytes). Fully uncoalesced reads (typical of gather operations) can limit device bandwidth to less233

than 10% of peak bandwidth (Harris, 2013).234

• Shared memory 48KB of shared memory is available to each thread block. Shared memory is235

accessible by all threads in the block. Shared memory has a significantly lower latency than global236

memory and is typically used as working storage within a thread block. It is sometimes described237

as a ”programmer managed cache”.238

• Registers A finite number of local registers is available to each thread. Operations on registers are239

generally the fastest. Threads within the same warp may read/write registers from other threads in240

the warp via intrinsic instructions such as shuffle or broadcast (Nvidia, 2017).241

2.3 Parallel Primitives242

GPU primitives are small algorithms used as building blocks in massively parallel algorithms. While many243

data parallel tasks can be expressed with simple programs without them, GPU primitives may be used244

to compose more complicated algorithms while retaining high performance, readability and reliability.245

Understanding which specific tasks can be achieved using parallel primitives and the relative performance246

of GPU primitives as compared to their CPU counterparts is key to designing effective GPU algorithms.247

8/28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2911v1 | CC BY 4.0 Open Access | rec: 4 Apr 2017, publ: 4 Apr 2017



8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

� �

Figure 3. Sum parallel reduction

Listing 2. Warp Reduction

d e v i c e

f l o a t w a r p r e d u c e ( f l o a t x ) {
f o r ( i n t d = 1 6 ; d > 0 ; d /= 2)

x += s h f l d o w n ( x , d ) ;

re turn x ;

}

idx 0 1 2 3 4 5 6 7

x 8 7 6 5 4 3 2 1

shuffle - - 8 7 6 5 4 3

Figure 4. Shuffle down intrinsic: d = 2

2.3.1 Reduction248

A parallel reduction reduces an array of values into a single value using a binary associative operator.249

Given a binary associative operator � and an array of elements the reduction returns (a0�a1� ...�an�1).250

Note that floating point addition is not strictly associative. This means a sequential reduction operation251

will likely result in a different answer to a parallel reduction (the same applies to the scan operation252

described below). This is discussed in greater detail in Section 2.5. The reduction operation is easy to253

implement in parallel by passing partial reductions up a tree, taking O(logn) iterations given n input items254

and n processors. This is illustrated in Figure 3.255

In practice, GPU implementations of reductions do not launch one thread per input item but instead256

perform parallel reductions over ”tiles” of input items then sum the tiles together sequentially. The size257

of a tile varies according to the optimal granularity for a given hardware architecture. Reductions are258

also typically tiered into three layers: warp, block and kernel. Individual warps can very efficiently259

perform partial reductions over 32 items using shuffle instructions introduced from Nvidia’s Kepler GPU260

architecture onwards. The thread block can then combine these warp reductions to complete a tile of input.261

The thread block can iterate over many input tiles sequentially, summing the reduction from each. When262

all thread blocks are finished the results from each are summed together at the kernel level to produce263

the final output. Listing 2 shows code for a fast warp reduction using shuffle intrinsics to communicate264

between threads in the same warp. The ’shuffle down’ instruction referred to in Listing 2 simply allows265

the current thread to read a register value from the thread d places to the left, so long as that thread is in266

the same warp. An example of the shuffle down function is shown in Figure 4 where each thread gathers267

the item d = 2 places to its left. The complete warp reduction algorithm requires 5 iterations to sum over268

32 items.269

Reductions are highly efficient operations on GPUs. An implementation is given in (Harris, 2007)270

that approaches the maximum bandwidth of the device tested.271

2.3.2 Parallel Prefix Sum (Scan)272

The prefix sum takes a binary associative operator (most commonly addition) and applies it to an array273

of elements. Given a binary associative operator � and an array of elements the prefix sum returns274

[a0,(a0 �a1), ...,(a0 �a1, ...,an�1)]. A prefix sum is an example of a calculation which seems inherently275

serial but has an efficient parallel algorithm: the Blelloch scan algorithm.276
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Algorithm 1: Simple scan

1 for d=1 to log2n do

2 for k=0 to n-1 in parallel do

3 if k � 2d�1 then

4 x[k] := x[k – 2d�1] + x[k]

5 end

6 end

7 end

1 1 1 1 1 1 1 1

d = 1 1 2 2 2 2 2 2 2

d = 2 1 2 3 4 4 4 4 4

d = 3 1 2 3 4 5 6 7 8

k 0 1 2 3 4 5 6 7

Figure 5. Simple Parallel Scan Example

Listing 3. Warp Scan

d e v i c e

f l o a t w a r p s c a n ( f l o a t x ) {
i n t l a n e i d = t h r e a d I d x . x % 3 2 ;

f o r ( i n t d = 1 ; d < 3 2 ; d å= 2){
f l o a t tmp = s h f l u p ( x , d ) ;

i f ( l a n e i d >= o f f s e t ){
x += tmp ;

}
}
re turn x ;

}

Let us consider a simple implementation of a parallel scan first, as described in (Hillis and Steele Jr,277

1986). It is given in Algorithm 1. Figure 5 shows it in operation: we apply a simple scan with the addition278

operator to an array of 1’s. Given one thread for each input element the scan takes log2 n = 3 iterations to279

complete. The algorithm performs O(n log2 n) addition operations.280

Given that a sequential scan performs only n addition operations the simple parallel scan is not work281

efficient. A work efficient parallel algorithm will perform the same number of operations as the sequential282

algorithm and may provide significantly better performance in practice. A work efficient algorithm is283

described in (Blelloch, 1990). The algorithm is separated into two phases, an ”upsweep” phase similar284

to a reduction and a ”downsweep” phase . Pseudocode for the upsweep (Algorithm 2) and downsweep285

(Algorithm 3) phases are given below, following the implementation in (Harris et al., 2007).286

Figures 6 and 7 show examples of the work efficient Blelloch scan, as an exclusive scan (the sum for287

a given item excludes the item itself). Solid lines show summation with the previous item in the array,288
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Algorithm 2: Blelloch Scan - Upsweep

1 offset = 1

2 for d= log2 n to 1 do

3 for k=0 to n-1 in parallel do

4 if k < 2d�1 then

5 ai = offset å (2 å k + 1) - 1

6 bi = offset å (2 å k + 2) - 1

7 x[bi] = x[bi] + x[ai]

8 end

9 end

10 offset = offset * 2

11 end

Algorithm 3: Blelloch Scan - Downsweep

1 offset = 2log2 n�1

2 x[n - 1] := 0

3 for d=1 to log2n do

4 for k=0 to n-1 in parallel do

5 if k < 2d�1 then

6 ai = offset å (2 å k + 1) - 1

7 bi = offset å (2 å k + 2) - 1

8 t = x[ai]

9 x[ai] = x[bi]

10 x[bi] = x[bi] + t

11 end

12 end

13 offset = offset/2

14 end

d = 1 1 2 1 4 1 2 1 8

d = 2 1 2 1 4 1 2 1 4

d = 3 1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

k 0 1 2 3 4 5 6 7

Figure 6. Blelloch Scan Upsweep Example

1 2 1 4 1 2 1 0

d = 1 1 2 1 0 1 2 1 4

d = 2 1 0 1 2 1 4 1 6

d = 3 0 1 2 3 4 5 6 7

k 0 1 2 3 4 5 6 7

Figure 7. Blelloch Scan Downsweep Example
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Algorithm 4: Radix Sort Pass

Input :X

Output :Y

1 for i = 0 to n - 1 in parallel do

2 F[i] := bit flip(X[i])

3 end

4 S := exclusive scan(F)

5 r := S[n - 1] + F[n - 1]

6 for i = 0 to n - 1 in parallel do

7 if X[i] = 0 then

8 A[i] := S[i]

9 else if X[i] = 1 then

10 A[i] := i - S[i] + r

11 end

12 for i = 0 to n - 1 in parallel do

13 Y[A[i]] := X[i]

14 end

Input X 0 1 0 1 0 1 0 1

Flag

0’s
F 1 0 1 0 1 0 1 0

Excl.

scan
S 0 1 1 2 2 3 3 4

Sum

flags
r 4

Scatter

ad-

dress

A 0 4 1 5 2 6 3 7

Output Y 0 0 0 0 1 1 1 1

Figure 8. Radix Sort Example

dotted lines show replacement of the previous item with the new value. O(n) additions are performed in289

both the upsweep and downsweep phase resulting in the same work efficiency as the serial algorithm.290

A segmented variation of scan that processes contiguous blocks of input items with different head291

flags can be easily formulated. This is achieved by creating a binary associative operator on key value292

pairs. The operator tests the equality of the keys and sums the values if they belong to the same sequence.293

This is discussed further in Section 2.4.294

A scan may also be implemented using warp intrinsics to create fast 32 item prefix sums based on the295

simple scan in Figure 5. Code for this is shown in Listing 3. Although the simple scan algorithm is not296

work efficient, we use this approach for small arrays of size 32.297

2.3.3 Radix Sort298

Radix sorting on GPUs follows from the ability to perform parallel scans. A scan operation may be299

used to calculate the scatter offsets for items within a single radix digit as described in Algorithm 4 and300

Figure 8. Flagging all ”0” digits with a one and performing an exclusive scan over these flags gives301

the new position of all zero digits. All ”1” digits must be placed after all ”0” digits, therefore the final302

positions of the ”1”s can be calculated as the exclusive scan of the ”1”s plus the total number of ”0”s. The303

exclusive scan of ”1” digits does not need to be calculated as it can be inferred from the array index and304

12/28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2911v1 | CC BY 4.0 Open Access | rec: 4 Apr 2017, publ: 4 Apr 2017



# elements CPU Reduce GPU Reduce Speedup

(ms) (ms)

1024 0.001602 0.011461 0.14

32768 0.028116 0.019066 1.47

65536 0.062686 0.021943 2.86

131072 0.115125 0.019781 5.82

262144 0.235459 0.025270 9.32

524288 0.459954 0.040246 11.43

1048576 0.962114 0.049934 19.27

2097152 1.892986 0.078206 24.21

4194304 3.790061 0.128856 29.41

8388608 7.369841 0.238102 30.95

16777216 14.873887 0.452583 32.86

33554432 29.764523 0.881077 33.78

67108864 59.592416 1.742125 34.21

Table 5. GPU vs CPU Reduction Benchmark

# elements CPU Scan GPU Scan Speedup

(ms) (ms)

1024 0.002053 0.097941 0.02

32768 0.068269 0.087770 0.78

65536 0.135170 0.087117 1.55

131072 0.272175 0.088081 3.09

262144 0.554893 0.102699 5.40

524288 1.085465 0.125466 8.65

1048576 2.182810 0.196783 11.09

2097152 4.410221 0.300727 14.67

4194304 8.891293 0.489485 18.16

8388608 18.709616 0.867221 21.57

16777216 36.549118 1.543910 23.67

33554432 69.834813 2.912466 23.98

67108864 147.557471 5.736665 25.72

Table 6. GPU vs CPU Scan Benchmark

the exclusive scan of ”0”s. For example at index 5 (using 0 based indexing), if our exclusive scan shows a305

sum of 3 ”0”s, then there must be two ”1”s because a digit can only be 0 or 1.306

The basic radix sort implementation only sorts unsigned integers but this can be extended to correctly307

sort signed integers and floating point through simple bitwise transformations. Fast implementations of308

GPU radix sort perform a scan over many radix bits in a single pass. Merrill and Grimshaw show a highly309

efficient and practical implementation of GPU radix sorting in (Merrill and Grimshaw, 2011). They show310

speedups of 2x over a 32 core CPU and claim to have the fastest sorting implementation for any fully311

programmable microarchitecture.312

2.3.4 Benchmarking Parallel Primitives313

Benchmarks are performed on the above parallel primitives against a single CPU thread to provide an314

idea of performance. These benchmarks are for context only and are not a fair comparison against many315

core CPUs. All operations are performed on 32-bit floats.316

GPU primitives are all from the CUB library (Merrill and NVIDIA-Labs, 2016) and run on a GeForce317

GTX970. Times do not include transferring memory from device to host or vice versa. CPU functions are318

performed on a Intel i5-4590 @ 3.30GHz. The scan and reduce functions are implemented according to319

Listings 4 and 5. std::sort is used as the CPU sorting function. Note that this is a comparison sort with320

a different time complexity to radix sort – there is no standard implementation of radix sort within the321

C++ ecosystem. However, the comparison is nevertheless useful because std::sort is the default sorting322

function used in C++ code.323

Listing 4. CPU Reduction

f l o a t sum = 0 ;

f o r ( f l o a t &e : e l e m e n t s ){
sum += e ;

}

Listing 5. CPU Scan

f l o a t tmp = 0 ;

f o r ( f l o a t &e : e l e m e n t s ){
e += tmp ;

tmp = e ;

}

324

Tables 5, 6 and 7 show that GPU primitive performance improves relative to the CPU algorithm as the325

input size is increased, beginning to plateau at very large sizes as the GPU becomes saturated with work.326

The relatively poor performance at small sizes is due to the overhead of launching GPU kernels. GPU327

kernel launch times are profiled in (Boyer, 2016) and found to cost between 3 and 14 microseconds. Note328

that the 1024 element reduction in Table 5 takes approximately 10 microseconds. At small sizes execution329

time is dominated by kernel launch overhead, making GPU algorithms impractical for processing small330

batches of data sequentially. Radix sort on the GPU still outperforms std::sort for 1024 elements, despite331

the small input size. This is because much more work is being done compared to scan or reduction. The332

kernel overhead is therefore less significant. At large sizes GPU radix sort shows dramatic performance333

improvements over std::sort—up to two orders of magnitude.334
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# elements CPU Sort (s) GPU Sort (s) Speedup

1024 0.000036 0.000024 1.48

32768 0.002116 0.000245 8.64

65536 0.004372 0.000258 16.92

131072 0.009291 0.000277 33.54

262144 0.018895 0.000414 45.62

524288 0.073453 0.000964 56.44

1048576 0.068871 0.000966 71.32

2097152 0.134228 0.001672 80.29

4194304 0.266037 0.003078 86.43

8388608 0.523203 0.005879 89.00

16777216 1.054674 0.011439 92.20

33554432 2.125154 0.022094 96.19

67108864 4.680722 0.043881 106.67

Table 7. GPU vs CPU Sort Benchmark

Sequence Id 0 0 1 0 1 1

Values 1 1 1 1 1 1

Values Scan 1 2 1 3 2 3

Table 8. Interleaved Sequences

Sequence Id 0 0 0 1 1 1

Values 1 1 1 1 1 1

Values Scan 1 2 3 1 2 3

Table 9. Segmented Sequences

Listing 6. Segmented Sum Operator

KeyValue op ( KeyValue a , KeyValue b ){
i f ( a . key == b . key ){

b . v a l u e += a . v a l u e ;

re turn b ;

}
e l s e {

re turn b ;

}
}

2.4 Scan and Reduce on Multiple Sequences335

Variations on scan and reduce consider multiple sequences contained within the same input array and336

identified by key flags. This is useful for building decision trees as the data can be repartitioned into337

smaller and smaller groups as we build the tree.338

We will describe an input array as containing either ”interleaved” or ”segmented” sequences. Table339

8 shows an example of two interleaved sequences demarcated by flags. Its values are mixed up and do340

not reside contiguously in memory. This is in contrast to Table 9, with two ”segmented” sequences. The341

segmented sequences reside contiguously in memory.342

2.4.1 Segmented Scan343

A scan can be performed on the sequences from Table 9 using the conventional scan algorithm described344

in Section 2.3.2 and modifying the binary associative operator to accept key value pairs. Listing 6 shows345

an example of a binary associative operator that performs a segmented summation. It resets the sum when346

the key changes.347

2.4.2 Segmented Reduce348

A segmented reduction can be implemented efficiently by applying the segmented scan described above349

and collecting the final value of each sequence. This is because the last element in a scan is equivalent to350

a reduction.351

2.4.3 Interleaved Sequences: Multireduce352

A reduction operation on interleaved sequences is commonly described as a multireduce operation. To353

perform a multireduce using the conventional tree algorithm described in Section 2.3.1 a vector of sums354

can be passed up the tree instead of a single value, with one sum for each unique sequence. As the355
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GPU Single precision Double precision

GTX 970 (Maxwell) 3494 109

Titan X (Pascal) 10157 317

Table 10. GPU GFLOPs

Algorithm Mean error St.dev

Sequential 0.0694 0.0520

Parallel 0.0007 0.0005

Table 11. 32 bit Floating point precision

number of unique sequences or ”buckets” increases, this algorithm becomes impractical due to limits on356

temporary storage (registers and shared memory).357

A multireduce can alternatively be formulated as a histogram operation using atomic operations in358

shared memory. Atomic operations allow multiple threads to safely read/write a single piece of memory.359

A single vector of sums is kept in shared memory for the entire thread block. Each thread can then read an360

input value and increment the appropriate sum using atomic operations. When multiple threads contend361

for atomic read/write access on a single piece of memory they are serialised. Therefore a histogram with362

only one bucket will result in the entire thread block being serialised (i.e., only one thread can operate363

at a time). As the number of buckets increases this contention is reduced. For this reason the histogram364

method will only be appropriate when the input sequences are distributed over a large number of buckets.365

2.4.4 Interleaved Sequences: Multiscan366

A scan operation performed on interleaved sequences is commonly described as a multiscan operation.367

A multiscan may be implemented, like multireduce, by passing a vector of sums as input to the binary368

associative operator. This increases the local storage requirements proportionally to the number of buckets.369

General purpose multiscan for GPUs is discussed in (Eilers, 2014) with the conclusion that ”multiscan370

cannot be recommended as a general building block for GPU algorithms”. However, highly practical371

implementations exist that are efficient up to a limited number of interleaved buckets, where the vector of372

sums approach does not exceed the capacity of the device. The capacity of the device in this case refers to373

the amount of registers and shared memory available for each thread to store and process a vector.374

Merill and Grimshaw’s optimised radix sort implementation (Merrill and NVIDIA-Labs, 2016; Merrill375

and Grimshaw, 2011), mentioned in Section 2.3.3, relies on an 8 way multiscan in order to calculate376

scatter addresses for up to 4 bits at a time in a single pass.377

2.5 Floating Point Precision378

The CPU implementation of the XGBoost algorithm represents gradient/Hessian pairs using two 32 bit379

floats. All intermediate summations are performed using 64 bit doubles to control loss of precision from380

floating point addition. This is problematic when using GPUs as the number of intermediate values381

involved in a reduction scales with the input size. Using doubles significantly increases the usage of scarce382

registers and shared memory; moreover, gaming GPUs are optimised for 32 bit floating point operations383

and give relatively poor double precision throughput.384

Table 10 shows the theoretical GFLOPs of two cards we use for benchmarking. The single precision385

GFLOPs are calculated as 2 x number of CUDA cores x core clock speed (in GHz), where the factor of 2386

represents the number of operations per required FMA (fused-multiply-add) instruction. Both these cards387

have 32 times more single precision ALUs (arithmetic logic units) than double precision ALUs, resulting388

in 1/32 the theoretical double precision performance. Therefore an algorithm relying on double precision389

arithmetic will have severely limited performance on these GPUs.390

We test the loss of precision from 32 bit floating point operations to see if double precision is necessary.391

We test 32 bit parallel and sequential summation by summing over a large array of random numbers.392

Sequential double precision summation is used as the baseline, with the error measured as the absolute393

difference from the baseline. The experiment is performed over 10 million random numbers between -1394

and 1, with 100 repeats. The mean error and standard deviation are reported in Table 11. The Thrust395

library is used for parallel GPU reduction based on single precision operations.396
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The 32 bit parallel summation shows dramatically superior numerical stability copmared to the 32 bit397

sequential summation. This is because the error of parallel summation grows proportionally to O(logn),398

as compared to O(n) for sequential summation (Higham, 1993). The parallel reduction algorithm from399

Figure 3 is commonly referred to as ”pairwise summation” in literature relating to floating point precision.400

The average error of 0.0007 over 10 million items shown in Table 11 is more than acceptable for the401

purposes of gradient boosting. This also suggests that the sequential summation within the original402

XGBoost could be safely performed in single precision floats. A mean error of 0.0694 over 10 million403

items is very unlikely to be significant compared to the noise typically present in the training sets of404

supervised learning tasks.405

2.6 Building Tree Classifiers on GPUs406

GPU accelerated decision trees and forests have been studied as early as 2008 in (Sharp, 2008) for the407

purpose of object recognition, achieving speedups of up to 100x for this task. Decision forests were408

mapped to a 2-D texture array and trained/evaluated using GPU pixel and vertex shaders. A more general409

purpose Random Forest implementation is described in (Grahn et al., 2011) showing speedups of up to410

30x over state-of-the-art CPU implementations for large numbers of trees. The authors use an approach411

where one GPU thread is launched to construct each tree in the ensemble.412

A decision tree construction algorithm using CUDA based on ’SPRINT: A Scalable Parallel Classifier413

for Data Mining’ is described in (Chiu et al., 2011). No performance results are reported. Another414

decision tree construction algorithm is described in (Lo et al., 2014). They report speedups of 5-55x over415

WEKA’s Java based implementation of C4.5 (Quinlan, 2014), called J48, and 18x over SPRINT. Their416

algorithm processes one node at a time and as a result scales poorly at higher tree depths due to higher417

per-node overhead as compared to a CPU algorithm.418

Nasridinov et al. describe a GPU accelerated algorithm for ID3 decision tree construction in (Nasridi-419

nov et al., 2014), showing moderate speedups over WEKA’s ID3 implementation. Nodes are processed one420

at a time and instances are resorted at every node. Strnad et al. (2016) devise a decision tree construction421

algorithm that stores batches of nodes in a work queue on the host and processes these units of work on422

the GPU. They achieve speedups of between 2-7x on large data sets as compared to a multithreaded CPU423

implementation. Instances are resorted at every node (Strnad and Nerat, 2016).424

Our work has a combination of key features differentiating it from these previous approaches. Firstly,425

our implementation processes all nodes in a level concurrently, allowing it to scale beyond trivial depths426

with near constant run time. A GPU tree construction algorithm that processes one node at a time will427

incur a nontrivial constant kernel launch overhead (discussed in Section 2.3.4) for each node processed.428

Additionally, as the training set is recursively partitioned at each level, the average number of training429

examples in each node decreases rapidly. Processing a small number of training examples in a single GPU430

kernel will severely underutilise the device. This means the run-time increases dramatically with tree431

depth. To achieve state-of-the-art results in data mining competitions we found that users very commonly432

required tree depths of greater than 10 in XGBoost. This contradicts the conventional wisdom that a tree433

depth of between 4-8 is sufficient for most boosting applications (Friedman et al., 2001). Our approach of434

processing all nodes on a level concurrently is far more practical in this setting.435

Secondly, our decision tree implementation is not a hybrid CPU/GPU approach and so does not use436

the CPU for computation. We find that all stages of the tree construction algorithm may be efficiently437

completed on the GPU. This was a conscious design decision in order to reduce the bottleneck of438

host/device memory transfers. Host/device transfers are at the time of writing limited by the bandwidth439

of the Gen 3 PCIe standard to approximately 16 GB/s. The Titan X we use for benchmarking has an on440

device memory bandwidth of 480 GB/s, a factor of 30 times greater. Consequently, applications that move441

data back and forward between the host and device will not be able to achieve peak performance. Building442

the entire decision tree in device memory has the disadvantage that the capacity of device memory is443

often significantly less than host memory. Despite this, we show that it is possible to process some very444

large benchmark datasets entirely in device memory on a commodity GPU.445

Thirdly, our algorithm implements the sparsity aware tree construction method introduced by XGBoost.446

This allows it to efficiently process sparse input matrices in terms of run-time and memory usage. This is447

in contrast to all previous GPU tree construction algorithms.448

Additionally our implementation is provided as a part of a fully featured machine learning library. It449

implements regression, binary classification, multiclass classification and ranking through the generalised450
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f0 f1 f2

Node Id 0 0 0 0 0 0 0 0

Instance Id 0 2 3 3 2 0 1 3

Feature value 0.1 0.5 0.9 5.2 3.1 3.6 3.9 4.7

Table 12. Device Memory Layout: Feature Values

Instance Id 0 1 2 3

Gradient pair p0 p1 p2 p3

Table 13. Device Memory Layout: Gradient Pairs

Thread block 0 =)
# # # #

f0

Instance Id 0 2 3 1 7 5 6 4

Feature value 0.1 0.2 0.3 0.5 0.5 0.7 0.8 0.8

Gradient pair p0 p2 p3 p1 p7 p5 p6 p4

Table 14. A Single Thread Block Evaluating Splits

gradient boosting framework of XGBoost and has an active user base. No published implementations451

exist for any of the existing GPU tree construction algorithms described above, making direct comparison452

to the approach presented in this work impractical.453

3 PARALLEL TREE CONSTRUCTION454

Our algorithm builds a single decision tree for a boosting iteration by processing decision tree nodes in a455

level-wise manner. At each level we search for the best splits within each leaf node, update the positions456

of training instances based on these new splits and then repartition data if necessary. Processing an entire457

level at a time allows us to saturate the GPU with the maximum amount of work available in a single458

iteration. Previous approaches such as (Lo et al., 2014) and (Nasridinov et al., 2014) process a single node459

at a time and scale poorly at higher tree depths because they sequentially execute small batch sizes. Our460

algorithm performs the following three high level phases for each tree level until the maximum tree depth461

is reached: (1) find splits, (2) update node positions, and (3) sort node buckets (if necessary).462

3.1 Phase 1: Find splits463

The first phase of the algorithm finds the best split for each leaf node at the current level.464

3.1.1 Data Layout465

To facilitate enumeration through all split points, the feature values should be kept in sorted order. Hence,466

we use the device memory layout shown in Tables 12 and 13. Each feature value is paired with the ID of467

the instance it belongs to as well as the leaf node it currently resides in. Data is stored in sparse column468

major format and instance IDs are used to map back to gradient pairs for each instance. All data is stored469

in arrays in device memory. The tree itself can be stored in a fixed length device array as it is strictly470

binary and has a maximum depth known ahead of time.471

3.1.2 Block Level Parallelism472

Given the above data layout notice that each feature resides in a contiguous block and may be processed473

independently. In order to calculate the best split for the root node of the tree we greedily select the best474

split within each feature, delegating a single thread block per feature. The best splits for each feature are475

then written out to global memory and are reduced by a second kernel. A downside of this approach is476

that when the number of features is not enough to saturate the number of streaming multiprocessors—the477

hardware units responsible for executing a thread block—the device will not be fully utilised.478
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f0 f1 f2

Node Id 2 1 2 2 1 2 1 2

Instance Id 0 2 3 3 2 0 1 3

Feature value 0.1 0.5 0.9 5.2 3.1 3.6 3.9 4.7

Table 15. Interleaved Node Buckets

f0 f1 f2

Node Id 1 2 2 1 2

Instance Id 0 2 3 3 2 1 0 3

Feature value 0.5 0.1 0.9 5.2 3.1 3.9 3.6 4.7

Table 16. Sorted Node Buckets

3.1.3 Calculating Splits479

In order to calculate the best split for a given feature we evaluate Equation 4 at each possible split480

location. This depends on (GL,HL) and (GR,HR). We obtain (GL,HL) from a parallel scan of gradient481

pairs associated with each future value. (GR,HR) can be obtained by subtracting (GL,HL) from the node482

total which we know from the parent node.483

The thread block moves from left to right across a given feature, consuming ”tiles” of input. A tile484

here refers to the set of input items able to be processed by a thread block in one iteration. Table 14 gives485

an example of a thread block with four threads evaluating a tile with four items. For a given tile, gradient486

pairs are scanned and all splits are evaluated.487

Each 32 thread warp performs a reduction to find the best local split and keeps track of the current488

best feature value and accompanying gradient statistics in shared memory. At the end of processing the489

feature another reduction is performed over all the warps’ best items to find the best split for the feature.490

3.1.4 Missing Values491

The original XGBoost algorithm accounts for missing values by scanning through the input values twice492

as described in Section 2.1.6—once in the forwards direction and once in the reverse direction. An493

alternative method employed by our GPU algorithm is to perform a sum reduction over the entire feature494

before scanning. The gradient statistics for the missing values can then be calculated as the node sum495

statistics minus the reduction. If the sum of the gradient pairs from the missing values is known only a496

single scan is then required. This method was chosen as the cost of a reduction can be significantly less497

than performing the second scan.498

3.1.5 Node Buckets499

So far the algorithm description only explains how to find a split at the first level where all instances are500

bucketed into a single node. A decision tree algorithm must by definition separate instances into different501

nodes and then evaluate splits over these subsets of instances. This leaves us with two possible options502

for processing nodes. The first is to leave all data instances in their current location, keeping track of503

which node they currently reside in using an auxiliary array as shown in Table 15. When we perform a504

scan across all data values we keep temporary statistics for each node. We therefore scan across the array505

processing all instances as they are interleaved with respect to their node buckets. This is the method used506

by the CPU XGBoost algorithm. We also perform this method on the GPU but only to tree depths of507

around 5. This interleaved algorithm is fully described in Section 3.1.6.508

The second option is to radix sort instances by their node buckets at each level in the tree. This second509

option is described fully in Section 3.1.7. Briefly, data values are first ordered by their current node and510

then by feature values within their node buckets as shown in Table 16. This transforms the interleaved511

scan (”multiscan”) problem described above into a segmented scan, which has constant temporary storage512

requirements and thus scales to arbitrary depths in a GPU implementation.513

In our implementation we use the interleaved method for trees of up to depth 5 and then switch to514

the sorting version of the algorithm. Avoiding the expensive radix sorting step for as long as possible515

can provide speed advantages, particularly when building small trees. The maximum number of leaves at516

depth five is 32. At greater depths there are insufficient shared memory resources and the exponentially517
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Algorithm 5: Reduction - Thread block execution

1. An input tile is loaded.

2. Each warp performs local reduction for each bucket, masking off items for the current bucket.

3. Each warp adds its local reductions into shared memory.

4. The remaining tiles are processed.

5. The partial sums in shared memory are reduced by a single warp into the final node sums.

Algorithm 6: Multiscan - Thread block execution

1. An input tile is loaded.

2. Each warp performs local scans for each bucket, masking off items for the current bucket.

3. The sums from each local scan are placed into shared memory.

4. The partial sums in shared memory are scanned.

5. The scanned partial sums in shared memory are added back into the local values.

6. The running sum from the previous tile is added to the local values.

7. The remaining tiles are processed.

increasing run-time begins to be uncompetitive. We first describe the interleaved algorithm in Section518

3.1.6 before discussing the algorithm based on radix sort in Section 3.1.7.519

3.1.6 Interleaved Algorithm: Finding a Split520

In order to correctly account for missing values a multireduce operation must be performed to obtain the521

sums within interleaved sequences of nodes. A multiscan is then performed over gradient pairs. Unique522

feature values are then identified and gain values calculated to identify the best split for each node.523

Multireduce and Multiscan524

Algorithms 5 and 6 outline the approach used for multireduce/multiscan at the thread block level. Our525

multiscan/multireduce approach is formulated around sequentially executing fast warp synchronous526

scan/reduce operations for each bucket. Passing vectors of items to the binary associative operator is not527

generally possible given the number of buckets and the limited temporary storage. This was discussed in528

Section 2.4. We instead perform warp level multiscan operations. Listing 7 shows how a 32 thread warp529

can perform a multiscan by masking off non-active node buckets and performing a normal warp scan for530

each node bucket. The function ’WarpExclusiveScan()’ here refers to an exclusive version of the warp531

scan described in Listing 3.532

Note that n many warp reductions/scans must be performed over every 32 items where n is the number533

of buckets (equal to the number of active leaves). This leads to an exponentially increasing run time534

relative to the depth of the tree but is surprisingly performant even up to n = 32 as warp synchronous535

reductions/scans using shuffle instructions are cheap to compute. They only perform operations on536

registers and incur no high latency reads or writes into global memory.537

The exclusive scan for the entire input tile is calculated from individual warp scans by performing the538

same multiscan operation over the sums of each warp scan and scattering the results of this back into each539

item. More detailed information on how to calculate a block wide scan from smaller warp scan operations540

is given in (Nvidia, 2016).541

Evaluating splits542

There is one additional problem that must be solved. It arises as a consequence of processing node buckets543
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Listing 7. Warp Multiscan

g p u g p a i r g p a i r ; / / G r a d i e n t v a l u e s f o r c u r r e n t i t e m

i n t n o d e i d ; / / Node b u c k e t o f c u r r e n t i t e m

g p u g p a i r e x c l u s i v e s c a n o u t p u t ;

f o r ( i n t NODE = 0 ; NODE < N NODES ; NODE++) {
bool n o d e a c t i v e = n o d e i d == NODE;

g p u g p a i r s c a n r e s u l t ;

g p u g p a i r node sum ;

/ / F i r s t argument i s t h e scan i n p u t

/ / R e s u l t i s p l a c e d i n t h e second argument

/ / Warp sum i s p l a c e d i n t h e t h i r d argument

WarpExc lus iveScan ( n o d e a c t i v e ? g p a i r : g p u g p a i r ( ) ,

s c a n r e s u l t , node sum ) ;

i f ( n o d e a c t i v e ) {
e x c l u s i v e s c a n o u t p u t = s c a n r e s u l t ;

}
}

in interleaved order. In a decision tree algorithm, when enumerating through feature values to find a544

split, we should not choose a split that falls between two elements with the same value. This is because a545

decision rule will not be able to separate elements with the same value. For a value to be considered as a546

split the corresponding item must be the leftmost item with that feature value for that particular node (we547

could also arbitrarily take the rightmost value).548

Because the node buckets are interleaved it is not possible to simply check the item to the left to see549

if the feature value is the same—the item to the left of a given item may reside in a different node. To550

check if an item with a certain feature value is the leftmost item with that value in its node bucket we can551

formulate a scan with a special binary associative operator. First each item is assigned a bit vector~x of552

length n+1 where n is the number of buckets. If the item resides within bucket i then xi will be set to 1.553

If the item’s feature value is distinct from the value of the item directly to the left (irrespective of bucket)554

then xn+1 is set to 1. All other bits are set to 0.555

We can then define a binary associative operator as follows:

op(~a,~b) =

(

~b, if bn+1 = 1

~a_~b, otherwise
(5)

Bit xn+1 acts as a segmentation flag, resetting the scan so many small scans are performed across556

groups of items with the same feature value. Scanning the bucket flags with a logical or operator557

determines which node buckets are represented in the items to the left of the current item. Therefore558

within a group of items with the same feature value, if the current item’s bucket flag is set to 0 for the559

bucket it resides in, the item represents the leftmost item with that value in its bucket. This item can then560

be used as a split point.561

In practice a 64-bit integer is used as the bit vector in order to hold a maximum of 33 bits at the 6th562

level of the tree. The operator is formulated according to Listing 8 in C++ code. Moreover, when applying563

this interleaved algorithm we cannot choose the split value as the halfway point between two training564

examples: We do not know the value of the item to the left within the current node, only if it is the same565

as the current item or not. The split value is accordingly calculated as the current value minus some small566

constant. This distinction in the split value does not affect accuracy in practice.567

Complete Algorithm568
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Listing 8. Binary associative operator

B i t F l a g S e t op ( c o n s t B i t F l a g S e t &a , c o n s t B i t F l a g S e t &b ) {
i f ( c h e c k b i t ( b , 6 3 ) ) {

re turn b ;

} e l s e {
re turn a | b ;

}
}

Algorithm 7: Interleaved algorithm - Thread block execution

1. Load input tile

2. Multireduce tile gradient pairs

3. Go to 1. until all tiles processed

4. Return to first tile

5. Load input tile

6. Multiscan tile gradient pairs

7. Scan tile for unique feature values

8. Calculate gain for each split

9. Store best split for each warp

10. Go to 5. until all tiles processed

11. Output best splits

Given a reduction, scan and the above method for finding unique feature values we have all the machinery569

necessary to enumerate splits and select the best. The complete algorithm for a thread block processing a570

single feature at a given tree level is shown in Algorithm 7.571

The output of this algorithm contains the best splits for each leaf node for a given feature. Each thread572

block outputs the best splits for its assigned feature. These splits are then further reduced by a global573

kernel to find the best splits for any feature.574

3.1.7 Sorting Algorithm: Finding a Split575

The sorting implementation of the split finding algorithm operates on feature value data grouped into node576

buckets. Given data sorted by node ID first and then feature values second we can perform segmented577

scan/reduce operations over an entire feature only needing a constant amount of temporary storage.578

The segmented reduction to find gradient pair sums for each node is implemented as a segmented579

sum scan, storing the final element from each segment as the node sum. Another segmented scan is then580

performed over the input feature to get the exclusive scan of gradient pairs. After scanning each tile581

the split gain is calculated using the scan and reduction as input and the best splits are stored in shared582

memory.583

The segmented scan is formulated by performing an ordinary scan over key value pairs with a binary584

associative operator that resets the sum when the key changes. In this case the key is the current node585

bucket and the value is the gradient pair. The operator is shown in Equation 6.586

op(akey,avalue,bkey,bvalue) =

(

(bkey,bvalue), if akey 6= bkey

(bkey,avalue +bvalue), otherwise
(6)
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Algorithm 8: Sorting Algorithm Split Finding - Thread block execution

1. Load input tile

2. Segmented reduction over tile gradient pairs

3. Go to 1. until all tiles processed

4. Return to first tile

5. Load input tile

6. Segmented scan over tile gradient pairs

7. Calculate gain for each split

8. Store best split for each warp

9. Go to 5. until all tiles processed

10. Output best splits

Node 0

Node 1

f0<0.8

missing: right

Node 3 Node 4

Node 2

f1<3.75

missing: left

Node 5 Node 6

Y N Y N

Figure 9. Decision tree: four new leaves

An overview of the split finding algorithm for a single thread block processing a feature is provided in587

Algorithm 8. The output of this algorithm, like that of the interleaved algorithm, consists of the best splits588

for each feature, and each node. This is reduced by a global kernel to find the best splits for each node, of589

any feature.590

3.2 Phase 2: Update Node Positions591

Once the best splits for each node have been calculated, the node positions for each instance must be592

updated. This is made non-trivial because of the presence of missing values. We first create an array593

containing the pre-split node position of each training instance. These node positions are then updated as594

if they contained all missing values, according to the default missing direction in the newly calculated595

splits. We then update this array again based on the feature values of the instances. Any instance which596

does not have a value for that feature (missing value) will have its node position left unchanged as per the597

missing direction. Because we now have the updated node position for each instance we write these node598

positions back to each feature value.599

To illustrate this with an example, Figure 9 shows the state of a decision tree after having calculated600

splits for level 1. The node positions in the data structure used for split finding (Table 17) must be updated601

before proceeding to calculate the splits for level 2. To do this we update the array in Table 18 that maps602

instances to a node.603

First we update the node ID map in the missing direction. All instances residing in node 1 are updated604

in the right direction to node 4. Instances residing in node 2 are updated in the left direction to node 5.605
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f0 f1

Node Id 1 2 2 1 1 2 2

Instance Id 0 2 1 3 0 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Table 17. Per Feature Value Array

Instance Id 0 1 2 3

Node Id 1 2 2 1

Table 18. Node ID map

Instance Id 0 1 2 3

Node Id 4 5 5 4

Table 19. Updated missing

direction

Instance Id 0 1 2 3

Node Id 3 5 6 4

f0 f1

Node Id 1 2 2 1 1 2 2

Instance Id 0 2 1 3 1 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Table 20. Node ID map: Update based on feature value

f0 f1

Node Id 3 6 5 4 3 5 6

Instance Id 0 2 1 3 0 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Table 21. Per Feature Value Array: Updated

The node ID map now looks like Table 19.606

We now update the map again using the feature values from Table 17, overwriting the previous values.607

Instance 0 resides in node 1 so we check if f 0 < 0.8. This is true so instance 0 moves down the left608

branch into node 3. Instance 1 moves into node 5 and instance 2 moves into node 6 based on their f1609

values. Note that instance 3 has a missing value for f0. Its node position is therefore kept as the missing610

direction updated in the previous step. This process is shown in Figure 20.611

The per instance node ID array is now up-to-date for the new level so we write these values back into612

the per feature value array, giving Table 21.613

3.3 Phase 3: Sort Node Buckets614

If the sorting version of the algorithm is being used, the feature values need to be sorted by node position.615

If the interleaved version of the algorithm is being used (for example, in early tree levels) this step is616

unnecessary. Each feature value with its updated node position is sorted such that each node bucket617

resides in contiguous memory. This is achieved using a segmented key/value radix sort. Each feature618

represents a segment, the sort key is the node position and the feature value/instance ID tuple is the value.619

We us the segmented radix sort function from the CUB library. It delegates the sorting of each feature620

segment to a separate thread block. Note that radix sorting is stable so the original sorted order of the621

feature values will be preserved within contiguous node buckets, after sorting with node position as the622

key.623

4 EVALUATION624

The performance and accuracy of the GPU tree construction algorithm for XGBoost is evaluated on several625

large datasets and two different hardware configurations and also compared to CPU based XGBoost on a626

24 core Intel processor.627

23/28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2911v1 | CC BY 4.0 Open Access | rec: 4 Apr 2017, publ: 4 Apr 2017



Configuration CPU GHz Cores CPU arch.

#1 Intel i5-4590 3.30 4 Haswell

#2 Intel i7-6700K 4.00 4 Skylake

#3 2x Intel Xeon E5-2695 v2 2.40 24 Ivy Bridge

Configuration GPU GPU memory (GB) GPU arch.

#1 GTX 970 4 Maxwell

#2 Titan X 12 Pascal

#3 - - -

Table 22. Hardware Configurations

Dataset Training Instances Test Instances Features

YLTRa 473,134 165,660 700

Higgsb 10,500,000 500,000 28

Boschc 1,065,373 118,374 968

Table 23. Datasets

ahttps://webscope.sandbox.yahoo.com/catalog.php?datatype=c
bhttps://archive.ics.uci.edu/ml/datasets/HIGGS
chttps://www.kaggle.com/c/bosch-production-line-performance/data

Dataset objective eval metric max depth eta boosting iterations

YLTR rank:ndcg ndcg@10 6 0.1 500

Higgs binary:logistic auc 12 0.1 500

Bosch binary:logistic auc 6 0.1 500

Table 24. Parameters

Hardware configurations are described in Table 22. On configuration #1, where there is limited device628

memory, a subset of rows from each dataset is taken in order to fit within device memory.629

Datasets are described in Table 23 and parameters used for each dataset are shown in Table 24.630

For the YLTR dataset we use the supplied training/test split. For the Higgs dataset we randomly select631

500,000 instances for the test set, as in (Chen and Guestrin, 2016). For the Bosch dataset we randomly632

sample 10% of the instances for the test set and use the rest for the training set.633

We use 500 boosting iterations for all datasets unless otherwise specified. This is a common real634

world setting that provides sufficiently long runtimes for benchmarking. We set η (the learning rate)635

to 0.1 as the XGBoost default of 0.3 is too high for the number of boosting iterations. For the YLTR636

and Bosch datasets we use the default tree depth of six because both of these datasets tend to generate637

small trees. The Higgs dataset results in larger trees so we can set max depth to 12, allowing us to test638

performance for large trees. Both the Higgs and Bosch datasets are binary classification problems so639

we use the binary:logistic objective function for XGBoost. Both Higgs and Bosch also exhibit highly640

imbalanced class distribution, so the AUC (area under curve) evaluation metric is appropriate. For the641

YLTR dataset we use the rank:ndcg objective and ndcg@10 evaluation metric to be consistent with the642

evaluation from (Chen and Guestrin, 2016). All other XGBoost parameters are left as the default values.643

4.1 Accuracy644

In Table 25 we show the accuracy of the GPU algorithm compared to the CPU version. We test on645

configuration #1 so use a subset of the training set to fit the data within device memory but use the full646

test set for accuracy evaluation.647

There is only minor variation in accuracy between the two algorithms. Both algorithms are equivalent648

for the Higgs dataset, the CPU algorithm is marginally more accurate for the YLTR dataset and the GPU649

algorithm is marginally more accurate on the Bosch dataset. In Table 26 we also show the accuracy650

without using the interleaved version of the GPU algorithm. Variations in accuracy are attributable to651
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Dataset Subset Metric CPU accuracy GPU accuracy

YLTR 0.75 ndcg@10 0.7784 0.7768

Higgs 0.25 auc 0.8426 0.8426

Bosch 0.35 auc 0.6833 0.6905

Table 25. Accuracy Benchmarks

Dataset Subset Metric GPU accuracy (sorting version only)

YLTR 0.75 ndcg@10 0.7776

Higgs 0.25 auc 0.8428

Bosch 0.35 auc 0.6849

Table 26. Accuracy Benchmarks - Sorting version only

Dataset Subset CPU time (s) GPU time (s) Speedup

YLTR 0.75 1577 376 4.19

Higgs 0.25 7961 1201 6.62

Bosch 0.35 1019 249 4.09

Table 27. Configuration #1 Speed Benchmarks

Dataset Subset CPU time (s) GPU time (s) Speedup

YLTR 1.0 877 277 3.16

Higgs 1.0 14504 3052 4.75

Bosch 1.0 3294 591 5.57

Table 28. Configuration #2 Speed Benchmarks

the interleaved version of the algorithm not choosing splits at the halfway point between two training652

examples, instead choosing the split value as the right most training example minus some constant.653

Differences also occur due to floating point precision as discussed in Section 2.5.654

4.2 Speed655

Tables 27 and 28 show the relative speed up of the GPU algorithm compared to the CPU algorithm over656

500 boosting iterations. For configuration #1 with lower end desktop hardware, speed ups of between657

4.09x and 6.62x are achieved. On configuration #2 with higher end desktop hardware but the same number658

of cores, speed ups of between 3.16x an 5.57x are achieved. The GTX 970 used in configuration #1 must659

sample the datasets as they do not fit entirely in device memory. The Titan X used in configuration #2 is660

able to fit all three datasets entirely into memory.661

Figure 10 shows the performance of the GPU algorithm across varying problem sizes using configura-662

tion #1. The experiment is performed on subsets of the Bosch dataset using 20 boosting iterations. The663

GPU algorithm’s time increases linearly with respect to the number of input rows. It is approximately664

equal to the CPU algorithm at 10,000 rows and always faster thereafter for this dataset. This gives an idea665

of the minimum batch size at which the GPU algorithm begins to be effective.666

In Figure 11 we show the performance of the Titan X from configuration #2 against configuration667

#3 (a high-end 24 core server) on the Yahoo dataset with 500 boosting iterations and varying numbers668

of threads. The Titan X outperforms the 24 core machine by approximately 1.2x, even if the number of669

threads for the 24 core machine is chosen optimally.670

4.3 Interleaved algorithm performance671

In Table 29 and Figure 12 we show the effect of changing the threshold at which the algorithm switches672

between the interleaved version of the algorithm and the sorting version of the algorithm. Timings are673

from 100 boosting iterations on a 35% subset of the Bosch dataset using configuration #1. Using the674

interleaved version of the algorithm shows benefits all the way up to the fifth level with a 1.14x speed675

increase as compared to just using the sorting algorithm. After this depth temporary storage is insufficient676
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Figure 10. Bosch: Time vs Problem Size
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Figure 11. Yahoo LTR: nthreads vs time

Levels GPU time Accuracy Speedup

(s)

0 85.96 0.7045 1.0

1 85.59 0.7102 1.0

2 82.32 0.7047 1.04

3 79.97 0.7066 1.07

4 76.38 0.7094 1.13

5 75.21 0.7046 1.14

Table 29. Bosch dataset: Interleaved levels
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Figure 12. Bosch: Interleaved algorithm

threshold

to keep using the interleaved approach. Note that for the first level the interleaved algorithm and the677

sorting algorithm are equivalent as there is only one node bucket.678

The accuracy shows some variance as the interleaved split finding algorithm records feature splits679

in a slightly different way as compared to the sorting algorithm. Both versions split the training set in680

exactly the same place but the sorting version records the feature value for the split as halfway between681

two instances and the interleaved version records the split point as slightly less than the rightmost instance.682

Because of this, when we use the model on the unseen test set the results can be marginally different for683

the two versions.684

Surprisingly the interleaved algorithm is still faster than the sorting algorithm at level 5 despite the685

fact that the multiscan and multireduce operations must sequentially iterate over 25 = 32 nodes at each686

step. This shows that executing instructions on elements held in registers or shared memory carries a very687

low cost relative to uncoalesced reordering of elements in device memory, as is performed when radix688

sorting.689

4.4 Memory consumption690

We show the device memory consumption in Table 30 for all three benchmark datasets. Each dataset can691

be fit entirely within the 12GB device memory of a Titan X card.692

In Table 31 we show the memory consumption of the original CPU algorithm for comparison. Host693

memory consumption was evaluated using the valgrind massif2 heap profiler tool. Device memory usage694

2http://valgrind.org/docs/manual/ms-manual.html
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Dataset Device memory (GB)

YLTR 4.03

Higgs 11.32

Bosch 8.28

Table 30. Memory: GPU Algorithm

Dataset Host memory (GB)

YLTR 1.80

Higgs 6.55

Bosch 3.28

Table 31. Memory: CPU

Algorithm

was recorded programmatically using custom memory allocators. The device memory requirements are695

approximately twice that of the original CPU algorithm. This is because the CPU algorithm is able to696

process data in place, whereas the GPU algorithm requires sorting functions that are not in place and must697

maintain separate buffers for input and output.698

5 CONCLUSION699

A highly practical GPU accelerated tree construction algorithm is devised and evaluated within the700

XGBoost library. The algorithm is built on top of efficient parallel primitives and switches between two701

modes of operation depending on tree depth. The ”interleaved” mode of operation shows that multiscan702

and multireduce operations with a limited number of buckets can be used to avoid expensive sorting703

operations at tree depths below six, resulting in speed increases of 1.14x for the GPU implementation.704

The GPU algorithm provides speedups of between 3-6x over multicore CPUs on desktop machines705

and a speed up of 1.2x over 2x Xeon CPUs with 24 cores. We see significant speedups for all parameters706

and datasets above a certain size, while providing an algorithm that is feature complete and able to handle707

sparse data. Potential drawbacks of the algorithm are that the entire input matrix must fit in device708

memory and device memory consumption is approximately twice that of the host memory used by the709

CPU algorithm. Despite this, we show that the algorithm is memory efficient enough to process the entire710

Higgs dataset containing 10 million instances and 28 features on a single 12GB card.711

Our algorithm provides a practical means for XGBoost users processing large data sets to significantly712

reduce processing times, showing that gradient boosting tasks are a good candidate for GPU acceleration713

and are therefore no longer solely the domain of multicore CPUs.714
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