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ABSTRACT6

Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an
instrumented treadmill. Each trial consists of 120 seconds of normal walking and 480 seconds
of walking while being longitudinally perturbed during each stance phase with pseudo-random
fluctuations in the speed of the treadmill belt. A total of approximately 1.5 hours of normal walking
(> 5000 gait cycles) and 6 hours of perturbed walking (> 20,000 gait cycles) is included in the
data set. We provide full body marker trajectories and ground reaction loads in addition to a
presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint
torques along with the open source software used for the computations. The protocol is described
in detail and supported with additional elaborate meta data for each trial. This data can likely be
useful for validating or generating mathematical models that are capable of simulating normal
periodic gait and non-periodic, perturbed gaits.
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INTRODUCTION9

The collection of dynamical data during human walking has a long history beginning with the first10

motion pictures and now with modern marker based motion capture techniques and high fidelity11

ground reaction load measurements. Even though years of data on thousands of subjects now exist,12

this data is not widely disseminated, well organized, nor available with few or no restrictions. David13

Winter’s published normative gait data, Winter (1990), is widely used in biomechanical studies, yet14

it comes from relatively few subjects and only a small number of gait cycles per subject. This small15

source has successfully inspired many other studies, such as powered prosthetic control design, Sup16

et al. (2008), but success in other research fields using large sets of data for discovery lead one to17

believe that more elaborate data sets may benefit the field of human motion studies. To enable such18

work, biomechanical data needs to be shared extensively, organized, and curated to enabled future19

analysts.20

There are some notable gait data sets and databases besides Winter’s authoritative set that21

are publicly available. The International Society of Biomechanics has maintained a web page22

(http://isbweb.org/data) since approximately 1995 that includes data sets for download and mostly23

unencumbered use. For example, Vaughn, et. al’s data, Vaughan et al. (1992), with kinematics24

and force plate measurement from several subjects is available on the site. At another website,25

the CGA Normative Gait Database, Kirtley (2014), Chris Kirtley shares normative gait data from26
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several studies and these files have influenced other studies, for example the average gait cycles27

from children used in van den Bogert (2003).28

Chester et. al, Chester et al. (2007), report on a large gait database comparison where one29

database contained kinematic data of 409 gait cycles of children from 1 to 7 years old but the data30

does not seem to be publicly available. This is unfortunately typical. But Tirosh et. al, recognized31

the need for a comprehensive data base for clinical gait data and created the Gaitabase, Tirosh et al.32

(2010). This database may contain a substantial amount of data but it is encumbered by a very33

complicated and restrictive license and sharing scheme. However, there are examples of data with34

less restrictions. The University of Wisconsin at LaCrosse has an easily accessible normative gait35

data set, Willson and Kernozek (2014), from 25 subjects with lower extremity marker data from36

multiple gait cycles and force plate measurements from a single gait cycle.37

More recent examples of biomechanists sharing their data alongside publications are: van den38

Bogert et al. (2013) which includes full body joint kinematics and kinetics from eleven subjects39

walking for a small number of gait cycles and Wang and Srinivasan (2014) who includes a larger set40

of data from ten subjects walking for five minutes each at three different speeds but only a small41

set of lower extremity markers are present. The second is notable because it publishes the data in42

Dryad, a modern citable data repository.43

The publicly available gait data is small compared to the number of gait studies that have been44

performed over the years. The data that is available generally suffers from limitations such as few45

subjects, few gait cycles, few markers, highly clinical, no raw data, limited force plate measurements,46

lack of meta data, non-standard formats, and restrictive licensing. To help with this situation we are47

making the data we collected for our research purposes publicly available and free of the previously48

mentioned deficiencies. Not only do we provide a larger set of normative gait data that has been49

previously available, we also include an even larger set of data in which the subject is being perturbed,50

something that does not currently exist. We believe both of these sets of data can serve a variety of51

use cases and hope that we can save time and effort for future researchers by sharing it.52

Our use case for the data is centered around the need of bio-inspired control systems for emerging53

powered prosthetics and orthotics. Ideally, a powered prosthetic would behave in such a way that the54

user would feel like their limb was never disabled. There are a variety of approaches to developing55

bio-inspired control systems, some of which aim to mimic the reactions and motion of an able-56

bodied person. A modern gait lab is able to collect a variety of kinematic, kinetic, and physiological57

data from humans during gait. This data can potentially be used to drive the design of the human-58

mimicking controller. With a rich enough data set, one may be able to identify control mechanisms59

used during a human’s natural gait and recovery from perturbations. We have collected data that is60

richer than previous gait data sets and may be rich enough for control identification. The data can61

also be used for verification purposes for controllers that have been designed in other manners.62

With all of this in mind, we collected over seven and half hours of gait data from fifteen able63

bodied subjects which amounts to over 25,000 gait cycles. The subjects walked at three different64

speeds on an instrumented treadmill while we collected full body marker locations and ground65

reaction loads from a pair of force plates. The protocol for the majority of the trials included two66

minutes of normal walking and eight minutes of walking under the influence of pseudo-random belt67

speed fluctuations. The data has been organized complete with rich meta data and made available in68

the most unrestrictive form for other research uses following modern best practices in data sharing,69

White et al. (2013).70

Furthermore, we include a small Apache licensed open source software library for basic gait71
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Table 1. Information about the 15 participants. The final three columns give the trial numbers
associated with each nominal treadmill speed. The measured mass is computed from the mean total
vertical ground reaction force just after the calibration pose event, if possible. Additional trials
found in the data set with a subject identification number 0 are trials with no subject, i.e. unloaded
trials that can be used for inertial compensation purposes, and are not shown in the table. Generated
by src/subject_table.py.

Id Gender Age [yr] Height [m] Measured Mass [kg] Self-reported mass [kg] 0.8 m/s 1.2 m/s 1.6 m/s

1 male 25 1.87 NA 101 NA 6, 7, 8 NA
3 female 32 1.62 54±2 60 46 47 48
4 male 30 1.76 NA 74 12, 15 13 14
5 male 23 1.73 71.2±0.9 65 32 31 33
6 male 26 1.77 86.8±0.6 80 40 41 42
7 female 29 1.72 64.5±0.8 63 16 17 18
8 male 20 1.57 74.9±0.9 70 19 20 21
9 male 20 1.69 67±2 64 25 26 27

10 male 19 1.77 92±2 91 61 62 63
11 male 22 1.85 NA 80 9 10 11
12 male 22 1.85 74.2±0.5 81 49 50 51
13 female 21 1.70 58±2 64 55 56 57
15 male 22 1.83 80.5±0.8 79 67 68 69
16 female 28 1.69 56.2±0.6 52 76 77 78
17 male 23 1.86 88.3±0.8 87 73 74 75

analysis and demonstrate its use in the paper. The combination of the open data and open software72

allow the results presented within to be computationally reproducible and instructions are included73

in the associated repository for doing so.74

METHODS75

Participants76

Fifteen able bodied subjects including four females and eleven males with an average age of 24±477

years, height of 1.75±0.09 m, mass of 74±13 kg participated in the study. The study was approved78

by the Institutional Review Board of Cleveland State University (# 29904-VAN-HS) and written79

informed consent was obtained from all participants. The data has been anonymized with respect80

to the participants’ identities and a unique identification number was assigned to each subject. A81

selection of the meta data collected for each subject is shown in Table 1.82

Equipment83

The data were collected in the Laboratory for Human Motion and Control at Cleveland State84

University, using the following equipment:85

• A R-Mill treadmill which has dual 6 degree of freedom force plates, independent belts for86

each foot, and lateral/pitch motion capabilities (Forcelink, Culemborg, Netherlands).87
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• A 10 Osprey camera motion capture system paired with the Cortex 3.1.1.1290 software88

(Motion Analysis, Santa Rosa, CA, USA).89

• USB-6255 data acquisition unit (National Instruments, Austin, Texas, USA).90

• Four ADXL330 Triple Axis Accelerometer Breakout boards attached to the treadmill (Spark-91

fun, Niwot, Colorado, USA).92

• D-Flow software (versions 3.16.1 to 3.16.2) and visual display system, (Motek Medical,93

Amsterdam, Netherlands).94

The Cortex software delivers high accuracy 3D marker trajectories from the cameras along with95

data from force plates and analog sensors (EMG/Accelerometer) through a National Instruments96

USB-6255 data acquisition unit. D-Flow is required to collect data from any digital sensors and to97

control the treadmill’s motion (lateral, pitch, and belts). D-Flow can process the data in real time98

and/or export data to file.99

Our motion capture system’s coordinate system is such that the X coordinate points to the right,100

the Y coordinate points upwards, and the Z coordinate follows from the right-hand-rule, i.e. points101

backwards with respect to the walking direction. The camera’s coordinate system is aligned to an102

origin point on treadmill’s surface during camera calibration. The same point is used as the origin of103

the ground reaction force measuring system. Figure 1 shows the layout of the equipment.104

Early on, we discovered that the factory setup of the R-Link treadmill had a vibration mode as105

low as 5Hz that is detectable in the force measurements, likely due to the flexible undercarriage106

and pitch motion mechanism. Trials 6-8 are affected by this vibration mode. During trials 9-15107

the treadmill was stabilized with wooden blocks. During, the remaining trials the treadmill was108

stabilized with metal supports. See the Data Limitations Section for more details.109

The acceleration of the treadmill was measured during each trial by four ADXL330 accelerom-110

eters placed at the four corners of the machine. These accelerometers were intended to provide111

information for inertial compensation purposes when the treadmill moved laterally, but are extrane-112

ous for trials greater than 8 due to the treadmill being stabilized.113

Protocol114

The experimental protocol consisted of both static measurements and walking on the treadmill for115

10 minutes under unperturbed and perturbed conditions. Before a set of trials on the same day the116

following happened:117

• Calibration of the motion capture system using the manufacturer’s recommended procedure.118

• Subject changes into athletic shoes, shorts, sports bra, baseball cap, and rock climbing harness.119

• All 47 markers are applied directly to the skin except for the heel, toe, and head markers,120

which were placed on the respective article of clothing. 1.121

• Subjects self-reported age, gender, and mass.122

• Height was measured by the experimentalist.123

1The sacrum and rear pelvic markers may have been placed on the shorts for a small number of the subjects
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Figure 1. The treadmill with coordinate system, cameras (circled in orange), projection screen,
and safety rope. The direction of travel is in the −z direction.

• Four reference photographs (front, back, right, left) were taken of subject’s marker locations.124

After obtaining informed consent and a briefing by the experimentalist on the trial protocol, the125

subject followed the verbal instructions of the experimentalist and the on-screen instructions from126

the video display. The protocol for a single trial was as follows:127

1. Subject stepped onto the treadmill and markers were identified with Cortex.128

2. The safety rope was attached loosely to the rock climbing harness such that no undue forces129

were acting on the subject during walking, but that the harness would prevent a full fall.130

3. The subject started by stepping on sides of treadmill so that feet did not touch the force plates131

and the force plate signals are zeroed. This corresponds to the “Force Plate Zeroing” event.132

4. Once notified by the video display, the subject stood in the initialization pose: standing straight133

up, looking forward, arms out by their sides ( 45 degrees) and the event, “Calibration Pose”,134

was manually recorded by the operator.135

5. A countdown to the first normal walking phase was displayed. At the end of the countdown136

the event “First Normal Walking” was recorded and the treadmill ramped up to the specified137

speed and the subject was instructed to walk normally, to focus on the “endless” road on the138

display, and not to look at their feet.139

6. After 1 minute of normal walking, the longitudinal perturbation phase begun and was recorded140

as “Longitudinal Perturbation”.141

7. After 8 minutes of walking under the influence of the perturbations, the second normal walking142

phase begun and was recorded as “Second Normal Walking”.143
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8. After 1 minute of normal walking, a countdown was shown on the display and the treadmill144

decelerated to a stop.145

9. The subject was instructed to step off of the force plates for 10 seconds and the “Unloaded146

End” event was recorded.147

10. The subject could then take a rest break before each additional trial.148

Trials 6-8 included a calibration pose at the start of the trial but the event was not explicitly149

recorded. In those trials, the “TreadmillPerturbation” event marks the beginning of longitudinal150

perturbations and the “Both” event marks the beginning of combined longitudinal and lateral151

perturbations. The force plate zeroing at the end was also not explicitly recorded.152

Perturbation Signals153

As previously described, the protocol included a phase of normal walking, followed by longitudinal154

belt speed perturbations, and ended with a second segment of normal walking. Three pseudo-155

random belt speed control signals, with mean velocities of 0.8 m s−1, 1.2 m s−1 and 1.6 m s−1, were156

pre-generated with MATLAB and Simulink (Mathworks, Natick, Massachusetts, USA). The same157

control signal was used for all trials at that given speed.158

To create the signals, we started by generating random 100 Hz acceleration signals using the159

Simulink discrete-time Gaussian white noise block followed by a saturation block set at the maximum160

belt acceleration of 15 m s−2. The signal was then integrated to obtain belt speed and high-pass161

filtered with a second-order Butterworth filter to eliminate drift. One of the three mean speeds162

were then added to the signal and limited between 0 m s−1 to 3.6 m s−1. The cutoff frequencies163

of the high-pass filter, as well as the variance in the acceleration signal, were manually adjusted164

until acceptable standard deviations for each mean speed were obtained: 0.06 m s−1, 0.12 m s−1 and165

0.21 m s−1 for the three speeds, respectively. These ensured that the test subjects were sufficiently166

perturbed at each speed, while remaining within the limits of our equipment and testing protocol.167

To ensure that the treadmill belts could accelerate to the desired values, the high performance168

mode in the D-Flow software was enabled. This had the side effect of enabling too rapid of169

accelerations when the belt speed changed to or from zero speed. To eliminate this, a suitable170

ramped acceleration and deceleration were generated for the speed transitions.171

The MATLAB script and Simulink model produce a comma-delimited text file of six signals:172

time stamp, slow, normal, and fast walking perturbation signals, and slow and fast running signals. 2
173

The measured speed of the treadmill belts are compared to the control input signals in Figure 2 to174

show the effect of the treadmill and controller dynamics. The system introduces a delay and seems175

to act as a low pass filter. The standard deviations of the outputs do not significantly differ from the176

desired values: 0.05 m s−1, 0.12 m s−1 and 0.2 m s−1 for the three speeds, respectively.177

To show the effects of the treadmill dynamics and give an idea of the frequency content of178

the actual perturbations, the input and output for each speed were transformed into the frequency179

domain using the Fast Fourier algorithm, and the results are shown in Figure 3. This shows that for180

the 1.2 m s−1 walking speed, the amplitude of the output is significantly lower than the amplitude of181

the input signal at lower frequencies. Additionally, the amplitude of output signal in the 0.8 m s−1
182

walking speed begins to attenuate around 2 Hz, which is a noticeably lower frequency than the other183

walking speeds.184

2The running signals were not used in the experiments presented in this paper.
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Figure 2. Treadmill belt speed input signals (purple) and recorded output speeds (blue) for average
belt speeds of 0.8 m s−1, 1.2 m s−1 and 1.6 m s−1, respectively.
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RESULTS185

Raw Data186

The raw data consists of a set of ASCII tab delimited text files output from both the “mocap” and187

“record” modules in D-Flow in addition to a manually generated YAML file that contains all of the188

necessary meta data for the given trial. These three files are stored in a hierarchy of directories with189

one trial per directory. The directories are named in the following fashion T001/ where T stands190

for “trial” and the following three digits are provide a unique trial identification number.191

mocap-xxx.txt192

The output from the D-Flow mocap module is stored in a tab delimited file named mocap-xxx.txt193

where xxx represents the trial id number. The file is tab delimited and contains a number of time194

series. The numerical values of the time series are provided in decimal fixed point notation with195

6 decimals of precision, e.g. 123456.123456, regardless of the units. The first line of the file196

holds the header. The header includes time stamp column, frame number column, marker position197

columns, force plate force/moment columns, force plate center of pressure columns, other analog198

columns, and potentially results from the real time Human Body Model van den Bogert et al. (2013)199

which is included with D-Flow. The columns are further described below:200

TimeStamp The monotonically increasing computer clock time when D-Flow receives a frame201

from Cortex. These are recorded at approximately at 100 Hz and given in seconds.202

FrameNumber Monotonically increasing positive integers that correspond to each frame received203

from Cortex.204

Marker Coordinates Any column that ends in .PosX, .PosY, or .PosZ are marker coordinates205

expressed in Cortex’s Cartesian reference frame. The prefixes match the marker labels given206

in Table 2. These values are in meters.207

Ground Reaction Loads There are three ground reaction forces and three ground reaction moments208

recorded by each of the two force plates in Newtons and Newton-Meters, respectively. The209

prefix for these columns is either FP1 or FP2 and represents either force plate 1 (left) or210

2 (right). The suffixes are either .For[XYZ], .Mom[XYZ] for the forces and moments,211

respectively. The force plate voltages are sampled at a much higher frequency than the212

cameras, but delivered at the Cortex camera sample rate, 1̃00 Hz through the D-Flow mocap213

module. A force/moment calibration matrix stored in Cortex converts the voltages to forces214

and moments before sending it to D-Flow. Cortex also computes the center of pressure from215

the forces, moments, and force plate dimensions. These have the same prefixes for the plate216

number, have the suffix .Cop[XYZ], and are given in meters.217

Analog Channels Several analog signals are recorded under column headers Channel[1-99].Anlg.218

These correspond to analog signals sampled by Cortex and correspond to the 96 analog chan-219

nels in the National Instruments USB-6255. The first twelve are the voltages from the force220

plate load cells. We also record the acceleration of 4 points on the treadmill base in analog221

channels 61-72 that were in place in case inertial compensation for the lateral treadmill222

movement was required.223
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record-xxx.txt224

The record module also outputs a tab delimited ASCII text file with numerical values at six decimal225

digits. It includes a Time column which records the D-Flow system time in seconds. This time226

corresponds to the time recorded in the TimeStamp column in mocap module tsv file which is227

necessary for time synchronization. There are two additional columns RightBeltSpeed and228

LeftBeltSpeed which provide the independent belt speeds measured in meters per second by a229

factory installed encoder in the treadmill.230

Additionally, the record module is capable of recording the time at which various preprogrammed231

events occur, as detected or set by D-Flow. It does this by inserting commented (#) lines in between232

the rows when the event occurred. The record files have several events that delineate the different233

phases of the protocol:234

A: Force Plate Zeroing Marks the time at the beginning of the trial at which there is no load on235

the force plates and when the force plate voltages were zeroed.236

B: Calibration Pose Marks the time at which the person is in the calibration pose.237

C: First Normal Walking Marks the time when the treadmill begins Phase 1: constant belt speed.238

D: Longitudinal Perturbation Marks the time when the treadmill begins Phase 2: longitudinal239

perturbations in the belt speed.240

E: Second Normal Walking Marks the time when phase 3 starts: constant belt speed.241

F: Unloaded End Marks the time at which there is no load on the force plates and the belts are242

stationary.243

meta-xxx.yml244

Each trial directory contains a meta data file in the YAML format named in the following style245

meta-xxx.yml where xxx is the three digit trial identification number. There are three main246

headings in the file: study, subject, and trial. An example meta data file is shown in Listing247

1.248

The study section contains identifying information for the overall study, an identification249

number, name, and description. This is the same for all meta data files in the study. Details are given250

below:251

id An integer specifying a unique identification number of the study.252

name A string giving the name of the study.253

description A string with a basic description of the study.254

The subject section provides key value pairs of information about the subject in that trial.255

Each subject has a unique identification number along with basic anthropomorphic data. The256

following details the possible meta data for the subject:257

age An integer age in years of the subject at the time of the trial.258

ankle-width-left A float specifying the width of the subjects left ankle.259
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ankle-width-right A float specifying the width of the subjects right ankle.260

ankle-width-units A string giving the units of measurement of the ankle widths.261

id An unique identification integer for the subject.262

gender A string specifying the gender of the subject.263

height A float specifying the measured height of the subject (with shoes and hat on) at the time of264

the trial.265

height-units A string giving the units of the height measurement.266

knee-width-left A float specifying the width of the subjects left knee.267

knee-width-right A float specifying the width of the subjects right knee.268

knee-width-units A string giving the units of measurement of the knee widths.269

mass A float specifying the self-reported mass of the subject.270

mass-units A string specifying the units of the mass measurement.271

The trial section contains the information about the particular trial. Each trial has a unique272

identification number along with a variety of other information, detailed below:273

analog-channel-map A mapping of the strings D-Flow assigns to signals emitted from the analog274

channels of the NI USB-6255 to names the user desires.275

cortex-version The version of Cortex used to record the trial.276

datetime A date formatted string giving the date of the trial in the YYYY-MM-DD format.277

dflow-version The version of D-Flow used to record the trial.278

events A key value map which prescribes names to the alphabetic events recorded in the record file.279

files A key value mapping of files associated with this trial where the key is the D-Flow file type280

and the value is the path to the file relative to the meta file. The compensation file corresponds281

to an unloaded trial collected on the same day that could be used for inertial compensation282

purposes, if needed.283

hardware-settings There are tons of settings for the hardware in both D-Flow, Cortex, and the284

other software in the system. This contains any non-default settings.285

high-performance A boolean value indicating whether the D-Flow high performance setting286

was on (True) or off (False).287

id An unique three digit integer identifier for the trial. All of the file names and directories associated288

with this trial include this number.289
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marker-map A key value map which maps marker names in the mocap file to the user’s desired290

names for the markers.291

marker-set Indicates the HBM van den Bogert et al. (2013) marker set used during the trial, either292

full, lower, or NA.293

nominal-speed A float representing the nominal desired treadmill speed during the trial.294

nominal-speed-units A string providing the units of the nominal speed.295

notes Any notes about the trial.296

pitch A boolean that indicates if the treadmill pitch degree of freedom was actuated during the trial.297

stationary-platform A boolean that indicates whether the treadmill sway or pitch motion was298

actuated during the trial. If this flag is false, the measured ground reaction loads must be299

compensated for the inertial affects and be expressed in the motion capture reference frame.300

subject-id An integer corresponding to the subject in the trial.301

sway A boolean that indicates if the treadmill lateral degree of freedom was actuated during the302

trial.303

Markers304

We make use of the full body 47 marker set described in van den Bogert et al. (2013) and presented305

in detail in Table 2. As with all camera based motion capture systems, the markers sometimes go306

missing in the recording. When a marker goes missing, if the data was recorded in a D-Flow version307

less than 3.16.2rc4 [3], D-Flow continues to record the last non-missing value in all three axes308

until the marker is visible again. In D-Flow versions greater than or equal to 3.16.2rc4, the missing309

markers are indicated in the TSV file as either 0.000000 or -0.000000, which is the same as310

has been in the HBM columns in all versions of D-Flow. The D-Flow version must be provided in311

the meta data yml file for each trial to be able to distinguish this detail.312

Processed Data313

We developed a toolkit for data processing, GaitAnalysisToolKit v0.1.2, Moore et al. (2014b), for314

common gait computations and provide an example processed trial to present the nature of the data.315

The tool was developed in Python, is dependent on the SciPy Stack and Octave, and provides two316

main classes: one to do basic gait data cleaning from D-Flow’s output files, DFlowData, and a317

second to compute common gait variables of interest, GaitData.318

The DFlowData class collects and stores all the raw data presented in the previous section and319

applies several “cleaning” operations to transform the data into a usable form. The cleaning process320

follows these steps:321

1. Load the meta data file into a Python dictionary.322

2. Load the D-Flow mocap module TSV file into Pandas DataFrame.323

3. Relabel the column headers to more meaningful names if this is specified in the meta data.324
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Table 2. Descriptions of the 47 markers used in this study. The “Set” column indicates whether the
marker exists in the lower and/or full body marker set. The label column matches the column
headers in the mocap-xxx.txt files and/or the marker map in the meta-xxx.yml file.

Set # Label Name Description

F 1 LHEAD Left head Just above the ear, in the middle.
F 2 THEAD Top head On top of the head, in line with the LHEAD and RHEAD.
F 3 RHEAD Right head Just above the ear, in the middle.
F 4 FHEAD Forehead Between line LHEAD/RHEAD and THEAD a bit right from center.
L/F 5 C7 C7 On the 7th cervical vertebrae.
L/F 6 T10 T10 On the 10th thoracic vertbrae.
L/F 7 SACR Sacrum bone On the sacral bone.
L/F 8 NAVE Navel On the navel.
L/F 9 XYPH Xiphoid process Xiphoid process of the sternum.
F 10 STRN Sternum On the jugular notch of the sternum.
F 11 BBAC Scapula On the inferior angle fo the right scapular.
F 12 LSHO Left shoulder Left acromion.
F 13 LDELT Left deltoid muscle Apex of the deltoid muscle.
F 14 LLEE Left lateral elbow Left lateral epicondyle of the elbow. Upper one in the T-Pose.
F 15 LMEE Left medial elbow Left medial epicondyle of the elbow. Lower on in the T-Pose.
F 16 LFRM Left forearm On 2/3 on the line between the LLEE and LMW.
F 17 LMW Left medial wrist On styloid process radius, thumb side.
F 18 LLW Left lateral wrist On styloid process ulna, pinky side.
F 19 LFIN Left fingers Center of the hand. Caput metatarsal 3.
F 20 RSHO Right shoulder Right acromion.
F 21 RDELT Right deltoid muscle Apex of deltoid muscle.
F 22 RLEE Right lateral elbow Right lateral epicondyle of the elbow. Lower one in the T-pose.
F 23 RMEE Right medial elbow Right medial epicondyle of the elbow. Lower one in the T-pose.
F 24 RFRM Right forearm On 1/3 on the line between the RLEE and RMW.
F 25 RMW Right medial wrist On styloid process radius, thumb side.
F 26 RLW Right lateral wrist On styloid process ulna, pinky side.
F 27 RFIN Right fingers Center of the hand. Caput metatarsal 3.
L/F 28 LASIS Pelvic bone left front Left anterior superior iliac spine.
L/F 29 RASIS Pelvic bone right front Right anterior superior iliac spine.
L/F 30 LPSIS Pelvic bone left back Left posterior superio iliac spine.
L/F 31 RPSIS Pelvic bone right back Right posterior superior iliac spine.
L/F 32 LGTRO Left greater trochanter of the femur On the cetner of the left greater trochanter.
L/F 33 FLTHI Left thigh On 1/3 on the line between the LFTRO and LLEK.
L/F 34 LLEK Left lateral epicondyle of the knee On the lateral side of the joint axis.
L/F 35 LATI Left anterior of the tibia On 2/3 on the line between the LLEK and LLM.
L/F 36 LLM Left lateral malleoulus of the ankle The center of the heel at the same height as the toe.
L/F 37 LHEE Left heel Center of the heel at the same height as the toe.
L/F 38 LTOE Left toe Tip of big toe.
L/F 39 LMT5 Left 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes.
L/F 40 RGTRO Right greater trochanter of the femur On the cetner of the right greater trochanter.
L/F 41 FRTHI Right thigh On 2/3 on the line between the RFTRO and RLEK.
L/F 42 RLEK Right lateral epicondyle of the knee On the lateral side of the joint axis.
L/F 43 RATI Right anterior of the tibia On 1/3 on the line between the RLEK and RLM.
L/F 44 RLM Right lateral malleoulus of the ankle The center of the heel at the same height as the toe.
L/F 45 RHEE Right heel Center of the heel at the same height as the toe.
L/F 46 RTOE Right toe Tip of big toe.
L/F 47 RMT5 Right 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes.
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4. Optionally identify the missing values in the mocap marker data and replace them with325

numpy.nan.326

5. Optionally interpolate the missing marker values and replaces them with interpolated estimates327

using a variety of interpolation methods.328

6. Load the D-Flow record module TSV file into a Pandas DataFrame.329

7. Extract the events and create a dictionary mapping the event names in the meta data to the330

events detected in the record module file.331

8. Interially compensate the ground reaction loads based on whether the meta data indicates332

there was treadmill motion.333

9. Merge the data from the mocap module and record module into one data frame at the maximum334

common constant sample rate.335

Once the data is cleaned there are two methods that allow you to extract the cleaned data: either336

extract sections of the data bounded by the events recorded in the record-xxx.txt file or save337

the cleaned data to disk. These operations are available as a command line application and as an338

application programming interface (API) in Python. An example of the DFlowData API in use is339

provided in Listing 2.340

The GaitData class is then used to compute things such as gait events (toe off and heel strike341

times), basic 2D kinematics and inverse dynamics, and to store the data into a Pandas Panel with342

each gait cycle on the item axis at a specified sample rate. This object can also be serialized to disk343

in HDF5 format. An example of using the Python API is shown in Listing 3.344

A similar work flow was used to produce Figure 4 which compares the mean and standard345

deviation of sagittal plane joint angles and torques from the perturbed gait cycles and the unperturbed346

gait cycles computed from trial 20. This gives an idea of the more highly variable dynamics required347

to walk while being longitudinally perturbed.348

For more insight into the difference in the unperturbed and perturbed data, Figure 5 compares349

the distribution of a few gait cycle statistics. One can see that the perturbed strides have a much350

larger variation in frequency and length.351

Data Limitations352

The data is provided in good faith with great attention to detail but as with all data there are anomalies353

that may affect the use and interpretation of results emanating from the data. The following list gives354

various notes and warnings about the data that should be taken into account when making use of it.355

• Be sure to read the notes in each meta data file for details about possible anomalies in that356

particular trial. Things such as marker dropout, ghost markers, and marker movement are the357

more prominent notes. Details about variations in the equipment on the day of the trial are358

also mentioned.359

• The subject identification number 0 stands for ”no subject” and was used whenever data was360

collected from the system with no subject on the treadmill, for example during the trials that361

were intended to be used for inertial compensation purposes. These trials play through the362

exact protocol as those with a human subject and the matching trials are indicated in the meta363
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Figure 4. Mean (right: solid, left: dashed) and 3σ (shaded) joint angles and torques from both
unperturbed (purple) and perturbed (blue) gait cycles from trial 20. Produced by
src/unperturbed_perturbed_comparison.py.

data. Matching unloaded trials were recorded on the same day as the loaded trials and is noted364

in the trial:files:compensation section of the meta data file.365

• Trials 1 and 2 were not recorded as part of this study. Those trial identification numbers were366

reserved for early data exploration from data collected in other studies.367

• Trials 37, 38, and 39 do not exist. The numbers were accidentally skipped.368

• Trials 9, 10, and 11 used a slightly different event definition where the calibration poses were369

not explicitly tagged by an event, yet the protocol was the identical to the following trials. The370

calibration pose will have to be determined manually.371

• Trials 6-15 have force measurements are affected by the treadmill vibration mode mentioned372

in the equipment section and the forces should be not be used. We include the trials because373

both the kinematic data is valid and trials 6-8 include lateral perturbations in addition to the374

longitudinal.375

• During trials 9-15 we used wooden blocks to fix the treadmill to the concrete floor to eliminate376

the treadmill’s low vibration mode (5̃Hz). But these blocks seem to have corrupted the377

force plate measurements by imposing frictional stresses on the system. The force plate378

measurements should not be used from these trials, but the marker data is fine.379

• Trials 6-8 use an early experimental protocol which divided the perturbation sections into380

three sections: longitudinal perturbations, lateral perturbations, and a combination of each.381
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Figure 5. Box plots of the average belt speed, stride frequency, and stride length which compare
gait cycles for the unperturbed (purple) and perturbed (blue). Produced by
src/unperturbed_perturbed_comparison.py.

We then learned the treadmill had a low vibrational mode which significantly affects the force382

plate measurements, requiring us to eliminate the lateral perturbation motions. The force383

measurements during these trials are corrupted by this vibrational mode and should be used384

with caution or not at all.385

• We did not record unloaded compensation trials for trials 9-15. Regardless, they would likely386

be useless due to the corruption from the wooden blocks.387

• Trials 6-8 use a only the lower body marker set. The remaining trials are full body.388

• The ankle joint torques computed from subject 9’s data in trials 25-27 are abnormal and should389

be used with caution or not at all. We were not able to locate the source of the error, but it is390

likely related to the force calibration.391

CONCLUSION392

We have presented a rich and elaborate data set of motion and ground reaction loads from human393

subjects during both normal walking and when recovering from longitudinal perturbations. The raw394

data is provided for reuse with complete meta data. In addition to the data, we provide software that395

can process the data for both cleaning purposes and to produce typical sagittal plane gait variables396

of interest. Among other uses, we believe the dataset is ideally suited for control identification397

purposes. Many researchers are working on mathematical models for control in gait and this dataset398

provides both a way to validate these models and a source for generating them.399
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DATA AVAILABILITY400

The data set, Moore et al. (2014a), is available via the Zenodo data repository. Two approximately401

1.2GB gzipped tar balls contain the data and a README file with a short description of the contents.402

The data is released under the Creative Commons CC0 license (http://creativecommons.org/about/cc0)403

following best practices for sharing scientific data.404

SOFTWARE AVAILABILITY405

The tables and figures in the paper can be reproduced from the source repository shared on Github:406

https://github.com/csu-hmc/perturbed-data-paper. Along with the source code in the repository, the407

computations depend on version 0.1.2 of the GaitAnalysisToolKit, Moore et al. (2014b), which can408

be downloaded from Zenodo or the Python Package Index (http://pypi.python.org).409
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study:
id: 1
name: Gait Control Identification
description: Perturb the subject during walking and running.

subject:
id: 8
age: 20
mass: 70.0
mass-units: kilograms
height: 1.572
height-units: meters
knee-width-left: 107.43
knee-width-right: 107.41
knee-width-units: millimeters
ankle-width-left: 70.52
ankle-width-right: 67.66
ankle-width-units: millimeters
gender: male

trial:
id: 58
subject-id: 8
datetime: 2014-03-28
notes: >

The subject did a somersault during this trial instead of following
instructions to walk. Will have to use for another study.

nominal-speed: 0.8
nominal-speed-units: meters per second
stationary-platform: True
pitch: False
sway: False
hardware-settings:

high-performance: True
dflow-version: 3.16.1
cortex-version: 3.1.1.1290
marker-map:

M1: LHEAD
M2: THEAD
M3: RHEAD
M4: FHEAD
M5: C7

analog-channel-map:
Channel1.Anlg: F1Y1
Channel2.Anlg: F1Y2
Channel3.Anlg: F1Y3
Channel4.Anlg: F1X1

events:
A: Force Plate Zeroing
B: Calibration Pose
C: First Normal Walking
D: Longitudinal Perturbation
E: Second Normal Walking
F: Unloaded End

files:
compensation: ../T057/mocap-057.txt
mocap: mocap-058.txt
record: record-058.txt
meta: meta-058.yml

Listing 1. A fictitious example of a YAML formatted meta data file. All of the possible keys in the
data set are shown.

19/20

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.700v1 | CC-BY 4.0 Open Access | rec: 16 Dec 2014, publ: 16 Dec 2014

P
re
P
rin

ts



>>> from gaitanalysis.motek import DFlowData
>>> data = DFlowData(’mocap-020.txt’, ’record-020.txt’,
... ’meta-020.yml’)
>>> mass = data.meta[’subject’][’mass’]
>>> data.clean_data()
>>> event_df = dflow_data.extract_processed_data(
... event=’Longitudinal Perturbation’)

Listing 2. Python interpreter session showing how one could load a trial into memory, extract the
subject’s mass from the meta data, run the data cleaning process, and finally extract a Pandas
DataFrame containing all of the time histories for a specific event in the trial.

>>> from gaitanalysis.gait import GaitData
>>> gdata = GaitData(event_df)
>>> gdata.inverse_dynamics_2d(left_markers, right_markers,
... left_loads, right_loads, mass, 6.0)
>>> gdata.grf_landmarks(’Right Fy’, ’Left Fy’, threshhold=20.0)
>>> gdata.split_at(’right’)
>>> gdata.plot_gait_cycles(’Left Hip Joint Torque’, mean=True)
>>> gdata.save(’gait-data.h5’)

Listing 3. Python interpreter session showing how one could use the GaitData class to load in
the result of DFlowData and compute the inverse dynamics (joint angles and torques), identify the
gait event (e.g. heel strikes), split the data with respect to the gait events in a Pandas Panel, plot
the mean and standard deviation of one time history with respect to the gait cycles, and save the data
to disk.
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