
AM-GCN: Adaptive Multi-channel Graph Convolutional
Networks

Xiao Wang
Beijing University of Posts and

Telecommunications
xiaowang@bupt.edu.cn

Meiqi Zhu
Beijing University of Posts and

Telecommunications
zhumeiqi@bupt.edu.cn

Deyu Bo
Beijing University of Posts and

Telecommunications
bodeyu@bupt.edu.cn

Peng Cui
Tsinghua University
cuip@tsinghua.edu.cn

Chuan Shi∗
Beijing University of Posts and

Telecommunications
shichuan@bupt.edu.cn

Jian Pei
Simon Fraser University

jpei@cs.sfu.ca

ABSTRACT
Graph Convolutional Networks (GCNs) have gained great popular-
ity in tackling various analytics tasks on graph and network data.
However, some recent studies raise concerns about whether GCNs
can optimally integrate node features and topological structures in a
complex graph with rich information. In this paper, we first present
an experimental investigation. Surprisingly, our experimental re-
sults clearly show that the capability of the state-of-the-art GCNs
in fusing node features and topological structures is distant from
optimal or even satisfactory. The weakness may severely hinder the
capability of GCNs in some classification tasks, since GCNs may not
be able to adaptively learn some deep correlation information be-
tween topological structures and node features. Can we remedy the
weakness and design a new type of GCNs that can retain the advan-
tages of the state-of-the-art GCNs and, at the same time, enhance
the capability of fusing topological structures and node features
substantially? We tackle the challenge and propose an adaptive
multi-channel graph convolutional networks for semi-supervised
classification (AM-GCN). The central idea is that we extract the
specific and common embeddings from node features, topological
structures, and their combinations simultaneously, and use the at-
tention mechanism to learn adaptive importance weights of the
embeddings. Our extensive experiments on benchmark data sets
clearly show that AM-GCN extracts themost correlated information
from both node features and topological structures substantially,
and improves the classification accuracy with a clear margin.

KEYWORDS
Graph Convolutional Networks, Network Representation Learn-

ing, Deep Learning

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403177

ACM Reference Format:
Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020.
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks. In Pro-
ceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining USB Stick (KDD ’20), August 23–27, 2020, Virtual Event, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403177

1 INTRODUCTION
Network data is ubiquitous, such as social networks, biology net-
works, and citation networks. Recently, Graph Convolutional Net-
works (GCNs), a class of neural networks designed to learn graph
data, have shown great popularity in tackling graph analytics prob-
lems, such as node classification [1, 31], graph classification [7, 37],
link prediction [13, 36] and recommendation [6, 34].

The typical GCN [14] and its variants [11, 16, 27, 30, 36] usually
follow a message-passing manner. A key step is feature aggrega-
tion, i.e., a node aggregates feature information from its topological
neighbors in each convolutional layer. In this way, feature infor-
mation propagates over network topology to node embedding, and
then node embedding learned as such is used in classification tasks.
The whole process is supervised partially by the node labels. The
enormous success of GCN is partially thanks to that GCN provides
a fusion strategy on topological structures and node features to
learn node embedding, and the fusion process is supervised by an
end-to-end learning framework.

Some recent studies, however, disclose certain weakness of the
state-of-the-art GCNs in fusing node features and topological struc-
tures. For example, Li et al. [15] show that GCNs actually per-
form the Laplacian smoothing on node features, and make the
node embedding in the whole network gradually converge. Nt and
Maehara [20] and Wu et al. [30] prove that topological structures
play the role of low-pass filtering on node features when the fea-
ture information propagates over network topological structure.
Gao et al. [8] design a Conditional Random Field (CRF) layer in
GCN to explicitly preserve connectivity between nodes.

What information do GCNs really learn and fuse from topological
structures and node features? This is a fundamental question since
GCNs are often used as an end-to-end learning framework. A well
informed answer to this question can help us understand the capa-
bility and limitations of GCNs in a principled way. This motivates
our study immediately.

https://doi.org/10.1145/3394486.3403177
https://doi.org/10.1145/3394486.3403177

As the first contribution of this study, we present experiments
assessing the capability of GCNs in fusing topological structures
and node features. Surprisingly, our experiments clearly show that
the fusion capability of GCNs on network topological structures and
node features is clearly distant from optimal or even satisfactory.
Even under some simple situations that the correlation between
node features/topology with node label is very clear, GCNs still
cannot adequately fuse node features and topological structures
to extract the most correlated information (shown in Section 2).
The weakness may severely hinder the capability of GCNs in some
classification tasks, since GCNs may not be able to adaptively learn
some correlation information between topological structures and
node features.

Once the weakness of the state-of-the-art GCNs in fusion is
identified, a natural question is, “Can we remedy the weakness and
design a new type of GCNs that can retain the advantages of the
state-of-the-art GCNs and, at the same time, enhance the capability
of fusing topological structures and node features substantially?”

A good fusion capability of GCNs should substantially extract
and fuse the most correlated information for classification task,
however, one biggest obstacle in reality is that the correlation be-
tween network data and classification task is usually very complex
and agnostic. The classification can be correlated with either the
topology, or node features, or their combinations. This paper tackles
the challenge and proposes an adaptive multi-channel graph con-
volutional networks for semi-supervised classification (AM-GCN).
The central idea is that we learn the node embedding based on
node features, topological structures, and their combinations si-
multaneously. The rationale is that the similarity between features
and that inferred by topological structures are complementary to
each other and can be fused adaptively to derive deeper correlation
information for classification tasks.

Technically, in order to fully exploit the information in feature
space, we derive the k-nearest neighbor graph generated from node
features as the feature structural graph. With the feature graph and
the topology graph, we propagate node features over both topology
space and feature space, so as to extract two specific embeddings
in these two spaces with two specific convolution modules. Consid-
ering the common characteristics between two spaces, we design a
common convolution module with a parameter sharing strategy to
extract the common embedding shared by them. We further utilize
the attention mechanism to automatically learn the importance
weights for different embeddings, so as to adaptively fuse them. In
this way, node labels are able to supervise the learning process to
adaptively adjust the weight to extract the most correlated informa-
tion. Moreover, we design the consistency and disparity constraints
to ensure the consistency and disparity of the learned embeddings.

We summarize our main contributions as follows:
• We present experiments assessing the capability of GCNs in
fusing topological structures and node features and identify
the weakness of GCN. We further study the important prob-
lem, i.e., how to substantially enhance the fusion capability
of GCN for classification.

• We propose a novel adaptive multi-channel GCN framework,
AM-GCN, which performs graph convolution operation over
both topology and feature spaces. Combined with attention
mechanism, different information can be adequately fused.

• Our extensive experiments on a series of benchmark data
sets clearly show that AM-GCN outperforms the state-of-
the-art GCNs and extracts the most correlation information
from both node features and topological structures nicely
for challenging classifcation tasks.

The rest of the paper is organized as follows. In Section 2 we
experimentally investigate the capability of GCNs in fusing node
features and topology. In Section 3, we develop AM-GCN. We re-
port experimental results in Section 4, and review related work in
Section 5. We conclude the paper in Section 6.

2 FUSION CAPABILITY OF GCNS: AN
EXPERIMENTAL INVESTIGATION

In this section, we use two simple yet intuitive cases to examine
whether the state-of-the-art GCNs can adaptively learn from node
features and topological structures in graphs and fuse them suffi-
ciently for classification tasks. The main idea is that we will clearly
establish the high correlation between node label with network
topology and node features, respectively, then we will check the
performance of GCN on these two simple cases. A good fusion
capability of GCN should adaptively extract the correlated infor-
mation with the supervision of node label, providing a good result.
However, if the performance drops sharply in comparison with
baselines, this will demonstrate that GCN cannot adaptively extract
information from node features and topological structures, even
there is a high correlation between node features or topological
structures with the node label.

2.1 Case 1: Random Topology and Correlated
Node Features

We generate a random network consisting of 900 nodes, where the
probability of building an edge betweean any two nodes is 0.03.
Each node has a feature vector of 50 dimensions. To generate node
features, we randomly assign 3 labels to the 900 nodes, and for
the nodes with the same label, we use one Gaussian distribution
to generate the node features. The Gaussian distributions for the
three classes of nodes have the same covariance matrix, but three
different centers far away from each other. In this data set, the
node labels are highly correlated with the node features, but not
the topological structures.

We apply GCN [14] to train this network. For each class we
randomly select 20 nodes for training and another 200 nodes for
testing. We carefully tune the hyper-parameters to report the best
performance and avoid over smoothing. Also, we apply MLP [21]
to the node features only. The classification accuracies of GCN and
MLP are 75.2% and 100%, respectively.

The results meet the expectation. Since the node features are
highly correlated with the node labels, MLP shows excellent per-
formance. GCN extracts information from both the node features
and the topological structures, but cannot adaptively fuse them to
avoid the interference from topological structures. It cannot match
the high performance of MLP.

2.2 Case 2: Correlated Topology and Random
Node Features

We generate another network with 900 nodes. This time, the node
features, each of 50 dimensions, are randomly generated. For the

𝒁𝑡
 𝟏

 𝒁𝑡
 𝒍

𝒁𝑐𝑡
 𝟏 𝒁𝑐𝑡

 𝒍

𝒁𝑐𝑓
 𝟏 𝒁𝑐𝑓

 𝒍

𝒁𝑓
 𝟏 𝒁𝑓

 𝒍

𝑾𝑐
 𝟏 𝑾𝑐

 𝒍+𝟏

𝒁𝑻

𝒁𝑪𝑭

𝒁𝑭

𝓛𝒄

A
ttention

Specific Convolution

Specific Convolution

Parameter
Sharing

Topology
Graph

Feature
Graph

Common Convolution
𝓛𝒅

𝒁 𝒀 𝑨,𝑿

𝒁𝑪𝑻

𝓛𝒅

Figure 1: The framework of AM-GCNmodel. Node feature X
is to construct a feature graph. AM-GCN consists of two spe-
cific convolution modules, one common convolution module
and the attention mechanism.

topological structure, we employ the Stochastic Blockmodel (SBM) [12]
to split nodes into 3 communities (nodes 0-299, 300-599, 600-899,
respectively). Within each community, the probability of building
an edge is set to 0.03, and the probability of building an edge be-
tween nodes in different communities is set to 0.0015. In this data
set, the node labels are determined by the communities, i.e., nodes
in the same community have the same label.

Again we apply GCN to this network. We also apply Deep-
Walk [22] to the topology of the network, that is, the features
are ignored by DeepWalk. The classification accuracies of GCN and
DeepWalk are 87% and 100%, respectively.

DeepWalk performs well because it models network topological
structures thoroughly. GCN extracts information from both the
node features and the topological structures, but cannot adaptively
fuse them to avoid the interference from node features. It cannot
match the high performance of DeepWalk.

Summary. These cases show that the current fusion mechanism
of GCN [14] is distant from optimal or even satisfactory. Even the
correlation between node label with network topology or node
features is very high, the current GCN cannot make full use of the
supervision by node label to adaptively extract the most correlated
information. However, the situation is more complex in reality,
because it is hard to knowwhether the topology or the node features
are more correlated with the final task, which prompts us to rethink
the current mechanism of GCN.

3 AM-GCN: THE PROPOSED MODEL
Problem Settings: We focus on semi-supervised node classifica-
tion in an attributed graph G = (A,X), where A ∈ Rn×n is the

symmetric adjacency matrix with n nodes and X ∈ Rn×d is the
node feature matrix, and d is the dimension of node features. Specif-
ically, Ai j = 1 represents there is an edge between nodes i and j,
otherwise, Ai j = 0. We suppose each node belongs to one out of C
classes.

The overall framework of AM-GCN is shown in Figure 1. The
key idea is that AM-GCN permits node features to propagate not
only in topology space, but also in feature space, and the most cor-
related information with node label should be extracted from both
of these two spaces. To this end, we construct a feature graph based
on node features X. Then with two specific convolution modules,
X is able to propagate over both of feature graph and topology
graph to learn two specific embeddings ZF and ZT , respectively.
Further, considering that the information in these two spaces have
common characteristics, we design a common convolution module
with parameter sharing strategy to learn the common embedding
ZCF and ZCT , also, a consistency constraint Lc is employed to
enhance the "common" property of ZCF and ZCT . Besides, a dispar-
ity constraint Ld is to ensure the independence between ZF and
ZCF , as well as ZT and ZCT . Considering that node label may be
correlated with topology or feature or both, AM-GCN utilizes an
attention mechanism to adaptively fuse these embeddings with the
learned weights, so as to extract the most correlated information Z
for the final classification task.

3.1 Specific Convolution Module
Firstly, in order to capture the underlying structure of nodes in
feature space, we construct a k-nearest neighbor (kNN) graphGf =

(Af ,X) based on node feature matrix X, where Af is the adjacency
matrix of kNN graph. Specifically, we first calculate the similarity
matrix S ∈ Rn×n among n nodes. Actually, there are many ways to
obtain S, and we list two popular ones here, in which xi and xj are
feature vectors of nodes i and j:

1) Cosine Similarity: It uses the cosine value of the angle be-
tween two vectors to measure the similarity:

Si j =
xi · xj
|xi | |xj |

. (1)

2)Heat Kernel: The similarity is calculated by the Eq. (2) where
t is the time parameter in heat conduction equation and we set
t = 2.

Si j = e−
∥xi −xj ∥2

t . (2)

Here we uniformly choose the Cosine Similarity to obtain the sim-
ilarity matrix S, and then we choose top k similar node pairs for
each node to set edges and finally get the adjacency matrix Af .

Then with the input graph (Af ,X) in feature space, the l-th layer
output Z(l)f can be represented as:

Z(l)f = ReLU (D̃
− 1

2
f Ãf D̃

− 1
2

f Z(l-1)f W(l)
f), (3)

whereW(l)
f is the weight matrix of the l-th layer in GCN, ReLU is

the Relu activation function and the initial Z(0)f = X. Specifically, we

have Ãf = Af + If and D̃f is the diagonal degree matrix of Ãf . We
denote the last layer output embedding as ZF . In this way, we can

learn the node embedding which captures the specific information
ZF in feature space.

As for the topology space, we have the original input graph
Gt = (At ,Xt) where At = A and Xt = X. Then the learned output
embedding ZT based on topology graph can be calculated in the
same way as in feature space. Therefore, the specific information
encoded in topology space can be extracted.

3.2 Common Convolution Module
In reality, the feature and topology spaces are not completely irrele-
vant. Basically, the node classification task, may be correlated with
the information either in feature space or in topology space or in
both of them, which is difficult to know beforehand. Therefore, we
not only need to extract the node specific embedding in these two
spaces, but also to extract the common information shared by the
two spaces. In this way, it will become more flexible for the task
to determine which part of information is the most correlated. To
address this, we design a Common-GCN with parameter sharing
strategy to get the embedding shared in two spaces.

First, we utilize Common-GCN to extract the node embedding
Z(l)ct from topology graph (At , X) as follows

Z(l)ct = ReLU (D̃
− 1

2
t Ãt D̃

− 1
2

t Z(l-1)ct W(l)
c), (4)

where W(l)
c is the l-th layer weight matrix of Common-GCN and

Z(l-1)ct is the node embedding in the (l − 1)th layer and Z(0)ct = X.
When utilizing Common-GCN to learn the node embedding from
feature graph (Af ,X), in order to extract the shared information, we
share the same weight matrixW(l)

c for every layer of Common-GCN
as follows:

Z(l)cf = ReLU (D̃
− 1

2
f Ãf D̃

− 1
2

f Z(l-1)cf W(l)
c), (5)

where Z(l)cf is the l-layer output embedding and Z(0)cf = X. The
shared weight matrix can filter out the shared characteristics from
two spaces. According to different input graphs, we can get two
output embedding ZCT and ZCF and the common embedding ZC
of the two spaces is:

ZC = (ZCT + ZCF)/2. (6)

3.3 Attention Mechanism
Now we have two specific embeddings ZT and ZF , and one com-
mon embedding ZC . Considering the node label can be correlated
with one of them or even their combinations, we use the attention
mechanism att(ZT ,ZC ,ZF) to learn their corresponding impor-
tance (αt ,αc ,αf) as follows:

(αt ,αc ,αf) = att(ZT ,ZC ,ZF), (7)

here αt ,αc ,αf ∈ Rn×1 indicate the attention values of n nodes
with embeddings ZT ,ZC ,ZF , respectively.

Here we focus on node i , where its embedding in ZT is ziT ∈

R1×h (i.e., the i-th row of ZT). We firstly transform the embed-
ding through a nonlinear transformation, and then use one shared
attention vector q ∈ Rh

′×1 to get the attention value ωi
T as follows:

ωi
T = qT · tanh(WT · (ziT)

T + bT). (8)

Here WT ∈ Rh
′×h is the weight matrix and bT ∈ Rh

′×1 is the bias
vector for embedding matrix ZT , respectively. Similarly, we can get
the attention values ωi

C and ωi
F for node i in embedding matrices

ZC and ZF , respectively. We then normalize the attention values
ωi
T ,ω

i
C ,ω

i
F with softmax function to get the final weight:

α iT = so f tmax(ωi
T) =

exp(ωi
T)

exp(ωi
T) + exp(ω

i
C) + exp(ω

i
F)
. (9)

Larger α iT implies the corresponding embedding is more important.
Similarly, α iC = so f tmax(ωi

C) and α iF = so f tmax(ωi
F). For all the

n nodes, we have the learned weights αt = [α iT],αc = [α iC],αf =

[α iF] ∈ Rn×1, and denote αT = diaд(αt), αC = diaд(αc) and
αF = diaд(αf). Thenwe combine these three embeddings to obtain
the final embedding Z :

Z = αT · ZT + αC · ZC + αF · ZF . (10)

3.4 Objective Function
3.4.1 Consistency Constraint. For the two output embeddings
ZCT and ZCF of Common-GCN, despite the Common-GCN has the
shared weight matrix, here we design a consistency constraint to
further enhance their commonality.

Firstly, we use L2-normalization to normalize the embedding
matrix as ZCTnor , ZCFnor . Then, the two normalized matrix can
be used to capture the similarity of n nodes as ST and SF as follows:

ST = ZCTnor · Z
T
CTnor ,

SF = ZCFnor · Z
T
CFnor .

(11)

The consistency implies that the two similarity matrices should
be similar, which gives rise to the following constraint:

Lc = ∥ST − SF ∥2F . (12)

3.4.2 Disparity Constraint. Here because embeddings ZT and
ZCT are learned from the same graphGt = (At ,Xt), to ensure they
can capture different information, we employ the Hilbert-Schmidt
Independence Criterion (HSIC) [24], a simple but effective measure
of independence, to enhance the disparity of these two embeddings.
Due to its simplicity and neat theoretical properties, HSIC has been
applied to several machine learning tasks [10, 19]. Formally, the
HSIC constraint of ZT and ZCT is defined as:

HSIC(ZT ,ZCT) = (n − 1)−2tr (RKTRKCT), (13)

where KT and KCT are the Gram matrices with kT ,i j = kT (ziT , z
j
T)

and kCT ,i j = kCT (ziCT , z
j
CT). And R = I − 1

n ee
T , where I is an

identity matrix and e is an all-one column vector. In our imple-
mentation, we use the inner product kernel function for KT and
KCT .

Similarly, considering the embeddings ZF and ZCF are also
learned from the same graph (Af ,X), their disparity should also
be enhanced by HSIC:

HSIC(ZF ,ZCF) = (n − 1)−2tr (RKFRKCF). (14)

Then we set the disparity constraint as Ld where:

Ld = HSIC(ZT ,ZCT) + HSIC(ZF ,ZCF). (15)

Table 1: The statistics of the datasets

Dataset Nodes Edges Classes Features Training Test
Citeseer 3327 4732 6 3703 120/240/360 1000
UAI2010 3067 28311 19 4973 380/760/1140 1000
ACM 3025 13128 3 1870 60/120/180 1000
BlogCatalog 5196 171743 6 8189 120/240/360 1000
Flickr 7575 239738 9 12047 180/360/540 1000
CoraFull 19793 65311 70 8710 1400/2800/4200 1000

3.4.3 Optimization Objective. We use the output embedding
Z in Eq. (10) for semi-supervised multi-class classification with
a linear transformation and a softmax function. Denote the class
predictions for n nodes as Ŷ = [ŷic] ∈ R

n×C where ŷic is the prob-
ability of node i belonging to class c. Then the Ŷ can be calculated
in the following way:

Ŷ = so f tmax(W · Z + b), (16)

where so f tmax(x) =
exp(x)

ΣCc=1exp(xc)
is actually a normalizer across all

classes.
Suppose the training set is L, for each l ∈ L the real label is Yl

and the predicted label is Ŷl . Then the cross-entropy loss for node
classification over all training nodes is represented as Lt where:

Lt = −
∑

l ∈L

∑C

i=1
Yl lnŶl. (17)

Combining the node classification task and constraints, we have
the following overall objective function:

L = Lt + γLc + βLd , (18)

where γ and β are parameters of the consistency and disparity
constraint terms. With the guide of labeled data, we can optimize
the proposed model via back propagation and learn the embedding
of nodes for classification.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets Our proposed AM-GCN is evaluated on six real world
datasets which are summarized in Table 1, moreover, we provide
all the data websites in the supplement for reproducibility.

• Citeseer [14]: Citeseer is a research paper citation network,
where nodes are publications and edges are citation links.
Node attributes are bag-of-words representations of the pa-
pers and all nodes are divided into six areas.

• UAI2010 [28]: We use this dataset with 3067 nodes and
56622 edges which has been tested in graph convolutional
networks for community detection in [28].

• ACM [29]: This network is extracted from ACM dataset
where nodes represent papers and there is an edge between
two papers if they have the same author. All the papers are
divided into 3 classes (Database, Wireless Communication,
DataMining). The features are the bag-of-words representa-
tions of paper keywords.

• BlogCatalog [18]: It is a social network with bloggers and
their social relationships from the BlogCatalog website. Node
attributes are constructed by the keywords of user profiles,

and the labels represent the topic categories provided by the
authors, and all nodes are divided into 6 classes.

• Flickr [18]: Flickr is an image and video hosting website,
where users interact with each other via photo sharing. It
is a social network where nodes represent users and edges
represent their relationships, and all the nodes are divided
into 9 classes according to interest groups of users.

• CoraFull [2]: This is the larger version of the well-known
citation network Cora dataset, where nodes represent pa-
pers and edges represents their citations, and the nodes are
labeled based on the paper topics.

Baselines We compare AM-GCN with two types of state-of-the-
art methods, covering two network embedding algorithms and six
graph neural network based methods. Moreover, we provide all the
code websites in the supplement for reproducibility.

• DeepWalk [22] is a network embedding method which uses
random walk to obtain contextual information and uses skip-
gram algorithm to learn network representations.

• LINE [25] is a large-scale network embedding method pre-
serving first-order and second-order proximity of the net-
work separately. Here we use LINE (1st+2nd).

• Chebyshev [5] is a GCN-based method utilizing Chebyshev
filters.

• GCN [14] is a semi-supervised graph convolutional network
model which learns node representations by aggregating
information from neighbors.

• kNN-GCN. For comparison, instead of traditional topology
graph, we use the sparse k-nearest neighbor graph calculated
from feature matrix as the input graph of GCN and represent
it as kNN-GCN.

• GAT [27] is a graph neural network model using attention
mechanism to aggregate node features.

• DEMO-Net [31] is a degree-specific graph neural network
for node classification.

• MixHop [1] is a GCN-based method which mixes the fea-
ture representations of higher-order neighbors in one graph
convolution layer.

Parameters Setting To more comprehensively evaluate our
model, we select three label rates for training set (i.e., 20, 40, 60
labeled nodes per class) and choose 1000 nodes as the test set. All
baselines are initialized with same parameters suggested by their
papers and we also further carefully turn parameters to get op-
timal performance. For our model, we train three 2-layer GCNs
with the same hidden layer dimension (nhid1) and the same output
dimension (nhid2) simultaneously, where nhid1 ∈ {512, 768} and
nhid2 ∈ {32, 128, 256}. We use 0.0001 ∼ 0.0005 learning rate with
Adam optimizer. In addition, the dropout rate is 0.5, weight decay
∈ {5e − 3, 5e − 4} and k ∈ {2 . . . 10} for k-nearest neighbor graph.
The coefficient of consistency constraint and disparity constraints
are searched in {0.01, 0.001, 0.0001} and {1e − 10, 5e − 9, 1e − 9, 5e −
8, 1e − 8}. For all methods, we run 5 times with the same partition
and report the average results. And we use Accuracy (ACC) and
macro F1-score (F1) to evaluate performance of models. For the
reproducibility, we provide the specific parameter values in the
supplement (Section A.3).

Table 2: Node classification results(%). (Bold: best; Underline: runner-up.)

Datasets Metrics L/C DeepWalk LINE Chebyshev GCN kNN-GCN GAT DEMO-Net MixHop AM-GCN

Citeseer

ACC
20 43.47 32.71 69.80 70.30 61.35 72.50 69.50 71.40 73.10
40 45.15 33.32 71.64 73.10 61.54 73.04 70.44 71.48 74.70
60 48.86 35.39 73.26 74.48 62.38 74.76 71.86 72.16 75.56

F1
20 38.09 31.75 65.92 67.50 58.86 68.14 67.84 66.96 68.42
40 43.18 32.42 68.31 69.70 59.33 69.58 66.97 67.40 69.81
60 48.01 34.37 70.31 71.24 60.07 71.60 68.22 69.31 70.92

UAI2010

ACC
20 42.02 43.47 50.02 49.88 66.06 56.92 23.45 61.56 70.10
40 51.26 45.37 58.18 51.80 68.74 63.74 30.29 65.05 73.14
60 54.37 51.05 59.82 54.40 71.64 68.44 34.11 67.66 74.40

F1
20 32.93 37.01 33.65 32.86 52.43 39.61 16.82 49.19 55.61
40 46.01 39.62 38.80 33.80 54.45 45.08 26.36 53.86 64.88
60 44.43 43.76 40.60 34.12 54.78 48.97 29.05 56.31 65.99

ACM

ACC
20 62.69 41.28 75.24 87.80 78.52 87.36 84.48 81.08 90.40
40 63.00 45.83 81.64 89.06 81.66 88.60 85.70 82.34 90.76
60 67.03 50.41 85.43 90.54 82.00 90.40 86.55 83.09 91.42

F1
20 62.11 40.12 74.86 87.82 78.14 87.44 84.16 81.40 90.43
40 61.88 45.79 81.26 89.00 81.53 88.55 84.83 81.13 90.66
60 66.99 49.92 85.26 90.49 81.95 90.39 84.05 82.24 91.36

BlogCatalog

ACC
20 38.67 58.75 38.08 69.84 75.49 64.08 54.19 65.46 81.98
40 50.80 61.12 56.28 71.28 80.84 67.40 63.47 71.66 84.94
60 55.02 64.53 70.06 72.66 82.46 69.95 76.81 77.44 87.30

F1
20 34.96 57.75 33.39 68.73 72.53 63.38 52.79 64.89 81.36
40 48.61 60.72 53.86 70.71 80.16 66.39 63.09 70.84 84.32
60 53.56 63.81 68.37 71.80 81.90 69.08 76.73 76.38 86.94

Flickr

ACC
20 24.33 33.25 23.26 41.42 69.28 38.52 34.89 39.56 75.26
40 28.79 37.67 35.10 45.48 75.08 38.44 46.57 55.19 80.06
60 30.10 38.54 41.70 47.96 77.94 38.96 57.30 64.96 82.10

F1
20 21.33 31.19 21.27 39.95 70.33 37.00 33.53 40.13 74.63
40 26.90 37.12 33.53 43.27 75.40 36.94 45.23 56.25 79.36
60 27.28 37.77 40.17 46.58 77.97 37.35 56.49 65.73 81.81

CoraFull

ACC
20 29.33 17.78 53.38 56.68 41.68 58.44 54.50 47.74 58.90
40 36.23 25.01 58.22 60.60 44.80 62.98 60.28 57.20 63.62
60 40.60 29.65 59.84 62.00 46.68 64.38 61.58 60.18 65.36

F1
20 28.05 18.24 47.59 52.48 37.15 54.44 50.44 45.07 54.74
40 33.29 25.43 53.47 55.57 40.42 58.30 56.26 53.55 59.19
60 37.95 30.87 54.15 56.24 43.22 59.61 57.26 56.40 61.32

4.2 Node Classification
The node classification results are reported in Table 2, where L/C
means the number of labeled nodes per class. We have the following
observations:

• Compared with all baselines, the proposed AM-GCN gen-
erally achieves the best performance on all datasets with
all label rates. Especially, for ACC, AM-GCN achieves max-
imum relative improvements of 8.59% on BlogCatalog and
8.63% on Flickr. The results demonstrate the effectiveness of
AM-GCN.

• AM-GCN consistently outperforms GCN and kNN-GCN on
all the datasets, indicating the effectiveness of the adaptive
fusion mechanism in AM-GCN, because it can extract more
useful information than only performing GCN and kNN-
GCN, respectively.

• Comparingwith GCN and kNN-GCN, we can learn that there
does exist structural difference between topology graph and
feature graph and performing GCN on traditional topology
graph does not always show better result than on feature
graph. For example, in BlogCatalog, Flickr and UAI2010, the
feature graph performs better than topology. This further
confirms the necessity of introducing feature graph in GCN.

• Moreover, compared with GCN, the improvement of AM-
GCN is more substantial on the datasets with better feature
graph (kNN), such as UAI2010, BlogCatalog, Flickr. This
implies that AM-GCN introduces a better and more suitable
kNN graph for label to supervise feature propagation and
node representation learning.

72.0

73.0

74.0

75.0

76.0

20 40 60

A
cc
u
ra
cy

Citeseer

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

68.0

70.0

72.0

74.0

76.0

20 40 60

A
cc
u
ra
cy

UAI2010

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

88.0

89.0

90.0

91.0

20 40 60

A
cc
u
ra
cy

ACM

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

79.0

82.0

85.0

88.0

20 40 60

A
cc
u
ra
cy

BlogCatalog

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

73.0

75.0

77.0

79.0

81.0

83.0

20 40 60
A
cc
u
ra
cy

Flickr

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

56.0

58.0

60.0

62.0

64.0

20 40 60

A
cc
u
ra
cy

CoraFull

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

Figure 2: The results(%) of AM-GCN and its variants on six datasets.

(a) DeepWalk (b) GCN (c) GAT (d) AM-GCN

Figure 3: Visualization of the learned node embeddings on BlogCatalog dataset.

4.3 Analysis of Variants
In this section, we compare AM-GCN with its three variants on all
datasets to validate the effectiveness of the constraints.

• AM-GCN-w/o: AM-GCN without constraints Lc and Ld .
• AM-GCN-c: AM-GCN with the consistency constraint Lc .
• AM-GCN-d: AM-GCN with the disparity constraint Ld .

From the results in Figure 2, we can draw the following conclu-
sions: (1) The results of AM-GCN are consistently better than all the
other three variants, indicating the effectiveness of using the two
constraints together. (2) The results of AM-GCN-c and AM-GCN-d
are usually better than AM-GCN-w/o on all datasets with all label
rates, verifying the usefulness of the two constraints. (3) AM-GCN-
c is generally better than AM-GCN-d on all datasets, which implies
the consistency constraint plays a more vital role in this framework.
(4) Comparing the results of Figure 2 and Table 2, we can find that
AM-GCN-w/o, although without any constraints, still achieves very
competitive performance against baselines, demonstrating that our
framework is stable and competitive.

4.4 Visualization
For a more intuitive comparison and to further show the effective-
ness of our proposed model, we conduct the task of visualization on
BlogCatalog dataset. We use the output embedding on the last layer
of AM-GCN (or GCN, GAT) before so f tmax and plot the learned

embedding of test set using t-SNE [26]. The results of BlogCatalog
in Figure 3 are colored by real labels.

From Figure 3, we can find that the results of DeepWalk, GCN,
and GAT are not satisfactory, because the nodes with different
labels are mixed together. Apparently, the visualization of AM-GCN
performs best, where the learned embedding has a more compact
structure, the highest intra-class similarity and the clearest distinct
boundaries among different classes.

4.5 Analysis of Attention Mechanism
In order to investigate whether the attention values learned by our
proposed model are meaningful, we analyze the attention distribu-
tion and attention learning trend, respectively.

Analysis of attention distributions.AM-GCN learns two spe-
cific and one common embeddings, each of which is associated with
the attention values. We conduct the attention distribution analysis
on all datasets with 20 label rate, where the results are shown in
Figure 4. As we can see, for Citeseer, ACM, CoraFull, the attention
values of specific embeddings in topology space are larger than the
values in feature space, and the values of common embeddings are
between them. This implies that the information in topology space
should be more important than the information in feature space.
To verify this, we can see that the results of GCN are better than
kNN-GCN on these datasets in Table 2. Conversely, for UAI2010,
BlogCatalog and Flickr, in comparison with Figure 4 and Table 2,
we can find kNN-GCN performs better than GCN, meanwhile, the

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a

lu
e

(a) Citeseer.

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e
(b) UAI2010.

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a

lu
e

(c) ACM.

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(d) BlogCatalog.

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(e) Flickr.

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(f) CoraFull.

Figure 4: Analysis of attention distribution.

0.25

0.30

0.35

0.40

0.45

0 3 6 9 12 15 18 21 24

A
tt

en
ti

o
n

 V
a

lu
e

epochs

Citeseer

Topology

Common

Feature

(a) Citeseer

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40 45 50

A
tt

en
ti

o
n

 V
a
lu

e

epochs

BlogCatalog

Topology

Common

Feature

(b) BlogCatalog

Figure 5: The attention changing trends w.r.t epochs.

attention values of specific embeddings in feature space are also
larger than those in topology space. In summary, the experiment
demonstrates that our proposed AM-GCN is able to adaptively
assign larger attention value for more important information.

Analysis of attention trends.We analyze the changing trends
of attention values during the training process. Here we take Cite-
seer and BlogCatalog with 20 label rate as examples in Figure 5,
where x-axis is the epoch and y-axis is the average attention value.
More results are in supplement A.4.1. At the beginning, the average
attention values of Topology, Feature, and Common are almost the
same, with the training epoch increasing, the attention values be-
come different. For example, in BlogCatalog, the attention value for
topology gradually decreases, while the attention value for feature
keeps increasing. This phenomenon is consistent with the conclu-
sions in Table 2 and Figure 4, i.e., kNN-GCN with feature graph

0.71
0.72
0.73
0.74
0.75
0.76
0.77

0

0
.0
0
0
1

0
.0
0
1

0
.0
1

0
.1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

A
cc
u
ra
cy

20 40 60

(a) Citeseer

0.80

0.82

0.84

0.86

0.88

0

0
.0
0
0
1

0
.0
0
1

0
.0
1

0
.1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

A
cc
u
ra
cy

20 40 60

(b) BlogCatalog

Figure 6: Analysis of parameter γ .

0.65
0.67
0.69
0.71
0.73
0.75
0.77

0

1
e-
1
0

5
e-
1
0

1
e-
0
9

5
e-
0
9

1
e-
0
8

5
e-
0
8

1
e-
0
7

5
e-
0
7

1
e-
0
6

5
e-
0
6

1
e-
0
5

A
cc
u
ra
cy

20 40 60

(a) Citeseer

0.78

0.80

0.82

0.84

0.86

0.88

0

1
e-
1
0

5
e-
1
0

1
e-
0
9

5
e-
0
9

1
e-
0
8

5
e-
0
8

1
e-
0
7

5
e-
0
7

1
e-
0
6

5
e-
0
6

1
e-
0
5

A
cc
u
ra
cy

20 40 60

(b) BlogCatalog

Figure 7: Analysis of parameter β .

0.70

0.72

0.74

0.76

2 3 4 5 6 7 8 9

A
cc

u
ra

cy
20 40 60

(a) Citeseer

0.77

0.79

0.81

0.83

0.85

0.87

2 3 4 5 6 7 8 9

A
cc

u
ra

cy

20 40 60

(b) BlogCatalog

Figure 8: Analysis of parameter k.

performs better than GCN and the information in feature space is
more important than in topology space. We can see that AM-GCN
can learn the importance of different embeddings step by step.

4.6 Parameter Study
In this section, we investigate the sensitivity of parameters on
Citeseer and BlogCatalog datasets. More results are in A.4.2.

Analysis of consistency coefficient γ . We test the effect of
the consistency constraint weight γ in Eq. (18), and vary it from 0
to 10000. The results are shown in Figure 6. With the increase of the
consistency coefficient, the performances raise first and then start
to drop slowly. Basically, AM-GCN is stable when the γ is within
the range from 1e-4 to 1e+4 on all datasets. We can also see that
the curves of 20, 40, 60 label rates show similar changing trend.

Analysis of disparity constraint coefficient β . We then test
the effect of the disparity constraint weight β in Eq. (18), and vary it
from 0 to 1e-5. The results are shown in Figure 7. Similarly, with the
increase of β , the performances also raise first, but the performance
will drop quickly if β is larger than 1e-6 for Citeseer in Figure 7(a),
while for BlogCatalog, it is relatively stable.

Analysis of k-nearest neighbor graph k. In order to check
the impact of the top k neighborhoods in kNN graph, we study the
performance of AM-GCN with various number of k ranging from
2 to 10 in Figure 8. For Citeseer and BlogCatalog, the accuracies in-
crease first and then start to decrease. It may probably because that

if the graph becomes denser, the feature is easier to be smoothed,
and also, larger k may introduce more noisy edges.

5 RELATEDWORK
Recently, graph convolutional network (GCN) models [4, 9, 17, 23,
33, 35] have been widely studied. For example, [3] first designs
the graph convolution operation in Fourier domain by the graph
Laplacian. Then [5] further employs the Chebyshev expansion of
the graph Laplacian to improve the efficiency. [14] simplifies the
convolution operation and proposes to only aggregate the node
features from the one-hop neighbors. GAT [27] introduces the at-
tention mechanism to aggregate node features with the learned
weights. GraphSAGE [11] proposes to sample and aggregate fea-
tures from a node’s local neighborhood with mean/max/LSTM
pooling. DEMO-Net [31] designs a degree-aware feature aggrega-
tion process. MixHop [1] aggregates feature information from both
first-order and higher-order neighbors in each layer of network,
simultaneously. Most of the current GCNs essentially focus on fus-
ing network topology and node features to learn node embedding
for classification. Also, there are some recent works on analyzing
the fusion mechanism of GCN. For example, [15] shows that GCNs
actually perform the Laplacian smoothing on node features, [20]
and [30] prove that topological structures play the role of low-pass
filtering on node features. To learn more works on GCNs, please
refer to the elaborate reviews [32, 38]. However, whether the GCNs
can adaptively extract the correlated information from node fea-
tures and topological structures for classification remains unclear.

6 CONCLUSION
In this paper, we rethink the fusion mechanism of network topology
and node features in GCN and surprisingly discover it is distant
from optimal. Motivated by this fundamental problem, we study
how to adaptively learn the most correlated information from topol-
ogy and node features and sufficiently fuse them for classification.
We propose a multi-channel model AM-GCN which is able to learn
suitable importance weights when fusing topology and node feature
information. Extensive experiments well demonstrate the superior
performance over the state-of-the-art models on real world datasets.

7 ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (No. 61702296, 61772082, 61806020, U1936104,
U1936219, 61772304, U1611461, 61972442), the National Key Re-
search and Development Program of China (No. 2018YFB1402600,
2018AAA0102004), the CCF-Tencent Open Fund, Beijing Academy
of Artificial Intelligence (BAAI), and a grant from the Institute for
Guo Qiang, Tsinghua University. Jian Pei’s research is supported in
part by the NSERC Discovery Grant program. All opinions, find-
ings, conclusions and recommendations in this paper are those of
the authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:
Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood
Mixing. In ICML. 21–29.

[2] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In ICLR.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
3844–3852.

[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. InWWW. 417–426.

[7] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. In ICML. 2083–2092.
[8] Hongchang Gao, Jian Pei, and Heng Huang. 2019. Conditional Random Field

Enhanced Graph Convolutional Neural Networks. In SIGKDD. 276–284.
[9] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-Scale Learnable

Graph Convolutional Networks. In SIGKDD. 1416–1424.
[10] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. 2005.

Measuring statistical dependence with hilbert-schmidt norms. In ALT. 63–77.
[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[12] Brian Karrer and M. E. J. Newman. 2011. Stochastic blockmodels and community

structure in networks. Physical Review E 83, 1 (2011), 16107.
[13] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. arXiv

preprint arXiv:1611.07308.
[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[15] Qimai Li, Zhichao Han, and Xiaoming Wu. 2018. Deeper Insights into Graph

Convolutional Networks for Semi-Supervised Learning. In AAAI. 3538–3545.
[16] Jianxin Ma, Peng Cui, Kun Kuang, XinWang, and wenwu zhu. 2019. Disentangled

Graph Convolutional Networks. In ICML. 4212–4221.
[17] Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. 2019. Graph

Convolutional Networks with EigenPooling. In SIGKDD. 723–731.
[18] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019.

Co-Embedding Attributed Networks. InWSDM. 393–401.
[19] Donglin Niu, Jennifer G. Dy, andMichael I. Jordan. 2010. Multiple Non-Redundant

Spectral Clustering Views. In ICML. 831–838.
[20] Hoang Nt and Takanori Maehara. 2019. Revisiting Graph Neural Networks: All

We Have is Low-Pass Filters. arXiv preprint arXiv:1905.09550 (2019).
[21] S.K. Pal and S. Mitra. 1992. Multilayer perceptron, fuzzy sets, and classification.

IEEE Transactions on Neural Networks 3, 5 (1992), 683–697.
[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In SIGKDD. 701–710.
[23] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. GMNN: Graph Markov Neural

Networks. In ICML. 5241–5250.
[24] Le Song, Alex Smola, Arthur Gretton, Karsten M. Borgwardt, and Justin Bedo.

2007. Supervised feature selection via dependence estimation. In ICML. 823–830.
[25] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In WWW. 1067–1077.
[26] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.
[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[28] Wenjun Wang, Xiao Liu, Pengfei Jiao, Xue Chen, and Di Jin. 2018. A Unified

Weakly Supervised Framework for Community Detection and SemanticMatching.
In PAKDD. 218–230.

[29] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous Graph Attention Network. InWWW. 2022–2032.

[30] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
ICML. 6861–6871.

[31] Jun Wu, Jingrui He, and Jiejun Xu. 2019. Demo-net: Degree-specific graph neural
networks for node and graph classification. In SIGKDD. 406–415.

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

[33] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks. In ICLR.

[34] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In SIGKDD. 974–983.

[35] Zhitao Ying, Ines Chami, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic
Graph Convolutional Neural Networks. In NeurIPS. 4869–4880.

[36] Jiaxuan You, Rex, and Jure Leskovec. 2019. Position-aware Graph Neural Net-
works. In ICML. 7134–7143.

[37] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Chen Yixin. 2018. An
End-to-End Deep Learning Architecture for Graph Classification. In AAAI. 4438–
4445.

[38] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2018. Deep learning on graphs: A
survey. arXiv preprint arXiv:1812.04202 (2018).

A SUPPLEMENT
In the supplement, for the reproducibly, we provide our experimen-
tal environment and all the baselines and datasets websites. The
implementation details, including the detailed hyper-parameter
values for all the experiments, are also provided. Finally, we show
more additional results to support the conclusions in our paper.

A.1 Experiments Settings
All experiments are conducted with the following setting:

• Operating system: CentOS Linux release 7.6.1810
• CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
• GPU: GeForce GTX 1080 Ti
• Software versions: Python 3.7; Pytorch 1.1.0; Numpy 1.16.2;
SciPy 1.3.1; NetworkX 2.4; scikit-learn 0.21.3

A.2 Baselines and Datasets
The publicly available implementations of Baselines can be found
at the following URLs:

• DeepWalk, LINE: https://github.com/thunlp/OpenNE
• Chebyshev: https://github.com/tkipf/gcn
• GCN in Pytorch: https://github.com/tkipf/pygcn
• GAT in Pytorch: https://github.com/Diego999/pyGAT/
• DEMO-Net: https://github.com/jwu4sml/DEMO-Net
• MixHop: https://github.com/samihaija/mixhop

And the datasets used in this paper can be found as the following
URLs:

• Citeseer: https://github.com/tkipf/pygcn
• UAI2010: http://linqs.umiacs.umd.edu/projects//projects/lb
c/index.html

• ACM: https://github.com/Jhy1993/HAN
• BlogCatalog: https://github.com/mengzaiqiao/CAN
• Flickr: https://github.com/mengzaiqiao/CAN
• CoraFull: https://github.com/abojchevski/graph2gauss/

A.3 Implementation Details
The codes of AM-GCN are based on the Graph Convolutional Net-
works in PyTorch version1. And for the reproducibility of our pro-
posed model, we also list the parameter values used in our model
in Tabel 3.

A.4 Additional Results
In this section, we provide the additional results of our experiments
including analysis of attention trends on the other four datasets
and parameter study on UAI2010 and Flickr datasets.

A.4.1 Analysis of attention trends. Following the setting from the
Sectin 4.5, we give the additional analysis of attention trends on the
other four datasets in Figure 9. The changing process of attention
values follows the same way with the results in Figure 5. What’s
more, the final learned attention values are consist with the cor-
responding distributions in Figure 4, from which we can further
verify the effectiveness of attention mechanism.
1https://github.com/tkipf/pygcn

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30

A
tt

en
ti

o
n

 V
a
lu

e

epochs

UAI2010

Topology

Common

Feature

(a) UAI2010

0.10

0.30

0.50

0.70

0 3 6 9 12 15

A
tt

en
ti

o
n

 V
a

lu
e

epochs

ACM

Topology

Common

Feature

(b) ACM

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30

A
tt

en
ti

o
n

 V
a
lu

e

epochs

Flickr

Topology

Common

Feature

(c) Flickr

0.00

0.20

0.40

0.60

0.80

1.00

0 15 30 45 60 75

A
tt

en
ti

o
n

 V
a
lu

e

epochs

CoraFull

Topology

Common

Feature

(d) CoraFull

Figure 9: Changing trends on another four datasets.

0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76

0

0
.0
0
0
1

0
.0
0
1

0
.0
1

0
.1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

A
cc
u
ra
cy

20 40 60

(a) UAI2010

0.73

0.75

0.77

0.79

0.81

0.83

0

0
.0
0
0
1

0
.0
0
1

0
.0
1

0
.1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

A
cc
u
ra
cy

20 40 60

(b) Flickr

Figure 10: Analysis of parameter γ .

0.50

0.55

0.60

0.65

0.70

0.75

0

1
e-
1
0

5
e-
1
0

1
e-
0
9

5
e-
0
9

1
e-
0
8

5
e-
0
8

1
e-
0
7

5
e-
0
7

1
e-
0
6

5
e-
0
6

1
e-
0
5

A
cc
u
ra
cy

20 40 60

(a) UAI2010

0.72

0.74

0.76

0.78

0.80

0.82
0

1
e-
1
0

5
e-
1
0

1
e-
0
9

5
e-
0
9

1
e-
0
8

5
e-
0
8

1
e-
0
7

5
e-
0
7

1
e-
0
6

5
e-
0
6

1
e-
0
5

A
cc
u
ra
cy

20 40 60

(b) Flickr

Figure 11: Analysis of parameter β .

0.68

0.70

0.72

0.74

0.76

2 3 4 5 6 7 8 9

A
cc

u
ra

cy

20 40 60

(a) UAI2010

0.68

0.71

0.74

0.77

0.80

0.83

2 3 4 5 6 7 8 9

A
cc

u
ra

cy

20 40 60

(b) Flickr

Figure 12: Analysis of parameter k.

https://github.com/thunlp/OpenNE
https://github.com/tkipf/gcn
https://github.com/tkipf/pygcn
https://github.com/Diego999/pyGAT/
https://github.com/jwu4sml/DEMO-Net
https://github.com/samihaija/mixhop
https://github.com/tkipf/pygcn
http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
https://github.com/Jhy1993/HAN
https://github.com/mengzaiqiao/CAN
https://github.com/mengzaiqiao/CAN
https://github.com/abojchevski/graph2gauss/

Table 3: Model Hyperparameters.

Datasets L/C nhid1 nhid2 dropout lr weight-decay epochmax k γ β

Citeseer
20 768 256 0.5 0.0005 5e-3 25 7 0.001 5e-10
40 768 128 0.5 0.0005 5e-3 25 7 0.001 5e-8
60 768 128 0.5 0.0005 5e-3 25 7 0.001 5e-8

UAI2010
20 512 128 0.5 0.0005 5e-4 50 5 0.001 1e-9
40 512 128 0.5 0.0005 5e-4 70 5 0.01 1e-9
60 512 128 0.5 0.0005 1e-5 70 5 0.01 1e-9

ACM
20 768 256 0.5 0.0005 5e-4 20 5 0.001 1e-8
40 768 256 0.5 0.0005 5e-4 20 5 0.001 1e-8
60 768 256 0.5 0.0001 6e-4 30 5 0.001 1e-8

BlogCatalog
20 512 128 0.5 0.0002 1e-5 55 5 0.001 5e-8
40 512 128 0.5 0.0005 5e-4 40 5 0.001 5e-8
60 512 128 0.5 0.0005 8e-4 50 5 0.01 5e-8

Flickr
20 512 128 0.5 0.0003 5e-4 60 5 0.01 1e-10
40 512 128 0.5 0.0005 1e-5 40 5 0.01 1e-10
60 512 128 0.5 0.0005 5e-4 40 5 0.01 1e-10

CoraFull
20 512 32 0.5 0.001 5e-4 300 6 0.0001 1e-10
40 512 32 0.5 0.001 5e-4 300 6 0.00001 1e-10
60 512 32 0.5 0.001 5e-4 300 6 0.0001 1e-10

A.4.2 Parameters Study. To further check the stability and applica-
bility of parameters γ and β , we show the corresponding results on
UAI2010 and Flickr datasets in Figure 10 and Figure 11. Combining
the results in Section 4.6, we can see the consistency and dispar-
ity constraints have stable performance on a large range while
the performance with disparity constraint may decrease when β

is larger than some suitable boundary. In Figure 12, we test the
impact of k in k-nearest neighbor graph on UAI2010 and Flicker
datasets. For UAI2010, the preformance increases first and then
starts to decrease 2 to 10. And for Flickr, a larger k may import
richer structural information for feature graph which also profits
AM-GCN.

	Abstract
	1 Introduction
	2 Fusion Capability of GCNs: An Experimental Investigation
	2.1 Case 1: Random Topology and Correlated Node Features
	2.2 Case 2: Correlated Topology and Random Node Features

	3 AM-GCN: the Proposed Model
	3.1 Specific Convolution Module
	3.2 Common Convolution Module
	3.3 Attention Mechanism
	3.4 Objective Function

	4 Experiments
	4.1 Experimental Setup
	4.2 Node Classification
	4.3 Analysis of Variants
	4.4 Visualization
	4.5 Analysis of Attention Mechanism
	4.6 Parameter Study

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References
	A SUPPLEMENT
	A.1 Experiments Settings
	A.2 Baselines and Datasets
	A.3 Implementation Details
	A.4 Additional Results

