
AutoNE: Hyperparameter Optimization for Massive Network
Embedding

Ke Tu∗
Tsinghua University

tuk15@mails.tsinghua.edu.cn

Jianxin Ma
Tsinghua University

majx13fromthu@gmail.com

Peng Cui
Tsinghua University
cuip@tsinghua.edu.cn

Jian Pei
Simon Fraser University and JD.com

jpei@cs.sfu.ca

Wenwu Zhu
Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Network embedding (NE) aims to embed the nodes of a network into
a vector space, and serves as the bridge between machine learning
and network data. Despite their widespread success, NE algorithms
typically contain a large number of hyperparameters for preserving
the various network properties, which must be carefully decided
in order to achieve satisfactory performance. Though automated
machine learning (AutoML) has achieved promising results when
applied to many types of data such as images and texts, network
data pose great challenges to AutoML and remain largely ignored
by the literature of AutoML. The biggest obstacle is the massive
scale of real-world networks, along with the coupled node relation-
ships that make any straightforward sampling strategy problematic.
In this paper, we propose a novel framework, named AutoNE, to
automatically optimize the hyperparameters of a NE algorithm on
massive networks. In detail, we employ a multi-start random walk
strategy to sample several small sub-networks, perform each trial
of configuration selection on the sampled sub-network, and design
a meta-leaner to transfer the knowledge about optimal hyperpa-
rameters from the sub-networks to the original massive network.
The transferred meta-knowledge greatly reduces the number of
trials required when predicting the optimal hyperparameters for
the original network. Extensive experiments demonstrate that our
framework can significantly outperform the existing methods, in
that it needs less time and fewer trials to find the optimal hyperpa-
rameters.

KEYWORDS
Network Representation Learning; Network Embedding; Auto-
mated Machine Learning; Meta-Learning; Hyperparameter Opti-
mization

∗Beijing National Research Center for Information Science and Technology (BNRist)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330848

ACM Reference Format:
Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. 2019. AutoNE:
Hyperparameter Optimization for Massive Network Embedding. In The
25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3292500.3330848

1 INTRODUCTION
Nowadays, networks are widely used to represent complex relation-
ships of objects, such as social networks, biology networks, etc. To
process network data effectively and efficiently, many network em-
bedding (NE) algorithms [6, 20, 28] have been proposed. NE aims to
embed the nodes of a network into a low-dimensional vector space,
so that the downstream applications, such as recommendation [37],
node classification [14] and clustering [36], can be readily solved
by applying traditional machine learning methods in the vector
space. Despite the widespread success of NE, the configuration, par-
ticularly the hyperparameters, of a NE algorithm must be carefully
tuned in order to achieve satisfactory performance. This tuning
process relies heavily on the experience of human experts, and the
issue is further aggravated by the fact that NE algorithms typically
possess a large number of hyperparameters that are related with
the various network properties to be preserved.

Lately, automated machine learning (AutoML) [22] has aroused
great research interests from both academia and industry. It aims
to ease the adoption of machine learning and reduce the reliance
on human experts, by automating the various stages of machine
learning, e.g., hyperparameter optimization. Many AutoML frame-
works are proposed and have demonstrated their usefulness when
applied to various types of data, such as images [42] and texts [7].
However, network data remain largely unexplored by the existing
literature of AutoML.

The large scale of real-world networks pose great challenges
to incorporating AutoML into NE. A real-world network usually
contains millions or even billions of nodes and edges, while the
computational cost of a NE algorithm increases proportionally to
the network size. As a result, it is unrealistic to automatically search
for the optimal configuration by executing the target NE algorithm
on such a massive network for a large number of times. In this
paper, we suggest to perform each trial of configuration selection
on a sampled sub-network, and to find a way to transfer the knowl-
edge about optimal hyperparameters from the sub-networks to
the original massive network. A straightforward way to conduct

https://doi.org/10.1145/3292500.3330848
https://doi.org/10.1145/3292500.3330848

Sampling

Meta-learner

𝜃𝑖 , ℎ(𝐺𝑖) → 𝑃𝑖

𝐺
𝐺1

ℎ(𝐺)

𝑀𝑎𝑥𝜃𝐺 𝑃𝐺

. . .

𝐺2

𝐺𝑛

…

𝜃2

𝜃1

𝜃𝑛

…

𝜃2

𝜃1

𝜃𝑛

…

ℎ(𝐺1)

𝑃1

𝑃2

𝑃𝑛

NE Alg.
𝑃𝑖 = 𝑓𝑀(𝜃𝑖 , 𝐺𝑖)

Signature
Extraction …

ℎ(𝐺2)

ℎ(𝐺𝑛)

Figure 1: The transfer process of AutoNE. It involves three modules: the sampling module, the signature extraction module,
and the meta-learning module. h(Gi) is the signature of Gi , and Pi is the performance achieved on Gi using configuration θi .

configuration selection on sampled sub-networks still faces the
following challenges:

(1) Transferability: The optimal configuration for a sampled
sub-network is in general not the optimal configuration for
the original massive network, because sampling breaks the
coupled relationships among nodes and inevitably intro-
duces notable bias. This is in contrast to unstructured data
such as images, where it is easy to sample a subset that
follows the identical distribution as the original dataset. Pre-
dicting the optimal configuration for the original network
thus requires mining transferable knowledge from the sub-
networks.

(2) Heterogeneity: A network usually consists of several highly
heterogeneous components, e.g., communities, many ofwhich
may be lost after sampling. If the sampling procedure is not
carefully designed, an excessive number of samples may
be required to cover all the information that is essential
for deciding the optimal configuration for the original net-
work. Moreover, when assessing the transferability of a sub-
network based on its similarity to the original network, the
measurement must be well aware of the heterogeneity.

To address the above challenges, we propose a novel framework,
named AutoNE, for automatically deciding the optimal hyperpa-
rameter configuration of a NE algorithm. Our framework consists
of three major modules: the sampling module, the signature extrac-
tion module, and the meta-learning module. The sampling module
samples several small sub-networks from the original large-scale
network. It employs a multi-start random walk strategy, where the
multiple starting points are chosen to preserve the heterogeneity.
The signature extraction module then produces a signature for
each network (including both the sub-networks and the original
network), to facilitate the measurement of similarity between two
networks. It extracts the signature based on the Laplacian spec-
trum, which captures the network properties comprehensively and
is capable of differentiating between the heterogeneous compo-
nents. Finally, the meta-learning module trains a Gaussian process
meta-learner on the sampled sub-networks to distill transferable
meta-knowledge about optimal hyperparameter configurations.
Specifically, the meta-learner is trained to estimate the underlying
function that maps a hyperparameter configuration and a network

signature to the performance of the target NE algorithm. To predict
the optimal hyperparameters for the original network, the meta-
learner fixes one of the arguments as the signature of the original
network, and optimizes the other argument (i.e., the hyperparam-
eter configuration), to maximize the output of the function (i.e.,
the estimated performance). The transfer process is shown in Fig-
ure 1. Thanks to the meta-knowledge transferred from the sampled
sub-networks, our framework can achieve superior performance
with only a minimal number of trials on the original large-scale
network.

To summarize, the contributions of our papers are as follows:

• We investigate the pressing problem of incorporating Au-
toML into NE, and propose AutoNE, a novel framework that
automates hyperparameter optimization for NE.
• Our framework can scale up to massive real-world networks
by utilizing the meta-knowledge transferred from sampled
sub-networks. In particular, the sampling module and the
signature extraction module are designed with the Hetero-
geneity issue in mind. And the Transferability challenge
is addressed with a sophisticated meta-learning module.
• Experimental results on real-world networks demonstrate
both the effectiveness and the efficiency of our framework
for several representative NE algorithms.

The rest of the paper is organized as follows. In Section 2, we
briefly review the related works. We then formally define the re-
search problem and present the details of the proposed framework
in Section 3. We report the experimental results in Section 4. Finally,
we conclude in Section 5.

2 RELATEDWORK
2.1 Network Embedding
Network embedding (NE) [6, 10, 17, 31], which aims to preserve
the node similarity in a vector space, has attracted considerable
research attention in the past few years. The NE algorithms can
be categorized roughly into three classes, i.e., sampling-based algo-
rithms, factorization-based algorithms, and deep neural network-
based algorithms. The sampling-based algorithms are inspired by
word2vec [18]. DeepWalk [20] samples random walks to explore
the structure of a network and employs word2vec after treating the

sampled walks as sentences. LINE [28] is also built on word2vec, but
uses edge sampling instead of random walks. Node2vec [9] extends
DeepWalk and proposes a biased randomwalk procedure to capture
the diverse connectivity patterns in a network. The factorization-
based algorithms construct a proximity matrix based on the ad-
jacency matrix of a network, and derive node representations by
decomposing the proximity matrix. For example, M-NMF [36] pro-
poses modularized nonnegative matrix factorization to incorporate
the community structure. As for the deep neural network-based
algorithms [19, 32, 39, 41], SDNE [35] proposes an autoencoder
to preserve the first-order and second-order proximity between
nodes. And TriDNR[19] proposes a coupled deep model that in-
corporates the network structure, node attributes, and node labels
into the learned node representations. More recently, the graph
convolutional network (GCN) [14] has been proposed to process
network data in an end-to-end manner. However, the need to pre-
serve various network properties inevitably brings an excessive
number of hyperparameters, and it is therefore of high demand to
automate the process of hyperparameter optimization for network
embedding.

2.2 Automated Machine Learning
Automated machine learning (AutoML) [22], which attempts to re-
duce the reliance on human assistance during the machine learning
process, has emerged as an important topic in both academia and
industry. AutoML targets various stages of the machine learning
process, e.g., data preparation [7], feature engineering [13], model
selection, neural architecture search [16, 42], and hyperparameter
optimization [29]. Among these stages, the one that is most re-
lated to our work is hyperparameter optimization. Grid search and
random search [2] are the two most straightforward approaches
for searching for a good set of hyperparameters. Yet these two
approaches do not leverage the past experience, i.e., the results
of the previous trials, when deciding the hyperparameters for the
next trial. To utilize the past experience and reduce the number of
trials required, sequential model-based optimization (SMBO) [12]
is proposed. SMBO learns a surrogate function from the past ex-
perience to approximate the unknown function that maps a set of
hyperparameters to the expected performance of the hyperparame-
ters. Bayesian optimization [26] is one of the most popular SMBO
approaches. Bayesian optimization uses a Gaussian process to rep-
resent the surrogate function and decides the hyperparameters for
the next trial by maximizing the expected improvement. On the
other hand, hyperparameter optimization can also be viewed as a
mete-learning problem [8, 34]. In this latter setting, a meta-learner
extracts transferable knowledge from the hyper-parameter con-
figurations that have been adopted in previous similar tasks, and
generalizes the knowledge to predict the optimal hyperparamters
when given a new task. However, the existing AutoML techniques
mostly deal with image or text data, and cannot easily handle large-
scale networks due to the coupled relationships among the nodes.

3 THE PROPOSED FRAMEWORK
3.1 Notations and Problem Formulation
Let G = (V ,E) denote a network, where V is the set of nodes and
E ⊆ V ×V is the set of edges. We use Gi = (Vi ,Ei) to denote the

ith sub-network sampled from the original network G. Let M be
a NE algorithm. The algorithm outputs d-dimensional node rep-
resentations, i.e., M(θ ,G) ∈ R |V |×d , when given hyperparameter
configuration θ and networkG = (V ,E). We then use fM (θ ,G) to
denote the performance of the output M(θ ,G) on the validation
dataset of a downstream application, e.g., node classification or
link prediction. The shape of the performance function fM (·, ·) is
unknown in practice, and we will use a meta-learner to estimate it
based onM’s performance on the sampled sub-networks {Gi }i>0.

Our goal is to find the set of hyperparameters that can achieve
the optimal performance on a given network. For this purpose, we
propose a novel framework named AutoNE (see Figure 1), which
combines the ideas of meta-learning and Bayesian optimization.
Our framework consists of three key components: the sampling
module, the signature extraction module, and the meta-learning
module.

3.2 The Sampling Module
To efficiently collect information about the unknown function
fM (·, ·) that maps a set of hyperparameter and a network to the
expected performance of algorithm M , we will start by sampling
some sub-networks from the original network.

We aim to sample a series of representative sub-networks that
share similar properties with the original large-scale network. We
sample each sub-network based on several random walks. And we
vary the the length of each random walk to obtain sub-networks of
various sizes. At each step of a random walk, we randomly select
the next position v ′ from the neighbors of the current position v ,
i.e.,v ′ ∈ N(v) = {u | (v,u) ∈ E}, and jump to nodev ′. LetVi be the
nodes traversed by the random walks. The sampled sub-network
Gi = (Vi ,Ei) is then the sub-network induced in the original net-
work G by the sampled nodes Vi . In other words, the sub-network
Gi = (Vi ,Ei) contains these edges:

Ei = {(u,v) | u ∈ Vi ∧v ∈ Vi ∧ (u,v) ∈ E} , (1)

where E contains the edges in the original large-scale network.
Moreover, to address the heterogeneity issue, i.e., to ensure that

the sampled sub-network Gi preserves the diversity exhibited in
the original network, the starting points of the random walks are
explicitly chosen to be at the different regions of the original net-
work. In particular, for supervised network applications such as
node classification, we choose several nodes with different labels as
the starting points. As for unsupervised network applications such
as link prediction, the starting nodes can be chosen to be from the
different communities discovered by a fast community detection
algorithm, e.g., a greedy algorithm that maximizes modularity [5].

3.3 The Signature Extraction Module
The signature of a network is a vector descriptor that encodes the
various properties of the whole network, typically obtained in an
unsupervised manner that does not require training. By extracting
the signatures of G and {Gi }i>0, we can conveniently measure the
similarity between two networks by comparing their signatures in
the vector space. We would like the signatures to be comprehensive
enough so that they capture the properties that are important for
deciding the hyperparameters of a NE algorithm. Moreover, the

signatures should reflect the heterogeneous components, e.g., com-
munities, of a network, so that the transfer process can be more
aware of the sampling bias.

According to spectral graph theory [4], a large number of net-
work properties, such as the normalized cuts [25] used by spectral
clustering, are decided by the spectrum of a network, and some
networks are even determined by their spectrum [33]. We therefore
use NetLSD [30], a state-of-the-art method that builds on the Lapla-
cian spectrum and preserves the community structure of a network,
for signature extraction. NetLSD considers a heat diffusion process
on a network and computes the heat trace at time t :

ht = tr (Ht) = tr (e−tL) =
∑
j
e−tλj , (2)

where (Ht)i j represents the amount of heat transferred from node
vi to node vj at time t , L is the Laplacian matrix of the network
whose signature is to be extracted, and λj is the jth eigenvalue of the
Laplacian matrix. NetLSD then outputs the heat traces at different
time scales as the signature of a network, i.e., h(G) = {ht }t>0 for
network G. The time complexity of NetLSD is linear with respect
to the network size.

At larger time scales, the heat diffuses farther and reflects more
global properties of the network. This phenomenon is closely re-
lated with the concept of high-order proximity, which is adopted
by many NE algorithms [28]. Moreover, NetLSD is size-invariant,
i.e. it preserves structural similarity regardless of network magni-
tude, which is useful for determining the hyperparameters that are
hardly related with the magnitude of a network, e.g., the hyperpa-
rameters that control the importance of first-order proximity and
second-order proximity. However, there might be hyperparameters
that are related with the network size, e.g., the learning rate. We
therefore concatenate h(G) and the network size |V | to form the
final signature of network G.

3.4 The Meta-Learning Module
The meta-learner will collect the knowledge about the unknown
performance function fM (·, ·), by executing algorithm M on the
sampled sub-networks {Gi }i>0 using various hyperparameters. It
will then predict the optimal hyperparameters for algorithm M
on the original large-scale network G, based on the knowledge
transferred from the sampled sub-networks.

3.4.1 Kernel Function. Our central assumption is that, if the sig-
natures of two networks are similar, then with a similar set of
hyperparameters, the performance of the NE algorithm will be
similar on the two networks.

To begin with, we need to formally define the similarity between
two sets of hyperparameters, as well as the similarity between
two networks. We use two separate kernel functions for this pur-
pose. Specifically, We define the similarity between two sets of
hyperparameters as kθ (θ1,θ2), where kθ (·, ·) is a Matérn 5/2 kernel
function [26]. We then define the similarity between network G1
and network G2 as kд(h(G1),h(G2)), where h(G) is the signature
of network G and kд(·, ·) is another Matérn 5/2 kernel function.
Finally, we define the similarity between (θ1,G1) and (θ2,G2) as:

k ((θ1,G1), (θ2,G2)) = kθ (θ1,θ2) · kд (h(G1),h(G2)) . (3)

Compared with the other kernels such as the widely used radial
basis function (RBF) kernel, the Matérn 5/2 kernel is more capable
of describing a non-smooth function, and is therefore more suitable
for our task where the performance function fM (·, ·) is highly non-
smooth.

3.4.2 Gaussian Process. We use a Gaussian process (GP) [23] to
estimate the shape of the performance function fM (·, ·), i.e., the
mapping from hyperparameter configuration θ and networkG to
the expected performance fM (θ ,G). The GP can be viewed as a
probabilistic distribution over the unknown function fM (·, ·), and
the distribution is updated every time we observe the value of
fM (θi ,Gi) at a new point (θi ,Gi).

The GP builds upon the kernel function described earlier, and
does not introduce any extra parameters. Let matrix X be a collec-
tion of sampled points, i.e., each row ofX is a sampled point (θi ,Gi)

that consists of a hyperparameter configurationθi and a networkGi .
We then use matrixK(X,X) to denote the similarity scores between
any two sampled points, i.e., (K(X,X))i j = k

(
(θi ,Gi), (θ j ,G j)

)
. Let

f be a column vector consisting of the values of fM (·, ·) at these
sampled points, i.e., (f)i = fM (θi ,Gi). The Gaussian process then
assumes that for any collection of sampled points X, the value of
the performance function fM (·, ·) at these sampled points follows
the following multivariate normal distribution:

f | X ∼ N (µ(X),K(X,X)) , (4)

where µ(·) is a mean function. We set the mean function to a con-
stant zero function, i.e., µ(X) = 0, because a zero-mean GP is al-
ready expressive enough to characterize a complex, highly nonlin-
ear function, provided that the co-variance K(X,X) is based on a
sophisticated kernel function such as the Matérn kernel [23].

The above assumption will allow us to predict the performance
of algorithm M with a new set of hyperparameters θ∗ on a new
networkG∗, by computing the posterior probability conditioned on
the observed values of fM (·, ·) at several sampled points. We will
provide more details on this later.

3.4.3 Fitting the Gaussian Process. While the GP itself is non-
parametric, the kernel used by the GP does contain parameters
that can be optimized to more accurately estimate the shape of the
performance function fM (·, ·).

We therefore run the target NE algorithmM on the sampled sub-
networks {Gi }i>0 with some randomly selected hyperparameters
{θi }i>0, and collect the observed performance f = { fM (θi ,Gi)}i>0
at these sampled points X = {(θi ,Gi)}i>0. We then decide the
parameters of the kernel functionk(·, ·) bymaximizing the marginal
likelihood p(f | X) of the observed data. Under the assumption of
the Gaussian process, the log likelihood can be expressed as follows:

lnp(f | X) = −
1
2
f⊤K(X,X)−1f−

1
2
ln det(K(X,X))+constant . (5)

We use L-BFGS-B [40], a quasi-Newton method, to maximize it.

3.4.4 Predicting the Optimal Hyperparameters. Here we will show
how the GP can efficiently estimate the expected performance
fM (θ∗,G∗) when given a new set of hyperparameters θ∗ and a new
networkG∗, and how we can predict the optimal hyperparameter
configuration θ∗ when given a new network G∗.

Given a new test point x∗ = (θ∗,G∗) and the observed values f
at the existing sampled points X, the assumption of the GP implies
that fM (θ∗,G∗) and f follow a joint normal distribution:[

f
fM (θ∗,G∗)

]
∼ N

(
0,
[
K(X,X) K(X, x∗)
K(x∗,X) K(x∗, x∗)

])
, (6)

where K(x∗, x∗) = k((θ∗,G∗), (θ∗,G∗)), and K(X, x∗) = K(x∗,X)⊤

is the similarity between the new test point and the existing sampled
points, measured by the kernel function k(·, ·). As a result, it can
be shown that the posterior distribution p(fM (θ∗,G∗) | x∗, f ,X) is
a normal distribution:

fM (θ∗,G∗) | x∗, f ,X ∼ N(µ∗,σ 2
∗), (7)

µ∗ = K(x∗,X)K(X,X)−1f , (8)
σ 2
∗ = K(x∗, x∗) − K(x∗,X)K(X,X)−1K(X, x∗). (9)

The derivation can be found in [23]. The expected performance of
algorithmM on a new network G∗ using a new set of hyperparam-
eters θ∗ is therefore µ∗ according to the GP.

To find the optimal hyperparameter configuration θ∗ when given
a new network G∗, we can treat θ∗ as a parameter and vary it to
maximize the potential reward. To be specific, we search for the
optimal θ∗ bymaximizing the upper confidence bound (UCB) [1, 27]:

argmax
θ∗

µ∗ + κσ∗. (10)

Note that both µ∗ and σ∗ depend on θ∗. This maximization problem
can be efficiently solved using a quasi-Newton method such as
L-BFGS-B [40]. The constant κ > 0 controls how much risk the
meta-learner is willing to take. When κ is large, the meta-learner
is more willing to take risk and will actively explore regions with
large variance.

3.5 The Two Phases of Hyperparameter
Optimization

The hyperparameter optimization procedure consists of two phases.
During the first phase, the goal of the meta-learner is to collect

information about the performance function fM (·, ·) based on the
results on the sampled sub-networks, i.e., { fM (θi ,Gi)}i>0. The
meta-learner collects these results by sampling S sub-networks,
and executing algorithm M on each sub-network for T times using
different sets of hyperparameters.

During the second phase, the meta-learner will start to predict
the hyperparameters that may lead to the optimal performance on
the original large-scale networkG. In this phase, the meta-learner
makes L predictions sequentially, where the results of the previ-
ous predictions will be leveraged to improve the next prediction.
Specifically, it makes each prediction θ j according to Equation 10.
After each prediction, it adds (θ j ,G) into X, fM (θ j ,G) into f , and
updates the parameters of the kernel function k(·, ·) before making
the next prediction. The optimal hyperparameter configuration is
then chosen from the L predictions.

The pseudocode of the whole hyperparameter optimization pro-
cedure is listed in Algorithm 1. The overall time complexity is
O(L|E |), which is mostly due to the need to execute algorithm M
on the original network G = (V ,E) for L times during the second
phase. The time complexity of the first phase is negligible, because
the sampled sub-networks are far smaller than the original network,

Algorithm 1 Automated Hyperparameter Optimization for Network
Embedding (AutoNE)
Input: Network G; Network embedding algorithmM .
Output: The optimal hyperparameter configuration θopt .
1: /* Phase I */
2: Sample S sub-networks from G according to Section 3.2. Each

sampled sub-network will be reused for T times. We therefore
use {Gi }

ST
i=1 to denote the ST sub-networks.

3: X = {}, f = {}.
4: for sub-network i ← 1, 2, . . . , ST do
5: Compute the signature ofGi according to Section 3.3. The

signature will be used by the kernel function k(·, ·).
6: Select a hyperparameter configuration θi randomly.
7: Run algorithm M on sub-network Gi using θi , and record

the performance fM (θi ,Gi).
8: X← X ∪ {(θi ,Gi)}, f ← f ∪ { fM (θi ,Gi)}.
9: end for
10: Update the kernel parameters by maximizing Equation 5.
11:
12: /* Phase II */
13: Compute the signature of network G according to Section 3.3.
14: for trial j ← ST + 1, ST + 2, . . . , ST + L do
15: Obtain a hyperparameter configuration θ j that may achieve

the optimal performance on G according to Equation 10.
16: Run algorithmM on the input networkG usingθ j , and record

the performance fM (θ j ,G).
17: X← X ∪ {(θ j ,G)}, f ← f ∪ { fM (θ j ,G)}.
18: Update the kernel parameters by maximizing Equation 5.
19: end for
20: return θopt = argmaxθ j :ST+1≤j≤ST+L fM (θ j ,G).

i.e., |Ei | ≪ |E |. In fact, the total execution time of the first phase is
usually less than or on par with that of executing algorithmM for
one time on the original network. The overall time complexity of
the Gaussian process is O((ST)3L), which is again negligible, since
(ST)3 ≪ |E |. Note that L is much smaller than the number of trials
required by the existing hyperparameter optimization techniques,
because our meta-learner additionally learns to collect transferable
information from the sampled sub-networks.

4 EXPERIMENTS
In this section, we empirically analyze the proposed framework. Net-
work embedding (NE) algorithms can be roughly categorized into
three classes, including sampling-based algorithms, factorization-
based algorithms, and deep neural network-based algorithms. We
therefore assess the efficacy and efficiency of our framework with
one representative algorithm from each class. Specifically, we opti-
mize the hyperparameters of the NE algorithms on two common
network applications, including link prediction and node classifica-
tion.

Note that in order to fairly compare our framework with the
baselines, we select small- or moderate-scale, rather than large-
scale, network datasets in Subsection 4.2–4.4, wherein the baselines

can work well. Furthermore, we validate our framework in a large-
scale network in Subsection 4.5, where all baselines cannot report
reasonable results.

4.1 Baselines and Experiment Settings
In order to evaluate the effectiveness of our proposed framework,
we compare our framework with two widely adopted hyperparam-
eter optimization strategies:

• Random search [2]: Random search is one of the most com-
monly used strategies for hyperparameter optimization. Ran-
dom search is sufficient to find the optimal solution as long
as the time budget is large enough, though it does not lever-
age the feedback provided by the previous trials. Another
commonly used strategy is grid search. However, as demon-
strated by [2], random search is favored over grid search in
most scenarios, because random search can explore larger
configuration space more efficiently and find better solu-
tions faster. Therefore, we use random search as one of the
baselines in our experiments.
• Bayesian optimization (BayesOpt) [26]: Bayesian optimiza-
tion uses a Gaussian process to serve as a surrogate of the
expensive evaluation process and decides the hyperparame-
ters for the next trial by maximizing the probability of im-
provement. Many AutoML frameworks incorporate Bayesian
optimization as the standard method for hyperparameter op-
timization. Bayesian optimization performs each trial on the
original data as many existing techniques for hyperparame-
ter optimization do, which makes it inefficient at handling
large-scale networks.

We set L, the number of times we are allowed to execute a NLR
algorithm on the original network, to ten. Additionally, the number
of sampled sub-networks S is set to five, and each sub-network is
tested withT = 5 sets of hyperparameters. The number of nodes in
each sampled sub-network is randomly selected within the range
from 5%|V | to 20%|V |. Each sub-network is sampled based on five
concurrent random walks, and the random walks are stopped once
the sub-network reaches the specified size.

To measure the performance of each target NE algorithm, we set
up two tasks, i.e., link prediction and node classification. For link
prediction, we randomly hide 20% of the edges and train the NE
algorithm on the remaining part. After training, we obtain the node
representations from the algorithm’s output and use them to predict
the held-out links based on the inner product of the learned node
representations. We use the area under the curve (AUC) [11] as the
evaluation metric for link prediction. For node classification, we
use the learned node representations to train a logistic regression
classifier. The Micro-F1 score is used as the evaluation metric for
node classification.

4.2 Sampling-Based NE
Most of the sampling-based algorithms are inspired byword2vec [18].
Many algorithms from this category use random walks to explore
the structure of a network. The most important hyperparameters
of these NE algorithms are the number of random walks to start
at each node, the length of each random walk, and the window

size of the skip-gram model used by word2vec. We choose Deep-
Walk [20], the most representative sampling-based NE algorithm,
as the algorithm to be tuned in this section, and optimize the said
three hyperparameters. Two real-world networks, BlogCatalog and
Wikipedia, are used for evaluating the performance of AutoNE.
BlogCatalog is a social network with 10,312 nodes, 333,983 edges,
and 39 categories. Wikipedia is a co-occurrence network of words
appearing in the first 109 bytes of the English Wikipedia dump and
it contains 4,777 nodes, 184,812 edges and 40 labels.

We repeat our experiments for five times for each task with the
same setting, and report themean alongwith the standard deviation.
We measure the performance of each hyperparameter optimization
method in terms of two metrics: (1) the performance achieved by
each method within various time thresholds, and (2) the number
of trials, i.e., how many times the NE algorithm is executed on the
original network, required by eachmethod to find a hyperparameter
configuration that can reach a certain performance threshold. We
report the results corresponding to these two metrics in Figure 2
and Figure 3, respectively.

It can be concluded from Figure 2 and Figure 3 that our proposed
framework outperforms the baselines significantly and consistently.
Note that our framework takes slightly longer time to finish its first
trial than the baselines, because our framework needs to collect
transferable information from the sampled sub-networks before it
can start its first trial. However, the performance achieved by the
first few trials of our framework is much better, because our frame-
work can benefit from the knowledge transferred from the small
sub-networks. Moreover, the standard deviation of our framework
is smaller in most cases, which demonstrates the stability of our
framework. On the other hand, we can see from Figure 3 that our
framework takes much fewer trials to find a good hyperparameter
configuration, which demonstrates that our framework is more
capable of handling large-scale networks on a limited time budget.

4.3 Factorization-Based NE
The factorization-based NE algorithms obtain node representations
by computing the low-rank factorization of a proximity matrix [21].
The most typical way to construct the proximity matrix is to utilize
the high-order relationships between two nodes [3, 38]. In this
subsection, we choose AROPE [38], a NE algorithm that supports
constructing an arbitrary-order proximity matrix, as the target to
be tuned. Specifically, the hyperparameters we aim to tune are
the weights of the different orders. We use the same experimental
setting as Subsection 4.2 here.

We report the performance achieved by each method within vari-
ous time thresholds in Figure 4, and the number of trials required by
each method to reach a certain performance threshold in Figure 5.
Our framework again significantly improves upon the baselines
under most scenarios. We observe that the factorization-based NE
algorithms are much more stable than the sampling-based NE al-
gorithms, e.g., the performance of AROPE falls within a a much
smaller range than that of DeepWalk. On the BlogCatalog dataset,
the first few trials of our framework perform slightly worse than
those of BayesOpt’s, which indicates that the bias introduce by
sampling is not negligible. However, our framework quickly outper-
forms BayesOpt after a few trials, because it can learn to overcome

0 250 500 750 1000 1250 1500 1750

time (s)

0.36

0.37

0.38

0.39

0.40

0.41

M
ic
ro
-F
1

Random

BayesOpt

AutoNE
std

0.000

0.005

0.010

(a) Classification on BlogCatalog

0 100 200 300 400 500

time (s)

0.40

0.42

0.44

0.46

0.48

0.50

M
ic
ro
-F
1

Random

BayesOpt

AutoNE
std

0.000

0.005

0.010

(b) Classification on Wikipedia

0 250 500 750 1000 1250 1500 1750 2000

time (s)

0.50

0.55

0.60

0.65

0.70

0.75

A
U
C

Random

BayesOpt

AutoNE
std

0.00

0.02

0.04

(c) Link prediction on BlogCatalog

100 200 300 400 500 600 700

time (s)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

A
U
C

Random

BayesOpt

AutoNE
std

0.00

0.02

(d) Link prediction on Wikipedia

Figure 2: The performance achieved by each method within various time thresholds. The NE algorithm being tuned is Deep-
Walk. The histogram shows the standard deviation of each method. The vertical dash line marks the time when AutoNE
finishes exploring in sampled sub-networks.

0.3900 0.3925 0.3950 0.3975 0.4000 0.4025 0.4050 0.4075 0.4100

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(a) Classification on BlogCatalog

0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(b) Classification on Wikipedia

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(c) Link prediction on BlogCatalog

0.60 0.62 0.64 0.66 0.68 0.70

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(d) Link prediction on Wikipedia

Figure 3: The number of trials required by each method to reach a certain performance threshold. The NE algorithm being
tuned is DeepWalk. The vertical dash line marks the conjectured performance when the number of trials is unlimited.

100 200 300 400 500 600 700

time (s)

0.3050

0.3075

0.3100

0.3125

0.3150

0.3175

0.3200

0.3225

0.3250

M
ic
ro
-F
1

Random

BayesOpt

AutoNE
std

0.000

0.002

(a) Classification on BlogCatalog

50 100 150 200 250

time (s)

0.516

0.518

0.520

0.522

0.524

0.526

0.528

0.530

M
ic
ro
-F
1

Random

BayesOpt

AutoNE
std

0.000

0.001

0.002

(b) Classification on Wikipedia

0 200 400 600 800 1000

time (s)

0.840

0.842

0.844

0.846

0.848

0.850

0.852

A
U
C

Random

BayesOpt

AutoNE
std

0.000

0.001

0.002

0.003

(c) Link prediction on BlogCatalog

50 100 150 200 250 300

time (s)

0.698

0.700

0.702

0.704

0.706

0.708
A
U
C

Random

BayesOpt

AutoNE
std

0.00000

0.00025

0.00050

(d) Link prediction on Wikipedia

Figure 4: The performance achieved by eachmethod within various time thresholds. The NE algorithm being tuned is AROPE.

the sampling bias after collecting sufficient data on both the sub-
networks and the original network.

4.4 Deep Neural Network-Based NE
Deep neural network-based algorithms usually contain a large
number of hyperparameters that have a strong influence on the per-
formance. We choose the graph convolutional network (GCN) [14],
a representative end-to-end algorithm for network data, as the tar-
get to be tuned. Specifically, the five hyperparameters we aim to
tune include the learning rate, the size of each hidden layer, the
number of training epochs, the dropout rate and the weight decay.

The datasets used in the previous experiments do not contain node
features, which are required by GCN. We therefore conduct our
experiments on the Pubmed [24] dataset instead, which is a citation
network that contains 19,717 nodes, 44,338 edges, 500-dimensional
node features, and three classes. We sample 80% of the node labels
for training. Due to the space limit, we only report the results on
the node classification task here.

The results are shown in Figure 6.We can see that our framework
can achieve the optimal performance in a much shorter time, which
again demonstrates the effectiveness of our framework.

0.3050 0.3075 0.3100 0.3125 0.3150 0.3175 0.3200 0.3225 0.3250

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(a) Classification on BlogCatalog

0.516 0.518 0.520 0.522 0.524 0.526 0.528 0.530

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(b) Classification on Wikipedia

0.840 0.842 0.844 0.846 0.848 0.850 0.852

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(c) Link prediction on BlogCatalog

0.702 0.703 0.704 0.705 0.706 0.707 0.708

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(d) Link prediction on Wikipedia

Figure 5: The number of trials required by each method to reach a certain performance threshold. The NE algorithm being
tuned is AROPE.

50 100 150 200 250 300 350 400

time (s)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

M
ic
ro
-F
1

Random

BayesOpt

AutoNE
std

0.00

0.01

(a) The performance achieved by each
method within various time thresholds.

0.58 0.60 0.62 0.64 0.66 0.68 0.70

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

Random

BayesOpt

AutoNE

(b) The number of trials required to
reach a certain performance threshold.

Figure 6: Node classification on Pubmed. The NE algorithm
being tuned is GCN.

Table 1: Results on a massive network with around thirty
million edges, where we can only afford to run a NE algo-
rithm on the whole network for a few times.

Method Trial 1 Trial 2 Trial 3
AUC Time(s) AUC Time(s) AUC Time(s)

AutoNE 0.717 1067.9 0.726 1856.2 0.769 2641.9
Random 0.714 698.3 0.727 1426.3 0.715 2088.6
BayesOpt 0.715 702.5 0.714 1405.1 0.727 2307.7

4.5 Analysis on a Large-Scale Network
In this subsection, we will demonstrate the ability of our frame-
work in handling a large-scale network. Note that we can only
afford to run a very small number of trials on the whole large-scale
network, as executing a NE algorithm on a large-scale network is
extremely time-consuming. For this purpose, we choose the Top-
Cat dataset [15], which has 1,791,489 nodes and 28,511,807 edges.
The number of nodes in each sampled sub-network is randomly
selected within the range from 5,000 to 20,000, i.e., roughly 0.25%|V |
to 1%|V |. We tune the performance of AROPE, the fastest NE algo-
rithm among the three we have investigated, on the link prediction
task. Each hyperparameter optimization method conducts three
trials on the original large-scale network.

The results are shown in Table 1. Our framework achieves sig-
nificantly better performance over the baselines after merely three

50 100 150 200 250 300

time (s)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

A
U
C

NaiveAutoNE

AutoNE
std

0.00

0.01

(a) The performance achieved within
various time thresholds.

0.62 0.64 0.66 0.68 0.70

Performance

1

2

3

4

5

6

7

8

9

10

Inf

#
tr
ia
ls

NaiveAutoNE

AutoNE

(b) The number of trials required to
reach a certain performance threshold.

Figure 7: The importance of transferring knowledge while
being aware of the sampling bias.

trials. It takes slightly more time for our framework to finish its
first trial, because our framework needs extra time to collect trans-
ferable knowledge from sampled sub-networks before conducting
its first trial. To overcome the bias introduced by sampling, our
framework needs to collect data from not only the sampled sub-
networks, but also the original network. As a result, the results of
the first two trials are less significant than the result of the last trial.
Overall, the results demonstrate that our framework is able to find
optimal hyperparameters with only a minimal number of trials on
a large-scale network.

4.6 The Necessity of Transfer
In this subsection, we will demonstrate that it is necessary to be
aware of the sampling bias and have a sophisticated mechanism
for transferring knowledge from the sampled sub-networks to the
original network. To be specific, we compare AutoNE with a simpli-
fied variant of AutoNE, named NaiveAutoNE. NaiveAutoNE views
all networks, including the sampled sub-networks and the original
network, as the same one. This is achieved by replacing the signa-
ture module with a module that outputs a constant vector. We use
the same setting as Figure 2 (d) and Figure 3 (d) here.

The results are shown in Figure 7. We can see that AutoNE
achieves much better performance than NaiveAutoNE within a
much shorter time. Moreover, NaiveAutoNE reaches a plateau

quickly while AutoNE keeps finding better hyperparameter config-
urations. The results demonstrate the importance of transferring
knowledge while being aware of the bias introduced by sampling.

5 CONCLUSION
In this paper, we investigate the pressing problem of incorporating
automated machine learning (AutoML) into network embedding
(NE). To deal with large-scale real-world networks, we propose
AutoNE, a novel framework for automatically optimizing the hy-
perparameters of a NE algorithm. Compared to the state-of-the-art
AutoML methods, our framework requires less time and less trials.
Extensive experiments with three representiative NE algorithms
are conducted to demonstrate the effectiveness and efficiency of
the proposed framework.

6 ACKNOWLEDGMENTS
We thank Chen Xuan for drawing figures and discussing. This work
was supported in part by National Program on Key Basic Research
Project No. 2015CB352300, National Natural Science Foundation
of China Major Project No. U1611461; National Natural Science
Foundation of China No. 61772304, 61521002, 61531006, U1611461;
Thanks for the research fund of Tsinghua-Tencent Joint Laboratory
for Internet Innovation Technology, and the Young Elite Scientist
Sponsorship Program by CAST. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES
[1] Peter Auer. 2002. Using Confidence Bounds for Exploitation-Exploration Trade-

offs. (2002).
[2] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.
[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-

resentations with global structural information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM.

[4] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.
American Mathematical Soc.

[5] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. 2004. Finding community
structure in very large networks. Physical Review (2004).

[6] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. IEEE Transactions on Knowledge and Data Engineering (2018).

[7] Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning how to active learn: A
deep reinforcement learning approach. arXiv preprint arXiv:1708.02383 (2017).

[8] Taciana AF Gomes, Ricardo BC Prudêncio, Carlos Soares, André LD Rossi, and
André Carvalho. 2010. Combining meta-learning and search techniques to
svm parameter selection. In Neural Networks (SBRN), 2010 Eleventh Brazilian
Symposium on. IEEE, 79–84.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[10] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[11] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982).

[12] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[13] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis: To-
wards automating data science endeavors. InData Science and Advanced Analytics
(DSAA), 2015. 36678 2015. IEEE International Conference on. IEEE, 1–10.

[14] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Christine Klymko, David Gleich, and Tamara G Kolda. 2014. Using triangles
to improve community detection in directed networks. Proceedings of the ASE
BigData Conference (2014).

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive

neural architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV). 19–34.

[17] Jianxin Ma, Peng Cui, Xiao Wang, and Wenwu Zhu. 2018. Hierarchical taxonomy
aware network embedding. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 1920–1929.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[19] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. Network 11, 9 (2016), 12.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[21] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. ACM, 459–467.

[22] Yao Quanming, Wang Mengshuo, Jair Escalante Hugo, Guyon Isabelle, Hu Yi-Qi,
Li Yu-Feng, Tu Wei-Wei, Yang Qiang, and Yu Yang. 2018. Taking human out of
learning applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306 (2018).

[23] Carl Edward Rasmussen. 2004. Gaussian processes in machine learning. In
Advanced lectures on machine learning. Springer, 63–71.

[24] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93.

[25] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
PAMI (2000).

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[27] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010.
Gaussian process optimization in the bandit setting: No regret and experimental
design. In In Proceedings of the 27th International Conference on Machine Learning.

[28] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[29] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 847–855.

[30] Anton Tsitsulin, DavideMottin, Panagiotis Karras, Alex Bronstein, and Emmanuel
Müller. 2018. NetLSD: Hearing the Shape of a Graph. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[31] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. 2018. Structural Deep
Embedding for Hyper-Networks. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[32] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. 2018. Deep Recursive
Network Embedding with Regular Equivalence. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM.

[33] Edwin R. van Dam and Willem H. Haemers. 2003. Which graphs are determined
by their spectrum? Linear Algebra Application (2003).

[34] Joaquin Vanschoren. 2018. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548 (2018).

[35] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[36] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding.. In AAAI. 203–209.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. arXiv preprint arXiv:1806.01973 (2018).

[38] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-order proximity preserved network embedding. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2778–2786.

[39] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2018. Deep Learning on Graphs: A
Survey. arXiv preprint arXiv:1812.04202 (2018).

[40] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software (TOMS) 23, 4 (1997), 550–560.

[41] Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. 2018. Deep variational
network embedding in wasserstein space. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM.

[42] Barret Zoph and Quoc V. Le. 2017. Neural architecture search with reinforcement
learning. In Proceedings of ICLR 2017.

A SUPPLEMENT
A.1 Hyperparameter Search Space
A hyperparameter optimization method typically searches for the
optimal hyperparameters with constraints on the hyperparame-
ters. We specify the lower bound and the upper bound for each
hyperparameter as follows:
• DeepWalk: the number of random walks starting from each
node is selected within the range from 2 to 20; the length of
each random walk is selected within the range from 2 to 80;
the window size is selected within the range from 2 to 20.
• AROPE: the weights of second-, third-, and fourth-order
proximity are selected within the range from 0.0001 to 1.0.
• GCN: the number of training epochs is selected within the
range from 2 to 300; the number of neurons in each hidden
layer is selected within the range from 2 to 64; the learn-
ing rate is selected within the range from 0.0001 to 0.1; the
dropout rate is selected within the range from 0.1 to 0.9; the
weight decay, i.e., L2 regularization, is selected within the
range from 0.00001 to 0.001.

A.2 Hardware Configuration and Software
Versions

All experiments are conducted with the following setting:
• Operating system: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
• RAM: DDR4 1TB
• GPU: GeForce GTX Titan X
• Software versions: Python 3.6; NumPy 1.15.4; SciPy 1.2.0;
NetworkX 2.2; scikit-learn 0.20.0; TensorFlow 1.11

GCN is executed on the GPU, while all the other experiments are
conducted on the CPU.

A.3 Baselines and Datasets
The publicly available implementations of the baselines and the
network representation learning algorithms can be found at the
following URLs:
• Bayesian Optimization: https://github.com/fmfn/Bayesian
Optimization
• DeepWalk: https://github.com/phanein/deepwalk
• AROPE: https://github.com/ZW-ZHANG/AROPE
• GCN: https://github.com/tkipf/gcn

The datasets used in this paper can be found at the following
URLs:
• BlogCatalog: http://socialcomputing.asu.edu/datasets/Blo
gCatalog3
• Wikipedia: https://snap.stanford.edu/node2vec/
• Pubmed: https://github.com/tkipf/gcn/tree/master/gcn/data
• TopCat: http://snap.stanford.edu/data/wiki-topcats.html

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/phanein/deepwalk
https://github.com/ZW-ZHANG/AROPE
https://github.com/tkipf/gcn
http://socialcomputing.asu.edu/datasets/BlogCatalog3
http://socialcomputing.asu.edu/datasets/BlogCatalog3
https://snap.stanford.edu/node2vec/
https://github.com/tkipf/gcn/tree/master/gcn/data
http://snap.stanford.edu/data/wiki-topcats.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Network Embedding
	2.2 Automated Machine Learning

	3 The Proposed Framework
	3.1 Notations and Problem Formulation
	3.2 The Sampling Module
	3.3 The Signature Extraction Module
	3.4 The Meta-Learning Module
	3.5 The Two Phases of Hyperparameter Optimization

	4 Experiments
	4.1 Baselines and Experiment Settings
	4.2 Sampling-Based NE
	4.3 Factorization-Based NE
	4.4 Deep Neural Network-Based NE
	4.5 Analysis on a Large-Scale Network
	4.6 The Necessity of Transfer

	5 Conclusion
	6 Acknowledgments
	References
	A Supplement
	A.1 Hyperparameter Search Space
	A.2 Hardware Configuration and Software Versions
	A.3 Baselines and Datasets

