
Billion-scale Network Embedding with Iterative
Random Projection

Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang and Wenwu Zhu
Department of Computer Science and Technology, Tsinghua University, China

zw-zhang16@mails.tsinghua.edu.cn, cuip@tsinghua.edu.cn, lihaoyang96@gmail.com
wangxiao007@mail.tsinghua.edu.cn, wwzhu@tsinghua.edu.cn

Abstract—Network embedding, which learns low-dimensional
vector representation for nodes in the network, has attracted
considerable research attention recently. However, the existing
methods are incapable of handling billion-scale networks, because
they are computationally expensive and, at the same time,
difficult to be accelerated by distributed computing schemes. To
address these problems, we propose RandNE (Iterative Random
Projection Network Embedding), a novel and simple billion-scale
network embedding method. Specifically, we propose a Gaussian
random projection approach to map the network into a low-
dimensional embedding space while preserving the high-order
proximities between nodes. To reduce the time complexity, we
design an iterative projection procedure to avoid the explicit
calculation of the high-order proximities. Theoretical analysis
shows that our method is extremely efficient, and friendly
to distributed computing schemes without any communication
cost in the calculation. We also design a dynamic updating
procedure which can efficiently incorporate the dynamic changes
of the networks without error aggregation. Extensive experimen-
tal results demonstrate the efficiency and efficacy of RandNE
over state-of-the-art methods in several tasks including network
reconstruction, link prediction and node classification on multiple
datasets with different scales, ranging from thousands to billions
of nodes and edges.

Index Terms—Network Embedding, High-order Proximity,
Billion-Scale, Dynamic Networks, Distributed Computing

I. INTRODUCTION

Network embedding is an emerging research topic in recent
years, aiming to represent nodes by low-dimensional vectors
while maintaining the structures and properties of the network
[1]. Many methods have been proposed for network embed-
ding, such as using random walks [2], matrix factorization
[3] and deep learning [4]. With these methods, many network
analysis tasks can be fulfilled in vector spaces and benefit from
off-the-shelf machine learning models.

Despite such progress, the targeted networks of the existing
methods are often in thousand or million scale. However, many
real networks have billions of nodes and edges, such as social
networks, e-commerce networks and the Internet. The billion-
scale networks pose great computational challenges to the
existing methods. The bottleneck lies in that the existing met-
hods are all learning-based and thus involve computationally
expensive optimization procedures. For example, Stochastic
Gradient Descend (SGD) is a commonly used optimization
method in network embedding [5], but it requires a great
number of iterations to converge, which may not be feasible
for billion-scale networks. One way to accelerate is to resort to

distributed computing solutions, but the optimization methods,
like SGD, often require global embedding information for
searching gradients, leading to intense communication cost.
As a result, how to design an efficient and effective billion-
scale network embedding method that is friendly to distributed
computing is still an open problem.

Different from learning-based methods, random projection
is a simple and powerful technique to form low-dimensional
embedding spaces while preserving the structures of the
original space. It is also friendly to distributed computing,
and thus widely exploited in large-scale data scenarios [6].
But the extremely sparse structures of real networks pose
great challenges to applying random projection to network
embedding. The existing work [1] has demonstrated that high-
order proximities between nodes are essential to be preserved
in network embedding and can effectively address the sparsity
issue. Hence, how to design a high-order proximity preserved
random projection method while maintaining the efficiency
of the method is the key problem of billion-scale network
embedding.

In this paper, we propose RandNE1 (Iterative Random Pro-
jection Network Embedding), a novel and simple billion-scale
network embedding method based on high-order proximity
preserved random projection. Specifically, we propose using
Gaussian random projection to minimize the matrix factoriza-
tion objective function of preserving the high-order proximity.
In order to avoid the explicit calculation of high-order proximi-
ties which induces high computational complexities, we design
an iterative projection procedure, enabling arbitrary high-order
proximity preserved random projection with a linear time
complexity. Theoretical analysis is provided to guarantee that
i) RandNE is much more computationally efficient than the
existing methods, ii) it can well support distributed computing
without any communication cost between different servers
in the calculation, and iii) it can efficiently incorporate the
dynamic changes of the networks without error aggregation.
These merits make RandNE a promising solution for billion-
scale network embedding, even in dynamic environments.

Extensive experiments are conducted in network recon-
struction, link prediction and node classification tasks on mul-
tiple datasets with different scales, ranging from thousands to
billions of nodes and edges. The results show that RandNE can

1The code is available at https://github.com/ZW-ZHANG/RandNE.

boost the efficiency of network embedding by about 2 orders
of magnitude over state-of-the-art methods2 while achieving
a superior or comparable accuracy. For the WeChat3 network
with 250 millions nodes and 4.8 billion edges, RandNE can
produce 512-dimensional embeddings within 7 hours with 16
distributed servers.

The contributions of our paper are summarized as follows:
• We propose RandNE, a novel and simple random pro-

jection based network embedding method that enables
billion-scale network embedding.

• We design an iterative projection procedure to realize
high-order proximities preserved random projection effi-
ciently without explicitly calculating the high-order prox-
imities.

• We theoretically and empirically prove that RandNE can
well support distributed computing without communica-
tion cost and can efficiently deal with dynamic networks
without error aggregation.

The rest of this paper is organized as follows. In Section 2, we
briefly review related works. We give our problem formulation
in Section 3 and introduce our proposed method in Section 4.
Experimental results are reported in Section 5. Finally, we
summarize in Section 6.

II. RELATED WORK

Network embedding has attracted considerable research
attention in the past few years, aiming to bridge the gap
between network analysis and off-the-shelf machine learning
techniques. Here, we briefly review some representative net-
work embedding methods, and readers are referred to [1] for
a comprehensive survey.

The flourish of network embedding research begins when
DeepWalk [2] first proposes using truncated random walks to
explore the network structure and utilizes the skip-gram model
[7] from word embedding to derive the embedding vectors of
nodes. LINE [5] takes a similar idea with an explicit objective
function by setting the walk length as one, and introduces
the negative sampling strategy [8] to accelerate the training
procedure. Node2vec [9] generalizes these two methods by
taking potentially biased random walks for more flexibility.
These random walks based methods are proven equivalent to
factorizing a high-order proximity matrix [10].

On the other hand, explicit matrix factorization methods
have been proposed for network embedding. GraRep [11]
directly applies SVD to preserve high-order proximity matri-
ces. HOPE [12] proposes using generalized SVD to preserve
the asymmetric transitivity in directed networks. Community
structure, an important mesoscopic structure of the network,
is preserved by non-negative matrix factorization in [13]. [14]
introduces a unified framework for matrix factorization and
utilizes a sparsification technique to speed up SVD. Anot-
her approximate matrix factorization technique is introduced

2These algorithms are tested using the source code published by their
authors.

3One of the largest social network platforms in China.

in [15]. AROPE [3] improves these works by preserving
arbitrary-order proximity simultaneously.

Deep learning model is also applied to network embedding.
SDNE [4] first considers the high non-linearity in network
embedding and proposes a deep auto-encoder to preserve the
first two order proximities. DHNE [16] extends this framework
for preserving the indecomposability in hyper-networks.

Besides static networks, how to embed dynamic networks
where nodes and edges change over time also attracts research
attention. DHPE [17] and DANE [18] propose using matrix
perturbation to handle the changes of edges. DepthLGP adopts
a Gaussian process to handle out-of-sample nodes. Dyna-
micTriad [19] considers the triangle closure characteristic of
network evolving.

Despite their remarkable performance, these methods are
all learning-based and the targeted networks are often in
thousand or million scale. In [20], a modification of DeepWalk
is applied to a billion-scale network aliItemGraph. However,
their method has the same time complexity as DeepWalk,
which is much more computationally expensive than our
method by over two orders of magnitude (see Figure 1 in the
experiments section). Besides, it does not address the problem
of distributed computing or handling dynamic networks.

How to embed networks with side information is also
explored. For instance, [21], [22] utilize metapaths to embed
heterogenous information networks where node and edge types
are available. Node attributes and node labels are taken into
consideration in [18], [23] and [24]–[26] respectively. In this
paper, we focus on the most fundamental case that only the
network structure is available.

Another closely related topic is random projection [6],
[27]–[29], which is widely adopted in dimension reduction.
But existing random projection methods do not consider the
sparsity problem in network embedding, and thus cannot be
directly applied.

III. NOTATIONS AND PROBLEM FORMULATION

A. Notations

First, we summarize the notations used in this paper. For a
network G with N nodes and M edges, we use A to denote the
adjacency matrix. In this paper, we mainly consider undirected
networks, so A is symmetric. A(i, :) and A(:, j) denote its
ith row and jth column respectively. A(i, j) is the element
in the ith row and jth column. AT denotes the transpose of
A. Throughout the paper, we use bold uppercase characters
to denote matrices and bold lowercase characters to denote
vectors, e.g. X and x respectively. We use dot to denote the
matrix product of two matrices, e.g. B · C. Functions are
marked by curlicue, e.g. F(·).

B. Problem Formulation

To represent nodes in a network by low-dimensional vectors,
one commonly adopted objective function in network embed-
ding is matrix factorization, which decomposes a targeted si-
milarity function of the adjacency matrix F(A) ∈ RN×N into

the product of two low-dimensional matrices U,V ∈ RN×d
with the following objective function:

min
U,V

∥∥F(A)−U ·VT
∥∥
p
, (1)

where p is the norm and d is the dimensionality of the em-
bedding. In this paper, we only consider undirected networks
and symmetric similarities, so U = V. We also focus on the
spectral norm, i.e. p = 2, which is widely adopted [30]. The
adjacency matrix A could be replaced by other variants, such
as the Laplacian matrix or transition matrix [10]. Here, we
focus on the adjacency matrix unless stated otherwise.

The previous work has shown that high-order proximities
are essential to be preserved in network embedding, which
can be formulated as a polynomial function of the adjacency
matrix [14], [15]. In this paper, we assume that F(A) is a
positive semi-definite function, so it can be formulated as
F(A) = S · ST . Then, we can rewrite Eq. (1) as:

min
U

∥∥S · ST −U ·UT
∥∥
2

S = α0I + α1A + α2A
2 + ...+ αqA

q,
(2)

where S is the high-order proximity matrix, α0, α1, ..., αq are
pre-defined weights and q is the order.

From Eckart-Young theorem [31], it is well known that
Singular Value Decomposition (SVD) can lead to the opti-
mal solution of Eq. (2). However, SVD is computationally
expensive and thus not suitable for large-scale networks.

IV. RANDNE: THE PROPOSED METHOD

A. Gaussian Random Projection Embedding

To minimize the objective function in Eq. (2), an extre-
mely simple yet effective method is random projection, and
Gaussian random projection is widely used [6]. Formally, let
R ∈ RN×d and each element of R follows an i.i.d Gaussian
distribution R(i, j) ∼ N

(
0, 1d

)
. Then, the embeddings U can

be obtained by performing a matrix product:

U = S ·R =
(
α0I + α1A + α2A

2 + ...+ αqA
q
)
R, (3)

i.e. we randomly project the proximity matrix S into a low-
dimensional subspace. Gaussian random projection has an
theoretical guarantee, as we specific in the following theorem.

Theorem 1. For any similarity matrix S, denote its rank as
rS. Then, for any ε ∈

(
0, 12
)
, the following equation holds:

P
[∥∥S · ST −U ·UT

∥∥
2
> ε

∥∥ST · S∥∥
2

]
≤ 2rSe

− (ε2−ε3)d
4 ,

(4)
where U = S ·R and R is a Gaussian random matrix.

Proof: See appendix.
The theorem basically shows that the residual of our

projection S · ST − U · UT has a much smaller spectral
radius compared to the spectral radius of the original high-
order proximity S · ST . In other words, the embedding U
captures the “core component” of the high-order proximity.
As a result, performing a Gaussian random projection can

Algorithm 1 RandNE: Iterative Random Projection Network
Embedding
Require: Adjacency Matrix A, Dimensionality d, Order q,

Weights α0, α1, ..., αq
Ensure: Embedding Results U

1: Generate R ∈ RN×d ∼ N (0, 1d)
2: Perform a Gram Schmidt process on R to obtain the

orthogonal projection matrix U0

3: for i in 1:q do
4: Calculate Ui = A ·Ui−1
5: end for
6: Calculate U = α0U0 + α1U1 + ...+ αqUq

effectively minimize the objective function in Eq. (2). Actually,
Gaussian random projection is also known to have other
merits, such as preserving the margin for classification [28],
which we omit for brevity.

For the projection matrix, it is proven that orthogonal
Gaussian random matrix can further improve the accuracy,
which can be easily obtained by performing a Gram Schmidt
process on the columns of the Gaussian random matrix [29].
In this paper, we use the orthogonal Gaussian random matrix
as the projection matrix.

However, since S may not be a sparse matrix, directly
calculating S and performing the projection is still time
consuming and not scalable to large-scale networks.

B. Iterative Projection

To address the efficiency problem, we design an iterative
projection procedure to avoid the explicit calculation of the
high-order proximity matrix S. Specifically, from Eq. (3), we
can decompose U into matrices of different orders:

U = α0U0 + α1U1 + ...+ αqUq, (5)

where Ui = Ai ·R, 0 ≤ i ≤ q. Then, the decomposed parts,
U1...Uq , can be calculated iteratively:

Ui = A ·Ui−1 , ∀1 ≤ i ≤ q. (6)

Note that in Eq. (6), we only need to calculate the matrix
product of the adjacency matrix and a low-dimensional matrix.
Since the adjacency matrix is sparse, we can use sparse matrix
products, which are highly scalable and efficient.

C. Time Complexity and Distributed Computing

We show our algorithm framework in Algorithm 1. Then,
we analyze the time complexity of Algorithm 1. The com-
plexity of line 1 is O(N · d), the complexity of line 2 is
O(N ·d2), the complexity of each iteration from line 3 to line
5 is O(M ·d) and the complexity of line 6 is O(q ·N ·d), where
N and M are the number of nodes and edges in the network
respectively, q is the preset order and d is the dimensionality of
the embedding space. As a result, the overall time complexity
is O

(
N · d2 +M · q · d

)
, i.e. our method is linear with respect

to the network size.

Algorithm 2 Distributed Calculation of RandNE
Require: Adjacency matrix A, Initial Projection U0, Para-

meters of RandNE, K Distributed Servers
Ensure: Embedding Results U

1: Broadcast A, U0 and parameters into K servers
2: Set i = 1
3: repeat
4: if There is an idle server k then
5: Calculate U(i, :) in server k
6: i = i + 1
7: Gather U(i, :) from server k after calculation
8: end if
9: until i > d

10: Return U

From the above analysis, we can also see that our method
is extremely efficient because it only needs to iterate q times,
and within each iteration, only a simple matrix product needs
to be calculated. In contrast, although some existing network
embedding methods are also proven to have linear time
complexities, such as the embedding methods based on SGD
[5] or SVD [12], they inevitably need dozens or hundreds of
iterations in the optimization. As a result, our method is more
efficient than these methods by orders of magnitude, and is
thus more suitable for billion-scale network embedding.

In addition, according to the property of matrix products,
each dimension (i.e. column) of Ui can be calculated sepa-
rately without any information from other dimensions. We
formalize this property in the following theorem.

Theorem 2. For any j 6= l, the calculation of Ui(:, j) and
Ui(:, l), 1 ≤ i ≤ q from line 3 to line 5 in Algorithm 1 are
independent, if A and U0 are known to all the servers.

Proof: Straightforward from the property of matrix pro-
ducts.

The theorem shows that our method naturally supports
distributed computing by allocating the calculation of different
dimensions into distributed servers, and no communication is
needed during the calculation process, if A and U0 are known
to all the servers. We design a simple distributed protocol using
the theorem, as specified in Algorithm 2.

For networks that cannot be stored in the memory or when
the number of servers exceeds the dimensionality, we can use
more advanced distributed matrix multiplication algorithms,
such as [32], [33], which we leave as the future work. This
is in contrast with the existing methods which can only be
parallelizable within one server but are hard to be distribu-
ted because of communication cost. This merit lays another
foundation for applying RandNE to billion-scale networks.

D. Dynamic Updating

As many real networks are dynamic, we next show how to
efficiently update RandNE to incorporate dynamic changes.

First, we focus on the changes of edges. From Algorithm 1,
to update the final embedding vectors, we only need to update

Algorithm 3 Dynamic Updating of RandNE
Require: Adjacency Matrix A, Dynamic Changes ∆A, Pre-

vious Projection Results U0,U1, ...,Uq

Ensure: Updated Projection Results U′0,U
′
1, ...,U

′
q

1: if ∆A includes N ′ new nodes then
2: Generate an orthogonal projection Û0 ∈ RN ′×d
3: Concatenate Û0 with U0 to obtain U′0
4: Add N ′ all-zero rows in U1...Uq

5: end if
6: Set ∆U0 = 0
7: for i in 1:q do
8: Calculate ∆Ui using Eq. (7)
9: Calculate U′i = Ui + ∆Ui

10: end for

the decomposed parts Ui, 1 ≤ i ≤ q. Formally, we denote the
changes in the adjacency matrix as ∆A and the changes in
Ui as ∆Ui, 1 ≤ i ≤ q. From Eq. (6), we have:

Ui + ∆Ui = (A + ∆A) · (Ui−1 + ∆Ui−1)

⇒ ∆Ui = A ·∆Ui−1 + ∆A ·Ui−1 + ∆A ·∆Ui−1.
(7)

Then, we can iteratively calculate ∆Ui using Eq. (7).
Besides, nodes in the network may also be added or deleted.

As for deleting nodes, it can be treated equivalently as the
changes of edges by deleting all edges of the deleted nodes.
For newly added nodes, we first add some empty nodes (i.e.
without any edge) to make the dimensionality of the matrices
match. Specifically, we denote N ′ as the number of added
nodes. For the projection matrix U0, we can generate an
additional orthogonal Gaussian random matrix Û0 ∈ RN ′×d
and concatenate it with the current projection matrix U0 to
form the new projection matrix U′0. For other Ui, 1 ≤ i ≤ q,
we can easily find that they have all-zero elements for the
empty nodes, i.e. we only need to add N ′ all-zero rows to
match the dimensionality. Then, we can add edges to those
newly added nodes using Eq. (7).

We show the framework of dynamic updating in Algorithm
3. As only local changes are involved, the updating is compu-
tationally efficient, as we specific in the following theorem.

Theorem 3. The time complexity of Algorithm 3 is linear
with respect to the number of changed nodes and number of
changed edges respectively.

Proof: See appendix.
Another merit of our updating method is that it has no error

aggregation, i.e. the dynamic updating algorithm leads to the
same results as rerunning the static algorithm. We formalize
this property in the following theorem.

Theorem 4. Denote A0 and ∆A1,∆A2, ...,∆At as the
initial adjacency matrix and its dynamic changes in t time
steps respectively. Denote U as the final embedding results
of applying Algorithm 1 to A0 and then updating t times
using ∆A1,∆A2, ...,∆At and Algorithm 3. Denote U′ as
the embedding results of applying Algorithm 1 to A = A0 +

TABLE I
THE STATISTICS OF DATASETS

Dataset # Nodes # Edges # Labels
BlogCatalog 10,312 667,966 39
Flickr 80,513 11,799,764 47
Youtube 1,138,499 5,980,886 195
WeChat 250 million 4.8 billion -

∆A1 + ∆A2 + ...+ ∆At. If U and U′ are calculated using
the same hyper-parameters and random seed, then U = U′.

Proof: Since the same random seed is used, U0 = U′0.
Then, applying Eqs. (5) (6) (7) leads to the results.

Combining Theorem 3 and Theorem 4, our updating method
can effectively incorporate the dynamic changes of networks
with high computational efficiency.

V. EXPERIMENTS

A. Experimental Setting

To comprehensively evaluate the efficacy of RandNE, we
first conduct experiments on 3 moderate-scale social net-
works4: BlogCatalog, Flickr, Youtube, and then evaluate our
method on a billion-scale network, WeChat. The statistics of
the datasets are summarized in Table I.

We compare our method with the following baselines:
• DeepWalk [2]5 uses random walks and the skip-gram

model to learn embeddings. We use two parameter set-
tings: one suggested in the paper and one used in the
implementation of the authors, and report the best results.

• LINE [5]6 explicitly preserves the first two order prox-
imities, denoted as LINE1st and LINE2nd respectively.
We exclude the results of concatenating them because
no obvious improvement is observed. We use the default
parameter settings except the number of training samples,
which we conduct a line search for the optimal value.

• Node2vec [9]7 generalizes DeepWalk and LINE by using
potentially biased random walks. We use the default
settings for all parameters except the bias parameters p, q,
which we conduct a grid search from {0.5, 1, 2}.

• SDNE [4]8 proposes a deep auto-encoder to preserve the
first and the second order proximities simultaneously. We
use the default parameter settings and the auto-encoder
structure in the implementation of the authors.

There are also other methods like GraRep [11] and M-NMF
[13], but we exclude them here for their scalability issues. We
also exclude the results of SDNE on Youtube because it fails
to terminate in one week. On the WeChat network, as all these
baselines cannot terminate within acceptable time, we mainly
compare our method with other simpler graph-based methods.

For our method RandNE, we set the order q = 3 with a
grid search for the weights. Please note that the weights only

4http://socialcomputing.asu.edu/pages/datasets
5https://github.com/phanein/deepwalk
6https://github.com/tangjianpku/LINE
7https://github.com/snap-stanford/snap
8https://github.com/suanrong/SDNE

24x

28x
27x

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

BlogCatalog Flickr Youtube

Dataset

R
u

n
n

in
g

 T
im

e
(s

)

RandNE

DeepWalk

LINE

Node2vec

SDNE

Fig. 1. The running time comparison of different methods. Our method
RandNE can boost the efficiency by more than 24 times over state-of-the-
art methods on all networks.

TABLE II
AUC SCORES OF NETWORK RECONSTRUCTION

Dataset BlogCatalog Flickr Youtube
RandNE 0.958 0.953 0.982

DeepWalk 0.843 0.951 0.995
LINE1st 0.901 0.947 0.999
LINE2nd 0.761 0.936 0.970
Node2vec 0.805 0.890 0.952

SDNE 0.950 0.919 -

affect the last step of our algorithm (i.e., line 6 in Algorithm
1), so our proposed method is very efficient in tuning them.
For the node classification task, we use transition matrix to
replace the adjacency matrix because substantial improvement
is observed. All hyper-parameters of our method and the
baselines are tuned using a small validation set, which we set
as 10% for moderate-scale networks and 1% for the billion-
scale network.

For all the methods, we uniformly set the dimensionality
as d = 128 unless stated otherwise. All experiments are
conducted in a single PC with 2 I7 processors and 48GB
memory, except for Section V-C, where we run our method in
a distributed cluster.

B. Moderate-scale Networks

1) Running Time Comparison: To compare the efficiency
of different methods, we first report the running time of all the
methods in Figure 1. The results show that RandNE can boost
the efficiency by more than 24 times over the baselines on all
networks, which is consistent to our time complexity analysis.
Note that the baselines are tested using the source code
published by their authors. We realize that there might be slight
differences in the programming languages and implementation
details, but the impact of these factors can be safely ignored
considering the improvement of 24 times. So we directly
report their results for reproducibility concerns. The extreme
efficiency lays the foundation for applying RandNE to billion-
scale networks.

2) Network Reconstruction: One basic objective for net-
work embedding is to reconstruct the network. Specifically,
we train embedding vectors and rank pairs of nodes according
to their inner product similarities. Then, the top ranking pairs
are used to reconstruct the network because large similarities

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

BlogCatalog

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

Flickr

0.0

0.2

0.4

0.6

0.8

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

Youtube

Fig. 2. The Precision@K of network reconstruction on moderate-scale networks. We train embedding vectors and rank pairs of nodes according to their
inner-product similarities. The top ranking pairs are used to reconstruct the network. The results show that our proposed method can well preserve the network
structure and reconstruct the given network.

indicate high probabilities of having edges. For the evaluation
metrics, we use Area Under Curve (AUC) [34] and Preci-
sion@K [4] defined as:

Precision@K =
1

K

K∑
i=1

δi, (8)

where δi = 1 means the ith reconstructed pair is correct, δi =
0 represents a wrong reconstruction and K is the number of
evaluated pairs. On Youtube, the number of possible pairs of
nodes N(N−1)

2 is too large to evaluate, so we sample 1% for
evaluation, as in [12].

The results are shown in Table II and Figure 2. Our
proposed method consistently outperforms the baselines on
the metric Precision@K. On AUC, our method achieves the
best performance on BlogCatalog and Flickr, and has com-
parable performance on Youtube. Considering the significant
improvement in efficiency and the simplicity of our model, we
regard the performance of RandNE in accuracy aspect to be
satisfactory and somewhat beyond expectation.

3) Link Prediction: Link prediction, aiming to predict fu-
ture links using the current network structure, is an important
task of network embedding. In our experiments, we randomly
hide 30% of the edges for testing. After training embedding
vectors on the rest of the network, we rank pairs of nodes in a
similar way as network reconstruction and evaluate the results
on the testing network. The process is repeated 5 times and
the average results are reported.

From Table III and Figure 3, we can see that our proposed
method still outperforms the baselines in nearly all cases
except the AUC score on Youtube, as in network recon-
struction. The results demonstrate that besides reconstructing
the network, RandNE also has good inference abilities, which
we attribute to effectively preserving the high-order proximity.

4) Node Classification: Node classification is a typical
application of network embedding. Specifically, we follow
the experimental setting in baselines and randomly split the
nodes into training and testing set. Then, an one-vs-all logistic
regression with L2 regularization [35] is trained using the
embeddings on the training set, and tested on the testing
set. Following [5], we normalize each row of the embedding
vectors. We use two measurements, Macro-F1 and Micro-F1

TABLE III
AUC SCORES OF LINK PREDICTION.

Dataset BlogCatalog Flickr Youtube
RandNE 0.944 0.940 0.887

DeepWalk 0.760 0.938 0.909
LINE1st 0.667 0.909 0.847
LINE2nd 0.762 0.932 0.959
Node2vec 0.650 0.865 0.778

SDNE 0.940 0.926 -

[2], to evaluate the performance. The average results of 5 runs
are reported.

From Figure 4, different networks show different patterns in
terms of node classification performance. On Flickr, RandNE
achieves the best results while Node2vec and LINE show good
performance on BlogCatalog and Youtube respectively. One
plausible explanation for such inconsistency is that different
networks have different inherent structures corresponding to
the specific classification task, and no single method can
dominate others on all datasets. But in general, we can
safely conclude that RandNE has comparable results with the
baselines in node classification while being significantly faster.

5) Structural Role Classification: Recently, how to preserve
the structural role of nodes in network embedding attracts
some research attention [36], which has important applica-
tions such as influence maximization and measuring node
centrality. To validate the effectiveness of our method in
structural role classification, we conduct experiments on three
air-traffic networks9 from Brazilian, European and American
as in [36], where the networks have 131 nodes and 2,006
edges, 399 nodes and 11,986 edges, 1,190 nodes and 27,198
edges respectively. The networks are constructed by assigning
airports as nodes and airlines as edges. Each node is assigned
a ground-truth label ranging from 1 to 4 to indicate the level
of activities of the airports.

The experimental setting is similar to node classification in
Section V-B4 except that we use accuracy, i.e. the percentage
of nodes whose labels are correctly predicted, as the measure-
ment since the labels have the same size. We uniformly set the
dimensionality of embedding as 16 since the networks have
small sizes. The average results of 20 runs are reported.

9https://github.com/leoribeiro/struc2vec

0.00

0.25

0.50

0.75

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

BlogCatalog

0.00

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

Flickr

0.0

0.1

0.2

0.3

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

RandNE

DeepWalk

LINE1

LINE2

Node2vec

Youtube

Fig. 3. The Precision@K of link prediction on moderate-scale networks. We randomly split the network into training and testing. After training embedding
vectors on the training network, we predict links by ranking similarities of node pairs and make evaluation on the testing network. The results show that our
proposed method outperforms the baselines in link prediction.

0.15

0.20

0.25

0.30

0.1 0.3 0.5 0.7 0.9
Percentage of Nodes for Training

M
a
c
ro

−
F

1
 S

c
o
re

s

BlogCatalog

0.08

0.12

0.16

0.20

0.24

0.01 0.03 0.05 0.07 0.09
Percentage of Nodes for Training

Flickr

0.28

0.30

0.32

0.34

0.01 0.03 0.05 0.07 0.09
Percentage of Nodes for Training

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

Youtube

0.30

0.35

0.40

0.1 0.3 0.5 0.7 0.9
Percentage of Nodes for Training

M
ic

ro
−

F
1
 S

c
o
re

s

BlogCatalog

0.275

0.300

0.325

0.350

0.01 0.03 0.05 0.07 0.09
Percentage of Nodes for Training

Flickr

0.34

0.36

0.38

0.40

0.01 0.03 0.05 0.07 0.09
Percentage of Nodes for Training

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

Youtube

Fig. 4. The results of node classification on moderate-scale networks. We train an one-vs-all logistic regression on the embedding vectors as the classifier.
The results show that our proposed method achieves comparable performance with the baselines.

From Figure 5, we can see that RandNE consistently achie-
ves the best results on European Flights Network. On Brazilian
and American Flights Network, RandNE is only second to
SDNE with tiny differences. However, RandNE is much more
efficient than SDNE by about 4 orders of magnitude (see
Figure 1). The results demonstrate that RandNE can effectively
capture the structural role of nodes.

6) Analysis: In RandNE, we use iterative random pro-
jection to preserve high-order proximities. Here we analyze
the effect of the proximity order, or equivalently, the number
of iterations q. We report the results of varying q from 1
to 3 with the same experimental settings. For brevity, we
only report AUC scores of link prediction and the accuracy
of structural role classification on American Flights in Figure
6, while other datasets and tasks show similar patterns. The
results show that iterative random projection (q > 1) greatly
and consistently outperforms the simple random projection
(q = 1), demonstrating the importance of preserving high-
order proximities in network embedding.

To verify the scalability of RandNE, we conduct experi-

ments on random networks (i.e. the Erdos Renyi model [37]).
We record the running time when fixing the number of nodes
(as one million) or fixing the number of edges (as ten million)
while varying the other. Figure 7 shows that the running time
grows linearly with respect to the number of nodes and number
of edges respectively, verifying the scalability of RandNE.

Since our method is based on random projection, we also
empirically analyze the impact of randomization. Specifically,
we set different random seeds for RandNE with the same
experimental setting, and report the mean value and standard
deviation of 10 runs. For brevity, we only report the AUC
scores of network reconstruction and link prediction in Table
IV, while other tasks show similar patterns. The results show
that our method is quite stable with respect to randomization.

C. A Billion-scale Network

WeChat10 is one of the largest online social networks in
China with more than one billion active users. We use the
friendships data provided by WeChat from January 21, 2011

10http://www.wechat.com/en/

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9

Percentage of Nodes for Training

A
c
c
u
ra

c
y

Brazilian Flights Network

0.30

0.35

0.40

0.45

0.50

0.1 0.3 0.5 0.7 0.9

Percentage of Nodes for Training

European Flights Network

0.45

0.50

0.55

0.60

0.1 0.3 0.5 0.7 0.9

Percentage of Nodes for Training

RandNE

DeepWalk

LINE1

LINE2

Node2vec

SDNE

American Flights Network

Fig. 5. The accuracy of structural role classification. We use embedding vectors to predict the structural role of nodes in air-traffic networks. The results
show that RandNE effectively captures the structural role of nodes.

0.5

0.6

0.7

0.8

0.9

BlogCatalog Flickr Youtube

Datasets

A
U

C

AUC of Link Prediction

0.25

0.35

0.45

0.55

10% 50% 90%

Nodes used for Training

A
c
c
u

ra
c
y

q=1

q=2

q=3

Structural Classification on American Flights

Fig. 6. Parameter analysis. Figure shows that the high-order proximity (q > 1)
greatly outperforms the simple random projection (q = 1), demonstrating the
importance of preserving high-order proximities.

100

150

200

2e+07 4e+07 6e+07 8e+07 1e+08

Number of Edges

R
u

n
n

in
g

 T
im

e
 (

s
) Number of Nodes = 1e6

15

25

35

2e+05 4e+05 6e+05 8e+05 1e+06

Number of Nodes

R
u

n
n

in
g

 T
im

e
 (

s
) Number of Edges = 1e7

Fig. 7. Scalability analysis. Figure shows the linear time complexity of our
method with respect to the number of nodes and number of edges respectively.

TABLE IV
MEAN VALUE AND STANDARD DEVIATION OF AUC WITH 10 DIFFERENT

INITIALIZATIONS.

Dataset BlogCatalog Flickr Youtube
Reconstruction 0.958± 0.001 0.954± 0.003 0.981± 0.002
Link Prediction 0.945± 0.001 0.941± 0.002 0.887± 0.001

(the launch day of WeChat) to January 20, 2013, which
contains 250 million nodes and 4.8 billion edges in total.
The data is strictly anonymized for privacy purposes. Since
no node label information is available, we mainly conduct
experiments on network reconstruction and link prediction.
As none of the aforementioned network embedding method
can be applied to network of such a scale, we compare our
method with two widely used graph-based measures: Common
Neighbors and Adamic Adar [38]. The benchmark accuracy of
random guessing is also added. The experiments are conducted
in a distributed cluster with 16 computing servers, where each

TABLE V
AUC SCORES OF NETWORK RECONSTRUCTION ON WECHAT NETWORK.

Method AUC
RandNE 0.989

Common Neighbors 0.783
Adamic Adar 0.783

Random 0.500

server has 2 Xeon E5 CPU and 128GB memory. For RandNE,
we set the embedding dimensionality as d = 512.

1) Network Reconstruction: The experimental setting is
similar to moderate-scale networks (Section V-B2), i.e. we
rank pairs of nodes according to their inner product similarities
and reconstruct the network. We report the AUC scores in
Table V. Here we omit the other metric, Precision@K, because
the number of possible node pairs N(N−1)

2 ≈ 1016 is so large
that even sampling is infeasible.

The results show that our proposed method greatly out-
performs Common Neighbor and Adamic Adar. A plausible
reason is that our method preserves the high-order proximity
information in the embedding vectors by performing the
iterative random projection, while the baselines only count
local proximities. Adamic Adar, as a frequency-weighted
modification of Common Neighbors, has the same accuracy
as Common Neighbors because on the billion-scale network,
AUC score mainly depends on whether two nodes have
neighbors instead of the weights.

2) Dynamic Link Prediction: To simulate the evolving
scenarios of real networks, we first randomly split the network
into 30% training and 70% testing, train embedding vectors on
the training set and evaluate the link prediction results on the
testing set. Then, we randomly select 10% (with respect to the
whole network) from the testing set as the evolving part and
add it to the training set. After updating the embedding vectors
using the new training data, we evaluate the link prediction
results on the rest of the network. The process is repeated
until when 70% of the network becomes training and the rest
30% is testing. We adopt two versions of our method: one by
dynamic updating as the network evolves (RandNE-D), and
one by re-running the algorithm at each time (RandNE-R).
To fairly compare the effectiveness of our dynamic updating
method and re-running the algorithm, we use the same random

TABLE VI
AUC SCORES OF DYNAMIC LINK PREDICTION ON WECHAT.

Observed Edges 30% 40% 50% 60% 70%
RandNE-D 0.646 0.689 0.726 0.756 0.780
RandNE-R 0.646 0.689 0.726 0.756 0.780

Common Neighbors 0.575 0.611 0.647 0.681 0.712
Adamic Adar 0.575 0.611 0.647 0.681 0.712

Random 0.500 0.500 0.500 0.500 0.500

TABLE VII
THE RUNNING TIME OF RANDNE VIA DISTRIBUTED COMPUTING.

Number of Sub-clusters 1 2 3 4
Running Time(s) 82157 46029 33965 24757

1.0

1.5

2.0

2.5

3.0

1 2 3 4
Number of Sub−clusters

S
p
e
e
d
u
p
 R

a
ti
o

Fig. 8. The speedup ratio of RandNE via distributed computing.

seed for RandNE-D and RandNE-R.
The results in Table VI show that our proposed method

again consistently outperforms the baselines on the AUC sco-
res. Besides, RandNE-D shows identical results as RandNE-R,
verifying that our dynamic updating has no error aggregation.
All methods have larger AUC scores as training data increases
because more information is provided.

3) Speedup via Distributed Computing: We evaluate the
performance of our method in distributed computing by repor-
ting the speedup ratio. We divide the 16 servers into 4 sub-
clusters, with each sub-cluster containing 4 servers. We vary
the number of sub-clusters used for distributed computing and
record the running time and speedup ratio. Figure 8 shows
that our method has a linear speedup ratio with a slope of
approximately 0.8. The slope is slightly less than 1 because
of subtle differences in the servers and some extra costs, e.g.
reading data. We also report the exact running time in Table
VII. It shows that RandNE can learn all the node embeddings
of WeChat within 7 hours with 16 normal servers, which is
promising for real billion-scale networks.

We also analyze the impact of the proximity order q on
WeChat network, which shows similar patterns as moderate-
scale networks in Figure 6. We omit the results here for brevity.

VI. CONCLUSION

In this paper, we study the problem of embedding billion-
scale networks while preserving high-order proximities. We
propose RandNE, a novel and simple network embedding
method based on random projection and design an iterative
projection procedure to efficiently preserve the high-order
proximities. Theoretical analysis shows that i) RandNE is more
computationally efficient than the existing methods by orders

of magnitude, ii) it can well support distributed computing
without any communication cost in the calculation, and iii)
it can efficiently incorporate the dynamic changes of the
networks without error aggregation. Extensive experimental
results on multiple datasets with different scales demonstrate
the efficiency and efficacy of our proposed method.

One future direction is to generalize this idea to incorporate
node attributes and node labels. It is also interesting to explore
other random projection methods beyond Gaussian projection.

ACKNOWLEDGMENT

This work was supported in part by National Program on
Key Basic Research Project (No. 2015CB352300), National
Natural Science Foundation of China (No. 61772304, No.
61521002, No. 61531006, No. 61702296), National Natural
Science Foundation of China Major Project (No. U1611461),
the research fund of Tsinghua-Tencent Joint Laboratory for
Internet Innovation Technology, and the Young Elite Scientist
Sponsorship Program by CAST. All opinions, findings and
conclusions in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, 2018.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge Discovery and Data mining.
ACM, 2014, pp. 701–710.

[3] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-
order proximity preserved network embedding,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2019, pp. 2778–2786.

[4] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 1225–1234.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. WWW, 2015, pp. 1067–
1077.

[6] S. S. Vempala, The random projection method. American Mathematical
Soc., 2005, vol. 65.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distri-
buted representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems, 2013, pp. 3111–
3119.

[9] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 855–864.

[10] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec,” in Proceedings of the Eleventh ACM International Confe-
rence on Web Search and Data Mining. ACM, 2018, pp. 459–467.

[11] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2015, pp. 891–900.

[12] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016.

[13] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017.

[14] S. Chen, S. Niu, L. Akoglu, J. Kovačević, and C. Faloutsos, “Fast,
warped graph embedding: Unifying framework and one-click algorithm,”
arXiv preprint arXiv:1702.05764, 2017.

[15] C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding enhan-
cement via high order proximity approximation,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
2017.

[16] K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu, “Structural deep embed-
ding for hyper-networks,” Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 2018.

[17] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order proximity
preserved embedding for dynamic networks,” IEEE Transactions on
Knowledge and Data Engineering, 2018.

[18] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in Proceedings of
the 26th ACM International Conference on Information and Knowledge
Management, 2017.

[19] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Proceedings of the
32nd AAAI Conference on Artificial Intelligence, 2018.

[20] C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, “Scalable graph embedding
for asymmetric proximity.” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 2017, pp. 2942–2948.

[21] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable repre-
sentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017, pp. 135–144.

[22] T. Chen and Y. Sun, “Task-guided and path-augmented heterogeneous
network embedding for author identification,” in Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining.
ACM, 2017, pp. 295–304.

[23] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network repre-
sentation learning with rich text information,” in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[24] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin deepwalk: Dis-
criminative learning of network representation,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
2016.

[25] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, 2016, pp. 1895–1901.

[26] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International Conference on Ma-
chine Learning, 2016, pp. 40–48.

[27] R. I. Arriaga and S. Vempala, “An algorithmic theory of learning: Robust
concepts and random projection,” Machine Learning, vol. 63, no. 2, pp.
161–182, 2006.

[28] Q. Shi, C. Shen, R. Hill, and A. Hengel, “Is margin preserved after
random projection?” in Proceedings of the 29th International Conference
on Machine Learning, 2012, pp. 591–598.

[29] K. M. Choromanski, M. Rowland, and A. Weller, “The unreasonable
effectiveness of structured random orthogonal embeddings,” in Advances
in Neural Information Processing Systems, 2017, pp. 218–227.

[30] E. Liberty, “Simple and deterministic matrix sketching,” in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2013, pp. 581–588.

[31] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[32] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distri-
bution method for parallel sparse matrix-vector multiplication,” SIAM
review, vol. 47, no. 1, pp. 67–95, 2005.

[33] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix
computations on large scale-free graphs using 2d graph partitioning,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 50.

[34] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[35] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of Machine
Learning Research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[36] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 385–394.

[37] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[38] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[39] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Timers: Error-bounded
svd restart on dynamic networks,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, 2018.

[40] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

APPENDIX

A. Proof of Theorem 1
Proof: From the Johnson-Lindenstrauss property [27], for

any s ∈ RN , we have

P
[
(1− ε) ‖s‖22 ≤ ‖s ·R‖

2
2 ≤ (1 + ε) ‖s‖22

]
≥ 1− 2e−

(ε2−ε3)d
4 .

(9)
Then, we can get:

P
[∥∥S · ST −U ·UT

∥∥
2
> ε

∥∥ST · S∥∥
2

]
= P

[
sup
‖x‖2=1

∣∣∣‖x · S‖22 − ‖x · S ·R‖22∣∣∣ > ε sup
‖x‖2=1

‖x · S‖22

]
≤ P

[
∃ s ∈ rowspan {S} ,

∣∣∣‖s‖22 − ‖s ·R‖22∣∣∣ > ε ‖s‖22
]

≤ rSP
[
s,
∣∣∣‖s‖22 − ‖s ·R‖22∣∣∣ > ε ‖s‖22

]
= 2rSe

− (ε2−ε3)d
4 .

(10)
The last line is resulted from the union bound and Eq. (9).

B. Proof of Theorem 3
Proof: Denote the number of changed nodes and number

of changed edges as N ′ and M ′ respectively.
Then, the time complexity from line 1 to line 5 is O(N ′ ·

d2 +N ′ · q · d), i.e. linear with respect to N ′.
For line 6 to line 10, consider any edge (s, t) in the changes

of edges, i.e. ∆A(s, t) 6= 0. It is easy to see that only the
embedding vectors of nodes in its q-step neighborhood, i.e.
nodes that are connected to node s or node t with a path of
length that is no longer than q, will change. Formally, denote
the expected size of q-step neighborhood of a randomly chosen
edge as R(q). Then, the expected time complexity from line
6 to line 10 is O(M ′ · R(q)), i.e. linear with respect to M ′.
As for R(q), it is a constant that depends on the individual
network structure. Generalized from [39], the exact results for
two typical types of networks are as follows:
• For random networks, (i.e. the Erdos Renyi model [37]),
R(q) ≈ 2 (davg)

q , where davg is the average degree of
the network.

• For Barabasi Albert model [40], a widely studied ex-
ample of preferential attachment networks, R(q) ≈
2
[

6
π2 (log dmax + γ)

]q
, where dmax is the maximum

degree of the network and γ ≈ 0.58 is the Euler-
Mascheroni constant.

As a result, the overall time complexity is O(N ′ · d2 +N ′ · q ·
d+M ′ · R(q)), which concludes the proof.

