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Abstract

In this paper we propose a technique to detect anomalies
in both individual and interactive event sequences. Anoma-
lies are categorized into two classes: abnormal event, and
abnormal context. We model these two kinds of anomalies
in the Sequential Monte Carlo framework which is extended
by Markov Random Field for tracking interactive events.
Firstly, we propose a novel pixel-wise event representation
method to construct feature images, in which each blob cor-
responds to a visual event. Then we transform the origi-
nal blob-level features into subspaces to model probabilistic
appearance manifolds for each event-class. With the proba-
bility of an observation associated with each event-class (or
state) derived from probabilistic manifolds and state transi-
tional probability, the prior and posterior state distributions
can be estimated. We demonstrate in experiments that the
approach can reliably detect such anomalies with low false
alarm rates.

1. Introduction

The Security problem has become more and more
heightened in the world today. Millions of surveillance
cameras are placed to discover abnormal objects or events,
which require constant evaluation and scrutiny. It would
make most sense to develop approaches to detecting anoma-
lies automatically from visual events.

There are two main problems in detecting anomalies:
(1) How to define an anomaly? Anomalies manifest

themselves mainly in two manners: First, their appearances
are quantitatively or fundamentally different from normal
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events and are referred as abnormal events; Second, they
appear to be normal individually, but happen in an ab-
normal order, e.g., in a shopping scenario, a walkaway
event happens immediately after a can-taken event with-
out a pay event, which is called abnormal contexts. The
former anomalies can be detected by some pre-trained nor-
mal/abnormal event patterns and a binary or probabilistic
matching criterion [8]. The latter anomalies have n-order
Markovianity, that is, the degree of anomaly of an event de-
pends on the former n events, which is previously modeled
by HMM filter, Kalman filter, etc. The abnormal events can
in fact be included by abnormal context, because an abnor-
mal event would necessarily cause an abnormal context. So
in this paper, we propose a context-relevant framework to
unify the two kinds of anomaly detection.

The Sequential Monte Carlo (SMC) method provides
a finite dimensional approximate solution to the posterior
probability given the past observations. It is flexible, easy
to implement, and applicable in very general settings [1].
Recently, Vaswani et al. [5] applied Particle Filtering, an
instant of SMC, in anomaly detection. It tracks people’s
motions in the tangent shape space to detect abnormal mo-
tions.

In this paper, we propose an SMC method concentrating
on detecting visual anomalies in finite discrete state space,
with each state corresponding to a class of events, including
individual events and interactive events. In traditional SMC
methods, the hidden states are modeled as a Markov pro-
cess of initial distribution and transition probability matrix.
However, this makes SMC unable to model the spatial de-
pendence of states which is required by interactive events.
We introduce Markov Random Field (MRF) [6] in the SMC
framework to extend its ability to track both individual and
interactive events.

(2) How to model visual events? The states are hid-
den, and the observation is noisy, and the transformation
between observation and state may be linear or non-linear,



so event models are necessary to estimate the probability of
a noisy observation associated with a state. Generally, three
steps are needed in event modeling: feature extraction, fea-
ture selection or transformation, and feature modeling.

Feature extraction: Xiang et al. [7] recently proposed
a pixel-wised method to model autonomous visual events
by extracting features from pixel changes, which avoids ob-
ject segmentation and tracking. This method requires little
prior knowledge and performs efficiently. The main differ-
ences between our method and [7] are: 1) In addition to
using background substraction method to calculate the re-
tainment of pixel changes, we propose an Adaptive Tempo-
ral Differencing method to estimate pixel changing process.
2) we construct a novel feature image by compressing all
pixel change-relevant features during a period of time, with
each blob in it corresponding to an event. Therefore each
event-class can be conveniently represented by a set of blob
appearances which are described by blob-level features.

Feature selection: Different classes of events often have
their own representative features, and the number of fea-
tures may vary from class to class. Principal compo-
nent(PC) selection and variable selection are two solutions
to this problem. In this paper, Principal Component Anal-
ysis(PCA) is used to extract low-dimensional subspace for
each class.

Feature modeling: For high-dimensional space,
Moghaddam [2] proposed a method to estimate the Gaus-
sian density of an observation associated with a transformed
subspace. Using this method we construct probabilistic
manifolds for event-classes, by which the probability of an
event associated with an event-class can be estimated.

The original contributions of the proposed method are
threefold: firstly, we use SMC to track event sequence
in discrete state space for anomaly detection, and propose
an MRF-based method to extend SMC for both individual
and interactive events; secondly, we propose an Adaptive
Temporal Differencing method to describe pixel changes,
and an effective and efficient event representation approach;
thirdly, we combine SMC and subspace method to realize
event tracking in probabilistic manifolds.

The rest of the present paper is organized as follows:
Section 2 introduces the SMC framework for event tracking
and anomaly detection; then we provide the event modeling
method for constructing probabilistic appearance manifolds
in Section 3; the experiment results are given in Section 4,
followed by conclusions in Section 5.

2. SMC for Anomaly Detection

2.1. Particle Filters

SMC is normally implemented in terms of Particle Fil-
ters (PF) which is a simulation-based method to estimate at
time instant t, the posterior distributions in the state space

φ. With xt representing a configuration of φ, and yt repre-
senting a configuration of observation space ψ, the tracking
problem is to estimate the posterior probability p(xt|y1:t)
given all past observations up to time instant t. Given a
cloud of N particles, we can estimate the posterior proba-
bility as follows:

P̂N (dxt|y1:t) =
1
N

N∑
i=1

ω̃
(i)
t δxi

t
(dxt), (1)

where ω̃(i)
t is the weight of the ith sample, and δxi

t
(dx(t))

denotes the delta-Dirac mass located in xi
t. In most cases,

the weight is approximated by the prior probability which
will be specified in the next section:

ω̃
(i)
t = p(yt|xi

t). (2)

Now assuming that the distribution of xt−1 given ob-
servations up to time t − 1 has been approximated as
P̂N (dxt−1|y1:t−1) by theN particles, then at time instant t,
for i = 1, ..., N, sample x̃i

t according to p(xt|xt−1). Then
evaluating each new particle’s importance weight by ω̃(i)

t ,
and normalize the weights. Finally, resample N particles
from x̃

(i)
t conform to the importance weights. Interested

readers are referred to [1] for more details.
In our case, the Markov hidden state space φ is discrete,

with each state corresponding to a class of event. In the PF
framework, two prior probability distributions are required:
p(xt|xt−1) as the sampling criterion, and p(yt|xi

t) as the
weight factor. The two terms are specified respectively in
Section 2.2 and Section 3.

2.2. Event Tracking

In most cases, there are multiple events caused by dif-
ferent persons or objects in a certain scene. We use Event-
Sequence (ES) xi = (xi,1, xi,2, ..., xi,t) to indicate events
caused by the same person(s) or object(s) at different time
instants (Note that xi can also stand for the persons and
objects that cause the event sequence xi). Tracking is re-
stricted within ES along temporal axis. The acquirement of
ES is an iterative process. Given xi,t−1, xi,t is the event
happening at a spatially connected location with xi,t−1.
More specifically, xi,t−1 (xi,t) is the ascendent(descendent)
event of xi,t (xi,t−1).

We classify events into individual events and interactive
events by the number of persons or objects that cause the
events. In individual event case, all events in a scene can be
regarded to be independent with each other, so it is reason-
able to estimate the prior probability in one-order Markov
Chain framework as p(xi,t|xi,t−1). However, when inter-
active event happens at time t, xi,t would have more than
one ascendent events. For example, before a two-man-
handshaking event happens, two man-walking events have



happened. These ascendent events all influence xi,t’s dis-
tribution. (Apparently, the probability of handshake event
happening after two man-fast-run events is much smaller
than that after two man-walk events.) So the central issue
in estimating the posterior probability distribution of xi,t is
to judge whether it is an interactive event and determine its
ascendent events.

Here we propose a method based on Markov Random
Field (MRF) to predict at time t − 1 whether there would
be an interactive event at t. We construct an undirected
graph G = (Vt, Et) to describe the spatial relationship of
events, where Vt(x1,t, x2,t, ..., xm,t) represents the appear-
ing events at time instant t. m is variable, because of cases
such as new events coming into the scene, and events disap-
pearing from the scene. Et is the pairwise distance matrix
which is commonly used in MRF methods to describe the
spatial distance of events in Vt. After introducing the pair-
wise MRF, we constrain ourselves on considering the inter-
active events between two people or objects. Then the state
transition probability becomes:

p(xi,t|xi,t−1, xj,t−1). (3)

If min
j

(Et−1(i, j)) > ε, which means xi,t−1 is in a sin-

gle clique, then xi,t−1 and xj,t−1 can be regarded to be in-
dependent. Hence,

p(xi,t|xi,t−1, xj,t−1) = p(xi,t|xi,t−1). (4)

An interactive event can be predicted at time t−1 by the
following two conditions:

min
j

(Et−1(i, j)) < ε, (5)

Et−1(i, j) < Et−2(i, j). (6)

The first condition indicates that xi,t−1 and xj,t−1 are
very near; and the second indicates that xi and xj are ap-
proaching. When the two conditions are met, xi,t−1 and
xj,t−1 are considered as ascendent candidates of the up-
coming interactive event. Then the prediction is validated
at time t by

(Et(i, j)) < ε. (7)

If validated, an interactive event happens and the xi,t−1

and xj,t−1 are regarded as its ascendent events.
Actually, each interactive event can be considered as

either two dependent individual events or one event as a
whole. For the ease of understanding and representation,
we use one variable xr,t to represent the interactive event.
Note that r �= i

∧
r �= j because the objects or persons

causing xr,t are different from xi,t and xj,t but a sum of
them. As a result, an interactive event is the end of its as-
cendent individual event sequences and the start of a new
interactive event sequence.

Figure 1. Interactive event tracking. x1 and x2 are two indepen-
dent individual event sequences including Walk, Run and Inactive
events (people stay at a place with tiny actions), and x3 is an inter-
active event sequence including Walk-together, Run-together and
Inactive events. x1,t−1 and x2,t−1 represent the state of x1 and x2

immediately before the interactive event happens.

An illustrated chart of the state transition process is
shown in Figure (1). Before t − 1, the two individual
event sequences x1 and x2 progress independently. They
approach each other and at time t − 1, their pairwise dis-
tance become smaller than predefined threshold, and step
into the boundary condition. Then the predicted interactive
event is validated at t and an interactive event sequence x3

has generated with x1 and x2 ended at the same time.
Using this method, the prior state transitional probabili-

ties p(xt|xt−1) for both individual and interactive events are
unified in the same framework. The other prior probability
p(y|x) required by PF will be specified in Section 3.

2.3. Anomaly Detection

Based on the past observations of y0 ∼ yt−1, we can es-
timate the prior probability p(xt|y1:t−1). When yt is avail-
able, the posterior probability P̂N (dxt|y1:t) can also be es-
timated. The difference between the prior and posterior
probabilities is an important criterion to reveal the degree
of anomaly at t. Here, we use the ELL proposed in [5] to
measure the difference between the two probability distri-
bution:

ELLi,t = EP̂N (dxi,t|y1:t−1)
[− log P̂N (dxi,t|y1:t)]. (8)

In our case, if ELLi,t > ξ, the event at time instant t in
xi is regarded as an anomaly.

3. Event Modeling

In order to assign weights to particles, the weight factor
p(yt|xt) is required in PF framework. In this section, the
observation yt is represented by a set of novel pixel-wise
features (in Section 3.1) and the relations between observa-
tions and hidden states are modeled by probabilistic mani-
folds (in Section 3.2).



3.1. Pixel-wise Event Representation

As a visual event can be regarded as a group of dynamic
pixel changing in a certain rule within a period of time, we
represent different events by different pixel change-relevant
features. In fixed camera scenarios, there are two main
methods to detect pixel changes: Background Substraction
and Temporal Differencing [8]. Xiang et al. [7] built a dy-
namic background model, and used Background Substrac-
tion method to calculate each foreground pixels’ changing
history which is used to model events.

In this paper, we exploit two important change-relevant
features: 1) Pixel Change Frequency (PCF): the changing
times of a pixel given a certain period of time; 2) Pixel
Change Retainment (PCR): the duration of a pixel retain-
ing a value different from background. As pixel-wise meth-
ods are sensitive to noise, we firstly represent each frame
in a pyramid structure, in which a block of 8*8 pixels are
downsampled into a super-pixel, and assign the average
grey-scale value of these pixels to the super-pixel which is
referred to as pixel in the remaining part of the paper for
simplicity. Then we use Temporal Differencing method for
PCF and Backgound Substraction method for PCR. Finally,
given a time duration ∆t, all pixels’ PCF and PCR are re-
flected on a feature image, with each blob in it correspond-
ing to an event happening within ∆t.

3.1.1 Pixel Change Frequency (PCF)

PCF is the number of changes a pixel has undergone within
in ∆t, which can be computed using temporal differencing
methods. In the literature, temporal differencing is often
used to detect pixel-wise valid changes (pvc) between two
consecutive frames:

pvct,t−1(i, j) =

{
1 if(vt(i, j) − vt−1(i, j)) > ϑt(i, j)
0 otherwise,

(9)
where vt(i, j) represents the pixel value of pixel (i, j) in
frame t, and ϑt(i, j) is the threshold. After that, the PCF
can be calculated as:

PCFt,t+∆t(i, j) =
t+∆t∑
m=t

pvcm+1,m(i, j). (10)

In the above method, there are two important issues: 1)
How to set the threshold ϑt(i, j)? 2) Is it reasonable to com-
pare consecutive frames?
(1) Threshold for change detection

Due to the spectrality of lights and the noise of CCD
sensor, all acquired measures are noisy. Therefore a proper
threshold is needed to detect changes caused by object mo-
tions but not noises. Psychophysical studies have revealed

that the visual threshold (also known as just-noticeable dif-
ference) depends on the illumination of background [4]:

∆Ib
Ib

≈ α, (11)

where Ib is the intensity of background and ∆Ib is the min-
imum difference from Ib required for human’s perception.

We set local threshold ∆Ib = αIb for each pixel (i, j)
according to its background value. More specifically, we
assign 0.1 to α, which is adequate in our experiment.
(2) Adaptive temporal differencing

When very slow motion happens, pixel’s difference be-
tween any two consecutive frames cannot surpass the pre-
defined threshold because of its slow and gradual change,
which results in the loss of change-relevant information. To
remedy this, we propose the adaptive temporal differencing
method to adaptively adjust the frame sampling period.

We use ft to represent the frame number sampled at time
instant t, and spt to represent sampling period at time t. In
our method, spt also plays a role of backward window; that
is, ft can compare with only frames during [ft−spt, ft−1].
The initial value of spt is set to 1, and its upper limit is set
to spmax.

Note that ft and spt are different from pixel to pixel,
because the motions on different pixels are not the same.
So ft and spt are replaced by ft(i, j) and spt(i, j) to add
the constraint of pixel’s position. For a certain pixel (m,n),
spt(m,n) is adjusted in following cases:

If
spt(m,n)∑

i=1

pvct,t−i(m,n) > 0, that is, in the frame

sequence [ft(m,n) − spt(m,n), ft(m,n)] (which sizes
spt(m,n)) there happens a change on pixel (m,n), then

spt+1(m,n) = arg min
σ

(pvct,t−σ(m,n) = 1); (12)

ft+1 = ft + spt+1. (13)

If
spt(m,n)∑

i=1

pvct,t−i(m,n) = 0, that is, there is no change

happening on pixel (m,n) in frame sequence [ft(m,n) −
spt(m,n), ft(m,n)], then

spt+1(m,n) = min(spt(m,n) + 1, spmax); (14)

ft+1 = ft + 1. (15)

An illustration of these cases are shown in Figure (2).
The second case happens at frame 3, where sp increases;
the first case happens at frame 2,4,6,8,9, where at frame 8
sp decreases, and at other frames sp remains to be the last
sp.

The proposed method has been proved to be effective in
our experiments with spmax = 3. An example is given in
Figure (3). As shown, the average of spt in slow-motion



Figure 2. Adaptive temporal differencing. This is an Adaptive
Temporal Differencing process of a certain pixel (the black point)
on nine frames. Red circle indicates that the pixel change is de-
tected on the frame, and green circle indicates no change. Two cir-
cles under one frame means that the current frame is respectively
compared with its former two frames.

0 5 10 15 20 25
0

1

2

3

4

0 5 10 15 20 25
0

1

2

3

4

Figure 3. Experiment results for change detection in slow motion
and normal motion events. The top two illustrated frames corre-
spond respectively a normal motion scenario and a slow motion
scenario. Observation pixels are indicated by the arrow on the
two frames, and the change detection results are respectively rep-
resented in two graphs in which the x-axis represents the frames;
y-axis represents the sampling period for the indicated pixel in a
frame; the red stars indicate that a change of the pixel is detected
in current frame; and black stars indicate no change detected.

case is higher than that in normal-motion case, and con-
sequently the changes detected in slow-motion is less than
that in normal-motion, which conforms to our expectation.
We have also tested these sequences in traditional tempo-
ral differencing methods which only compare consecutive
frames. All changes in slow-motion case can’t be detected,
and among eight changes in normal-motion case only one
can be detected.

With the threshold derived based on the human visual
properties and the proposed adaptive temporal differencing
method, we can calculate PCF concisely. In the next part,
we specify another change-relevant feature PCR.

3.1.2 Pixel Change Retainment (PCR)

PCR is dedicated to describing the change retaining du-
ration, which is another important aspect of pixel changes.
Eventually, PCF and PCR are not completely indepen-
dent. Given a time period ∆t, PCR of a pixel’s change vary
from 1 to ∆t. If PCF = 0 in ∆t, then the maximum error
of estimating PCR using PCF is ∆t; if PCF = 1, then
the maximum estimating error reduces to ∆t/2; if PCF
is very high, the PCR of each change would approximate
∆t/PCF . In practice, to calculate PCR for each pixel
change requires too heavy computation and storage space,
and would cause the features hard to model. In order to de-
scribe PCR economically, we only consider the case of a
change retaining for the whole ∆t.

The change retaining for the whole ∆t should meet three
conditions: 1) at least one change happens on this pixel dur-
ing [t − ∆t, t] to turn the pixel value from vb (background
value) to vf (foreground value); 2) no change happens dur-
ing [t, t + ∆t]; 3) the pixel value during [t, t + ∆t] is not
equal to vb. So PCR can be modeled as:

PCRt,t+∆t(i, j) =




∆t ifPCFt−∆t,t(i, j) �= 0
PCFt,t+∆t(i, j) = 0
and vt(i, j) �= vb(i, j)

0 otherwise

,

(16)
where vb(i, j) represents the background value of pixel
(i, j) which is learned by a dynamic background model pro-
posed in [3].

We have proposed PCF and PCR to express pixel
change’s frequency property and retainment property,
which are jointly used to describe pixel changes. In the
following section, we combine relevant pixels together to
represent a visual event.

3.1.3 Feature Image

Given a time duration ∆t, the dynamic pixels would pose
different changing characteristics which are described by
PCF and PCR. From (10) and (16), we can see that
PCF and PCR are incompatible in the sense that PCR×
PCF = 0. Besides, PCR is a binary value of 0 or ∆t,
whereas PCF is any value in the range of [0,∆t) (it is al-
most impossible for a pixel to change in every frame). In
practice, PCR characterizes the static events such as static-
object-intrusion, man-lying-down, etc. and PCF charac-
terizes dynamic events such as man-walking, man-running
events, etc.

For ease of understanding, we represent these features in
a grey-scale feature image, in which the pixels’ grey-scale
values are proportional to the pixel level feature in (17).
Some examples are given in Figure (4).



Figure 4. Event image examples. The events from left to right are
respectively Fight, Left-bag and Walk.

Fp(i, j) = PCFt,t+∆t(i, j) + PCRt,t+∆t(i, j). (17)

As each event is caused by motions of person(s) or ob-
ject(s), each action would cause the changes of a group of
neighbouring pixels, and pixel changes caused by the same
person or object are spatially connected. We combine the
non-zero pixels in the feature image into blobs using con-
nected component method. Then each blob corresponds to a
visual event which is characterized by the blob appearance.

On the feature image, each blob can be described by
some blob-level features, such as size, shape, elongated-
ness, luminance histogram, among which the luminance
histogram is rotation, displacement invariant. We adopt lu-
minance histogram as the blob-level feature. In order to
make it scaling invariant, we construct a percentile lumi-
nance histogram with 	 equally spaced bins for each blob to
describe event-level feature:

Fe =< P1, P2, ..., P� >, (18)

where Pi represents the percentage of pixels falling in the
ith bin.

The features of some typical visual events are shown in
Figure (5), which demonstrates that the proposed features
are discriminative to differentiate these events. Walk events
only has distribution on 1 ∼ 7 dimensions; only Fight
events has distribution on 8 ∼ 12 dimensions; only Inter-
active events have both distributions on 1 ∼ 5 dimensions
and 17th dimension; and Fall-down events only have distri-
bution on 17th dimension.

From Figure (5), we can see that different class of events
characterize themselves in different feature dimensions. In
the next Section, we transform the original features into dif-
ferent subspaces to assign each event-class with the most
representative features, and model the appearance variation
of each event-class in probabilistic manifolds.
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Figure 5. Feature distributions of typical events. Features of two
Walking, one Fighting, one Inactive, and one Man-Fall-Down
events are plotted.

3.2. Probabilistic Appearance Manifolds

Different event-classes have different representative fea-
tures, and the number of features required to describe an
event-class may not equal. In order to better discriminate
different event-classes, we transform the original feature
space into different subspaces for different event-classes us-
ing PCA. Each event-class has multiple different appear-
ances because of different views and acting objects. The
samples of different appearances for each event-class con-
stitute a manifold, which is approximated by a PCA plane.

Given an observation y which is represented by Fe, we
aim to calculate the probability p(y|x) which is required by
PF framework as a weight factor. As xi (a state or an event-
class) has been approximated by an affine subspace ψi, the
probability could be estimated by

p(y|xi) = p(y|ψi). (19)

We use the method proposed in [2] to estimate the
Gaussian densities in subspaces:

p(y|ψi) =



exp(− 1

2

k∑
m=1

(m)2

λm
)

(2π)k/2
k∏

m=1
λ

1/2
m






exp(−

p∑
m=k+1

(m)2

2ρ )

(2πρ)(p−k)/2




(20)
where p and k are respectively the total component num-
ber and the selected PC number; λ is eigenvalue; y =
(y(1), ..., y(p)), = ( (1), ..., (p)), and = ϕ(y − yi),
where ϕ is the eigenvector matrix, and yi is the center of y
in ith event-class; and

ρ =
1

p− k

p∑
m=k+1

λm. (21)

Using this method, the Gaussian density is divided into
two terms. The first term is the true marginal density in
eigenspace and the second term is the estimated marginal
density in the orthogonal complement space. In high di-
mensional space, observations only occupy a very tiny part
of the hyperspace, so the densities are in great disparity.
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Figure 6. Gaussian densities in subspaces. We sampled 20 event
appearances with 5 from each event-class, and project them re-
spectively into the subspaces of Walk and Inactive event-class.
The average probability densities of each subset of test samples
are plotted. Note that the density of leftbag test samples in Walk
subspace is zero, so its log value is omitted in the figure.

This would cause all particles in SCM framework gathering
onto one state. To remedy this, we use lg(p(y|x)) instead to
measure the weight of a particle (note that p(y|x) is a prob-
ability density), and if lg(p(y|x)) < 0, then the weight of
that particle is set to 0.

We have performed cross validation experiments in our
dataset and typical results are given in Figure (6). It shows
that in Walk event-class’s subspace, the probability density
of walk test sample is much higher than that of the other
samples. In Inactive event-class subspace, the density of the
inactive test sample is highest. The results indicate that the
probabilistic appearance manifolds constructed by the pro-
posed method are both discriminative for out-class samples
(outliers) and representative for in-class samples.

We have so far derived the prior probability of p(y|x)
by the process: (1) representing a visual event with a
blob in the feature image; (2) extracting blob-level fea-
tures, and transforming these features into subspaces; (3)
in subspace, constructing probabilistic appearance mani-
folds under Gaussian assumption. Then the prior probabil-
ity p(yt|xt) is used in PF framework for event tracking and
anomaly detection.

4. Experiment

4.1. Experiment Data

We have conducted experiments on PETS2004 dataset
with resolution of 384*288 pixels. The data set consists of
28 video sequences with in total 26419 frames to describe
5 scenarios, that is, Walking, Browsing, Collapse, Leav-
ing objects, Meeting and Fighting appended with ground
truth. These frames are divided into clips with each clip
constituted of 25 frames (about 1 second). Each event in-
side a clip is considered as an event sample. We extract
from these samples five event classes for training and test-
ing: individual walking, two man fighting, left bag, inac-
tive, man fall down among which half of walking, inactive
event samples are used for training, and the rest samples

Figure 8. State transition.

are used for testing. The illustrated frames of two event se-
quences containing anomalies are given in Figure(7).

4.2. Individual Events

In this subsection, we testify the proposed method on
individual event sequences. From the individual training
dataset, we construct event models in form of probabilis-
tic appearance manifolds, and derive the transition proba-
bilities of states (event-class) as shown in the top graph of
Figure (8(a)).

In the surveillance scenario, we regard the event se-
quences only consisting of walking and inactive events as
the normal individual events sequence; a sequence of walk-
inactive-falldown event sequence as the abnormal event se-
quence in which the falldown event should be detected as
anomaly. The result is shown in Figure (9). The curve of
normal1, normal2 and normal3 sequences are smooth, and
an outlier in the abnormal event sequence is detected which
corresponds rightly to the abnormal falldown event.

In order to test the abnormal context cases, we assume
another scenario in which only the process of walk-inactive-
inactive is allowed, that is, the walk event is normal before
inactive event happens, but abnormal after that. The state
transition probability is expressed in the bottom graph of
Figure (8(a)). (Note that the transition probability from In-
active to Walk would approximate 0 in this case.) Then, as
shown on the abnormal context curve, in the sequence of
walk-inactive-walk, anomaly is detected on the walk event
after inactive.

We use a threshold of ELL = 40 to detect anomalies
in 30 event sequences including 20 normal sequences, 2 ab-
normal and 8 context abnormal sequences. Among all the
test sequences, the detecting rate is 100% and false alarm
rate is 10%. Only one walk event is mistaken as an inac-
tive event because a man wearing a black suit move slowly
in vertical direction, which cause blob-level features similar
with inactive events.

4.3. Interactive Event

In the interactive event test case, we assume three nor-
mal scenarios: 1) walkA-walkB-meet, which means two
individual men approach each other to meet (here meet is



Figure 7. Illustrated frames of abnormal event sequences. The top row is the abnormal individual sequence of fall down, and the bottom is
the abnormal individual sequence of fighting.
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Figure 9. ELL of individual event sequences.
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Figure 10. ELL of interactive event. W, WT, L, P, F respectively
represents Walk, WalkTogether, Left bag, Pickup, Fight events.
For ease of understanding, this figure only plot the ELL at the
time instant when interactive events happen.

a kind of Inactive events); 2) walkA-walkB-walktogether,
which means two individual men approach each other to
walk together; 3) walk-leftbag-pickup, which means an in-
dividual man approach a left-bag to pick it up (a kind of in-
active event). Then we test on a walk-walk-fight sequence,
in which two men approach each other and fight.

The state transition matrix derived from training set are
illustrated by Figure (8(b)(c)). Walk-together events have
the similar features with individual walk events in our event
modeling method; meet and bag-pickup events are de-
scribed as inactive events. With these priors, the anomaly
detection results for interactive events are shown in Figure
(10).

From the experiment results, we can see that the abnor-
mal interactive event is detected by its too high ELL value.
The results also demonstrate that the interpretation of an in-

teractive event depends on its ascendent individual events;
for example, the inactive event happens after two man walk
is Meet event, and that happens after Walk-Leftbag events
is Leftbag pickup event.

5. Conclusion

In this paper, we have proposed an anomaly detection
framework by combining pixel-wise event representation,
probabilistic manifold construction, and Sequential Monte
Carlo methods. The experiment results show that our imple-
mentation of the framework is able to reliably detect both
abnormal events (including both individual events and in-
teractive events) and abnormal contexts.
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