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Abstract Cascades are ubiquitous in various network environments. Predicting these cas-
cades is decidedly nontrivial in various important applications, such as viral marketing,
epidemic prevention, and traffic management. Most previous works have focused on pre-
dicting the final cascade sizes. As cascades are dynamic processes, it is always interesting
and important to predict the cascade size at any given time, or to predict the time when a
cascade will reach a certain size (e.g., the threshold for an outbreak). In this paper, we unify
all these tasks into a fundamental problem: cascading process prediction. That is, given the
early stage of a cascade, can we predict its cumulative cascade size at any later time? For such
a challenging problem, an understanding of the micromechanism that drives and generates
the macrophenomena (i.e., the cascading process) is essential. Here, we introduce behavioral
dynamics as the micromechanism to describe the dynamic process of an infected node’s
neighbors getting infected by a cascade (i.e., one-hop sub-cascades). Through data-driven
analysis, we find out the common principles and patterns lying in the behavioral dynamics
and propose the novel NEtworked WEibull Regression model for modeling it. We also pro-
pose a novel method for predicting cascading processes by effectively aggregating behavioral
dynamics and present a scalable solution to approximate the cascading process with a theoret-
ical guarantee. We evaluate the proposed method extensively on a large-scale social network
dataset. The results demonstrate that the proposed method can significantly outperform other
state-of-the-art methods in multiple tasks including cascade size prediction, outbreak time
prediction, and cascading process prediction.
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1 Introduction

In social networks, people can often observe the actions from their neighbors. When they
decide to make the same choice as others have made earlier, these local actions can lead
to interesting macroinformation-spreading dynamics, also known as cascades. In real life,
the spreading of information is ubiquitous and can be found everywhere, from social media
and marketing to epidemics and traffics. Predicting these cascades is very important for
many applications. For example, in the field of online marketing, knowing the future trend
of products may allow for the development of smarter strategies to maximize profit.

There is a growing body of research on information cascades due to their potential in
various important applications such as viral marketing, epidemic prevention, and traffic
management. Most works have focused on characterizing these information cascades and
discovering their patterns in structures, contents, and temporal dynamics.

Recently, there has been heightened research interest regarding the predictive modeling
of information cascades. Earlier works focused on predicting the final size of information
cascades (the number of nodes that take part in the cascade) based on the content, and
behavioral and structural features [3,6]. As only large cascades are of interest in most real
applications, Cui et al. [6] proposed a data-driven approach for predicting whether the final
size will surpass the threshold for an outbreak. More recently, Cheng et al. [3] investigated
the problem of continuously predicting whether the cascade size will double in the future.
However, thesewere all regarding the cascade size,which is only part of the story. Information
cascade is a dynamic process, that is, it changes all the time. Meanwhile, the temporal scale
is critical for understanding the cascading mechanism. Furthermore, it is decidedly nontrivial
to predict when a cascade breaks out, or, more ambitiously, to predict the evolving process
of a cascade (i.e., the cascading process, as shown in 1a). In this paper, we will move one
step forward by asking: Is the cascading process predictable? That is, given the early stage
of an information cascade, can we predict its cumulative cascade size at any later time?

It is apparent that the targeted problem is farmore challenging than those in previousworks.
The commonly used cascade-level macro features for size prediction, such as the content,
increasing speed, and structures in the early stage, are not distinctive and predictive enough
to determine future the cascade sizes. A fundamental technique to address this problem is to
look into themicro-mechanism of cascading processes. Intuitively, an information cascading
process can be decomposed into multiple local (one-hop) sub-cascades. When a node gets
involved in a cascade, one or more of its offspring nodes will also get involved in the cascade
with a temporal scaling. If the dynamic process of these sub-cascades can be accurately
modeled, the cascade process can be straightforwardly predicted by an additive function of
these local sub-cascades.

Here, we will exploit behavioral dynamics as the micromechanism to represent the above-
mentioned dynamic process of local sub-cascades. Given a node becoming involved in a
cascade at t0, its behavioral dynamic aims to capture the changing process of the cumulative
number of its offspring nodes that will become involved in the cascade over time. By defini-
tion, this is a nondecreasing counting process and can be well represented by survival model
[17]. Few research works have exploited the survival theory to model how the occurrence
of an event at a node affects the time of its occurrence at other nodes (i.e., the diffusion
rate, or the probability of a node taking part in the cascade at any time), and their results
have demonstrated the superiority of continuous-time survival model to uncover temporal
processes [11,18]. However, the targeted problem of these works was to uncover the hidden
diffusion networks, which presumes the parameters of the survival function on each edge to
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Fig. 1 Illustrations of cascading process prediction. a The early stage of a cascading process before t . b The
partially observed cascade, where nodes in green (red) represent the observed (unobserved) nodes involved
before (after) t . c The cascading re-tweeting dynamics of the followers of p1 with respect to time (color figure
online)

be fixed. This causes the unexpected result that all cascades with the same root node (or early
involved nodes) will be anticipated to have the same cascading processes, which makes these
models inapplicable for our problem.

In this paper, we propose a novel method for cascading process prediction, as shown in
Fig. 1. Given the early stage of a cascading process before t in Fig. 1a, we illustrate the
partially observed cascade as shown in Fig. 1b, where nodes in green (red) represent the
observed (unobserved) nodes involved before (after) t . Given the behavioral dynamics of
node p1 represented by its survival rates, and the number of its offspring nodes that have
become involved before t , we can predict the cumulative number of its offspring nodes that
partake in the cascade at any time t ′ > t . After conducting similar predictions for all the
observed nodes, the cascading process after t can be predicted using an additive function
over all local predictions via behavioral dynamics.

However, themodeling of behavioral dynamics and the prediction of the cascading process
based on continuous-time survival theory entails many challenges. First, it is unclear which
distribution form the behavioral dynamics follows. Although Exponential and Rayleigh dis-
tributions are commonly used to characterize the temporal scaling of pairwise interactions,
the behavioral dynamics in this paper are a reflection of collective behaviors and have been
proven to be inconsistent with these simple distributions for real data. Second, the parameters
in survival models are difficult to interpret, which limits the generalizability of the learned
model.Given the distribution formof the data, the parameters of the survivalmodel can always
be learned from real data in a maximum likelihood manner. However, it is unclear what these
parameters stand for and the learned model cannot be generalized to out-of-sample nodes
(i.e., nodes whose behavioral dynamic data are not included in the data). Third, the predictive
models based on survival theory are computationally expensive due to the continuous-time
characteristic, which makes them infeasible in real applications. How to design an effec-
tive and interpretable model for behavioral dynamics modeling and a scalable solution for
cascading process prediction are still open issues.

In this paper, we conduct extensive statistical analysis on large-scale real data and find that
although the behavioral dynamics cannot be well captured by simple distributions such as
Exponential or Rayleigh distributions, the general form of the Exponential and the Rayleigh,
or the Weibull distribution, can reasonably preserve the characteristics of the behavioral
dynamics. Also, we discover strong correlations between the parameters of a node’s behav-
ioral dynamics and its neighbor nodes’ behavioral features. We thus propose a NEtworked
WEibull Regression (NEWER) model for parameter learning of behavioral dynamics. In
particular, besides the maximum likelihood estimation term, we also assume that the para-
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Fig. 2 Showcase of cascading process prediction for a real cascade. The red line represents the ground truth
cascading process. The other lines are prediction results based on different early-stage information (color
figure online)

meters of a node can be regressed by the behavioral features of its neighbor nodes and thus
impose networked regularizers to improve the interpretability and generalizability of the
model. Based on the behavioral dynamics, we further propose an additive model for cascad-
ing process prediction. To enable scalability, wewill propose two efficient sampling strategies
which can make approximations with a theoretical guarantee under two different scenarios.

We extensively evaluate the proposed method using a complete dataset from a population-
level social network in China, including over 320 million users, 1.2 billion edges and 340
million cascades. In all the testing scenarios, the proposed method significantly outperforms
other baseline methods. Figure 2 is a showcase of cascading process prediction using the
proposed method. We show that by accurately modeling the behavioral dynamics of social
network users, we can predict the entire cascading processwith only early 30%of the cascade
information and get an average precision of 0.85 with a 20% error tolerance. Furthermore,
accurate predictions of the final cascade size and cascade outbreaking time are implied in the
predicted cascading process.

The main contributions of this paper are:

1. Informed by the cascading size prediction works, we move one step further in attempting
to solve the cascading process prediction problem, which implies several vital prob-
lems such as cascade size prediction, outbreaking time prediction, and evolving process
prediction.

2. We find out the common principles and patterns lying in behavioral dynamics and accord-
ingly propose a novel NEtworked Weibull Regression model for behavioral dynamics
modeling, which significantly improves the interpretability and generalizability of tradi-
tional survival models.

3. We propose a novel method for predicting macrocascading processes by aggregating
microbehavioral dynamics and propose a scalable solution to approximate the cascading
process with a theoretical guarantee.

2 Related works

Prediction regarding cascades Recently, many methods have been proposed for making
predictions regarding cascades. Most have focused on predicting the future size of a cascade,
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often via selecting vital nodes and placing sensors on them. For example, Cohen et al. [4]
focused on exploring the topological characteristics of the cascade. Cui et al. [6] proposed
optimizing the size predictionproblemusingdynamic information.Cheng et al. [3] introduced
temporal features into the problem and predicted the growing size of a cascade. However, the
features described in these works are complex and difficult to measure. Rather than attempt
to predict the cascade size, we focus on predicting the cascading process, simultaneously
considering both time and volume information. In addition, our work successfully solves the
problem by first creating a link from temporal features to survival models and then finding
the correlations with other kinds of features.

Survival model The survival model is a method of analysis according to the time duration
before one or more events occur. Recently, researchers have started modeling information
diffusion using continuous models. Myers et al. [15] proposed CONNIE to infer the diffusion
network based on convex programming while leaving the transmission rate to be fixed. Later,
Rodriguez et al. [18] proposed NETRATE, which allows the transmission rate to be different
along different edges. Subsequently, Rodriguez et al. [11] provided an additive model and a
multiplicative model to describe information propagation based on survival theory. Most of
these works focused on discovering the rules and patterns to the edges in a social network.
Therefore, they are hard to extend to making predictions for cascades since the correlation
between transmission rates on edges is small. In contrast, we focus more on predictive
modeling by grouping correlated edges so that we can make predictions for edges based on
the information of other edges.

Influence modeling and maximization Influence modeling andmaximization aims to evaluate
the importance of users in social networks. This was first proposed by Domingos et al. [8]
to identify early starters that trigger a large cascade. Then, Kempe et al. [13] proposed the
stochastic cascade model to formalize the problem, and Chen et al. [2] proposed a scalable
solutions. Recently, the approach has been extended to add opinion effects [1,10], topic
effects [7], or time decay effects [19] into themodels. Ourwork is distinct from existingworks
because rather than quantifying the influence on nodes, we predict the cascading process.

Comparing to the preliminary version [21], this one comprises a substantial amount of
additional algorithmic and experimental efforts and contributions. Key points of differences
lie in the following aspects: First, as the sampling strategy proposed in our conference paper
can only solve the cascade size prediction problem with linear complexity, we extend the
sampling section and give another sampling strategy to provide a chance to solve the cas-
cading process prediction problem with linear complexity using balanced binary search tree.
Second, we collect, sample, and publish a cascading process dataset from Tencent Weibo,
one of the largest Twitter-style Web sites in China. To our knowledge, this is the first public
cascading process dataset in social networks. Besides cascading process analysis, it also pro-
vides opportunities to understand and model the human activity patterns in social networks
using this dataset. Third, we report a series of statistical tests that examine the efficiency of
the new sampling strategy for cascading process prediction, and find that the method reduces
the calculation number by several magnitudes, and the advantage is more obvious as the
cascade final size increases.

3 Preliminaries

This section presents the discovered patterns and validated hypotheses to support the model
design and solution.
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Fig. 3 Distribution of cascade
size. The straight red line is the
linear fitting result for the blue
curve, which shows that the size
distribution fits a Power-Law
distribution (color figure online)
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3.1 Dataset description

The data in this paper were collected from Tencent Weibo, one of the largest Twitter-style
Web sites in China. We collected all the cascades generated in the 10 days between Nov 15
and Nov 25 2011. There were in total 320 million users and 340 million cascades1 with their
explicit cascading processes. Figure 3 shows the distribution of the cascade size, illustrating
that it follows aPower-Lawdistribution.Aswe aim to predict the cascading process, a dataset2

was sampled from the data by filtering out cascades with sizes less than 5 and maintaining
the remaining 0.46 million cascades for statistical analysis and experiments.

Each cascade in the dataset is constituted of a number of triads, e.g., <userid u, time t ,
target userid r >, which means that user u re-tweet the post from user r at the time t . Due to
privacy limitations, all user IDs were anonymized. To the best of our knowledge, this is the
first public cascading process dataset for social networks. In addition to cascading process
analysis, this dataset also provides opportunities to understand and model human activity
patterns in social networks.

3.2 Characteristics of behavioral dynamics

As mentioned above, behavioral dynamics play a central role in uncovering and predicting
cascade processes. Here, we investigate the characteristics of behavioral dynamics to inform
themodeling of behavioral dynamics. By definition, the behavioral dynamics of a user capture
the changing process of the cumulative number of his/her followers that re-tweet a post after
the user re-tweets the post. Then, the behavioral dynamics of a user can be straightforwardly
represented by averaging the size growth curve of all sub-cascades that spread to the user and
his/her followers. However, Fig. 4 shows that the size growth curves vary significantly for
different sub-cascades of the same user, indicating that such a representation is not suitable for
characterizing behavioral dynamics. Here, we normalize the size growth process by the final
cascade size and adopt the survival function to describe the behavioral dynamics where the
survival rate represents the percentage of nodes that have not been, but will be, infected. As

1 Here, the cascades are information cascades. When a user re-tweets/generates a post, several of his/her
followers will further re-tweet the post and so on to form an information cascade.
2 The dataset is complete and publicly available at http://www.thumedia.org.
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Fig. 4 The size growth curves and their corresponding survival function for 3 users

Table 1 Parametric models

Model Density
function

Survival
function

Hazard
function

ks-statistic
in Weibo

Exponential λi e
−λi t e−λi t λi 0.2741

Power law αi
δ

( t
δ

)−αi−1 ( t
δ

)−αi αi
t 0.9893

Rayleigh αi te
−αi

t2
2 e−αi

t2
2 αi t 0.7842

Weibull ki
λi

(
t
λi

)ki−1
e
−

(
t
λi

)ki
e
−

(
t
λi

)ki
ki
λi

(
t
λi

)ki−1
0.0738

Weibull distribution in bold performs much better than other distributions

shown in Fig. 4, a user’s survival function is quite stable for different sub-cascades, although
their size growth patterns may vary.

Then, can we use the behavioral dynamics represented by the survival function to predict
the size growth curve of a sub-cascade? We provide a positive answer with the assistance of
early-stage information. For example, if we know the sub-cascade size at an early time t0, then
the survival function can be straightforwardly transformed from the percentage dimension
into the size dimension.

3.3 Parameterizing behavioral dynamics

For the ease of computation and modeling, we need to parameterize the behavioral dynamics
in our case. In state of the art, Exponential and Rayleigh distributions are often used to
describe the dynamics of user behaviors in different settings [9,12]. Here, we test these
distribution hypotheses on real data and find that they cannot sufficiently capture both the
shape and scale characteristics of behavioral dynamics. Thus, we turn to the general form
of Exponential and Rayleigh distributions, the Weibull distribution [16], and find it to be
adequate for parameterizing behavioral dynamics. To quantify the effect of parameterization,
we calculate the Kolmogorov–Smirnov (KS) statistic for the four candidate distributions as
shown in Table 1. This statistic shows that theWeibull distribution performs much better than
Exponential and Rayleigh distributions. The improvement is attributed to the high degree of
freedom of the Weibull distribution as it has two parameters λ and k, to control the scale and
shape of the behavioral dynamics, respectively.

3.4 Covariates of behavioral dynamics

If sub-cascades for all users are sufficient, the parameters of behavioral dynamics can be
directly learned from data. However, this suffers from several drawbacks, including that (1)
someusersmay have no or very sparse sub-cascades in the training dataset,whichmakes these
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Table 2 Behavioral and structural features for users

Behavioral features

in f lowrate The number of the posts a user received in a certain period

out f lowrate The number of the posts a user sent in a certain period

Average inflow rate of followers to the user, or

in f lowrateavg
F(i)

∑
j∈F(i) retweet ( j)·in f low( j)

∑
j∈F(i) retweet ( j) where F(i) describes

The followers of user i (and the same as following)

retweetrateavg
F(i) Average re-tweet rate of followers to the user, or

∑
j∈F(i) retweet ( j)·retweet rate( j)

∑
j∈F(i) retweet ( j)

Structural features

f ollower number Number of followers of the user

f ollowee number Number of users this user follows

users’ behavioral dynamics inaccurate or even unknown, and (2) it is difficult to interpret the
parameters directly learned from data, which limits our insights into the behavioral dynamics.
To address these, we investigate the covariates of behavioral dynamics. As the behavioral
dynamics of a user captures the collective responses of his/her followers, we assume that the
parameters of the user’s behavioral dynamics should be correlatedwith the behavioral features
of his/her followers (network neighbors). Hence, we extract a set of behavioral features for
each user as listed in Table 2.3 For each userwith enough sub-cascades in our dataset, we learn
their λ and k directly from the data. Then, we calculate the correlations between the learned
parameters and their followers’ collective behavioral features. The examples given in Fig. 5
indicate obvious correlations between the learned parameters with these behavioral features.
Therefore, we can use these behavioral features as covariates to regress the parameters of
behavioral dynamics.

3.5 From behavioral dynamics to cascades

After validating that the behavioral dynamics can potentially be accurately modeled and
predicted, the key problem is whether we can derive the macrocascading process from
microbehavioral dynamics. Intuitively, the cascading process cannot be perfectly predicted
at early stage by behavioral dynamics. Given any time t , we can only use the behavioral
dynamics of the users that were involved before t to predict the cascading process after t .
Consequently, the prediction coverage is restricted to all the followers of these users, while
users beyond this scope are neglected. These uncovered users may potentially affect the
performance of the cascading process prediction.

Fortunately, we observe the following two interesting phenomena in real data.

Minor dominance Although each user has behavioral dynamics, the behavioral dynamics
of different users make significantly different contributions to the cascading process. Intu-
itively, the behavioral dynamics of an active user with 1 million followers should contribute
much more than that of an inactive user with 5 followers, and the data support this concept.

3 We think that a follower with a different re-tweet number will have different effects to the user, and so we
modify the weights of each term f ollower_avg_in f low_rate and f ollower_avg_retweet_rate.
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Fig. 5 Correlations between the survival function parameters and the behavioral features

According to Fig. 6a, it can be observed that the behavioral dynamics of a very small number
of nodes dominate the cascading process. This supports the idea of just using the behavioral
dynamics of only these dominant nodes for cascading process prediction.

Early-stage dominance Enlightened by the minor dominance phenomenon, we further ask
whether the dominant nodes are prone to joining cascades in early stages. Figure 6b depicts
the time distribution of these dominant nodes joining cascades, and we can see that most of
these nodes actually join cascades in the very early stages.

Taking these two phenomena into account, it is safe to design a model exploiting the
behavioral dynamics of infected nodes in the early stage to predict the cascading process.

4 Methodology

This section introduces the NEtworked WEibull Regression (NEWER) and cascade predic-
tion methods in detail.

4.1 Problem statement

Given a network G = 〈U, A〉, where U is a collection of nodes and A is a set of pairwise
directed/undirected relationships. An event (e.g., tweet) can be originated from one node
and spread (e.g., by re-tweeting) to its neighboring nodes. A cascade is typically formed
by repeating this process. Therefore, a cascade can be represented by a set of nodes C =
{u1, u2, ...um}, where u1 is the root node. In a cascade, each nodewill be infected by the event
only once, so it is tree-structured. For every node ui in the cascade, we denote its parent node
as rp(ui ). The time stamp that ui gets infected is t (ui ) and t (ui ) ≤ t (ui+1). Then the partial
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Fig. 6 Minor dominance and early-stage dominance in information cascades

cascade before time t is denoted by Ct = {ui |t (ui ) ≤ t}, and its size si ze(Ct ) = |Ct | where
|.| is the cardinality of a set. Then the cascade prediction problem can be defined as follows.

Cascade prediction Given the early stage of a cascade Ct , predict the cascade size si ze(Ct ′)
(t ′ ≥ t).

4.2 Survival analysis

Survival analysis is a branch of statistics that dealswith the analysis of the timeduration before
one or more events occur, such as death in biological organisms and failure in mechanical
systems [14]. It is a useful technique for cascade prediction. More concretely, let τ0 be a
nonnegative continuous random variable representing the waiting time until the occurrence
of an event with probability density function f (t). The survival function

S(t) = Pr{τ0 ≥ t} =
∫ ∞

t
f (t) (1)

encodes the probability that the event occurs after t . The hazard rate is defined as the event
rate at time t , conditional on survival until time t or later (τ0 ≥ t), i.e.,

λ(t) = lim
dt→0

Pr(t ≤ τ0 < t + dt |τ0 ≥ t)

dt
= f (t)

S(t)
(2)

S(t) and λ(t) are the two core quantities in survival analysis.

4.3 NEtworked WEibull regression (NEWER) model

The Weibull distribution is commonly used in survival analysis. In a network scenario, if we
consider the time that an event (e.g., re-tweet) happened on a node as a survival process, we
can fit a Weibull distribution to the survival time of node i . Then, its corresponding density,
survival and hazard functions are, respectively,
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fi (t) = ki
λi

(
t

λi

)ki−1

exp
−

(
t
λi

)ki
(3)

Si (t) = exp
−

(
t
λi

)ki
(4)

hi (t) = ki
λi

(
t

λi

)ki−1

(5)

where t > 0 is the average event occurrence time to node i , and λi > 0 and ki > 0 are the
scale and shape parameter of the Weibull distribution, respectively. In the following, we will
assume that the network nodes are users and that the event is re-tweeting.

Likelihood of re-tweeting dynamics Supposing that there are N users in total, Ti is a set of
mi time stamps and each element Ti, j indicates the j-th re-tweet time stamp to the post of
the i th user. We sort these time stamps in increasing order so that Ti, j+1 � Ti, j . We assume
that Ti, j ≥ 1 and Ti,mi > 1. Then, the likelihood of the event data can be written as follows:

L(λ, k) =
N∏

i=1

mi∏

j=1

(
hi (Ti, j ) · Si (Ti, j )

)

=
N∏

i=1

mi∏

j=1

(
ki · T ki−1

i, j · λ
−ki
i · e−T

ki
i, j ·λ

−ki
i

)
(6)

log L(λ, k) =
N∑

i=1

li (λi , ki ) (7)

where li (λi , ki ) = mi log ki + (ki − 1)
∑mi

j=1 log Ti, j − miki log λi − λ
−ki
i

∑mi
j=1 T

ki
i, j .

As discovered in Sect. 3.4, the survival characteristics of a user are correlated with his/her
behavioral features. Then, we can parameterize those parameters in the personalizedWeibull
distributions using those behavioral features.More formally, let xi be an r dimensional feature
vector for user i . We can parameterize λi and ki with the following linear functions:

log λi = log xi ∗ β (8)

log ki = log xi ∗ γ (9)

where β and γ are r -dimensional parameter vectors for λ and k. We attempt to determine
the scale and shape parameter for every user so that the likelihood of the observed data
is maximized. At the same time, we can also get the parameter vectors for out-of-sample
extensions.

We use Eqs. (8) and (9), respectively, to replace λi and ki in the log-likelihood function
in Eq. (7) to solve the parameters. To further enhance the interpretability, we also add �1
sparsity regularizers on β and γ to enforce model sparsity. Combining everything, we can
obtain the NEtworked WEibull Regression (NEWER) formulation which aims to minimize
the following objectives:

F(λ, k, β, γ ) = G1(λ, k) + μG2(β, λ) + ηG3(γ, k) (10)

G1(λ, k) = − log L(λ, k) (11)

G2(λ, β) = 1

2N
‖log λ − log X · β‖2 + αβ ‖β‖1 (12)
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G3(k, γ ) = 1

2N
‖log k − log X · γ ‖2 + αγ ‖γ ‖1 (13)

4.4 Cascading process prediction

With the NEWER model, we can learn the behavioral dynamics for each user. Given the
behavioral dynamics of a user, once we get the early stage information of a sub-cascade
triggered by this user, we can transform the rate dimension to size dimension and make
predictions on the remained dynamic process of the sub-cascade. After predicting all the
sub-cascades, we can straightforwardly aggregate these sub-cascades into the whole cascade.

5 Solution

5.1 Optimization for NEWER

To minimize F(λ, k, β, γ ) in Eq. (10), we first prove that the function is lower bounded. We
have the following theorem.

Theorem 1 F(λ, k, β, γ ) has a global minimum.

Proof See the appendix.

With this theorem, the following coordinate descent strategy can be used to solve the
problem with guaranteed convergence. At each iteration, we solve the problem with one
group of variables with others fixed.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

For it = 1, . . . , i tmax

λ[i t+1] = argminλF(λ, k[i t], β[i t], γ [i t])
k[i t+1] = argmink F(λ[i t+1], k, β[i t], γ [i t])
β[i t+1] = argminβF(λ[i t+1], k[i t+1], β, γ [i t])
γ [i t+1] = argminγ F(λ[i t+1], k[i t+1], β[i t+1], γ )

(14)

To solve the subproblem with respect to λ or k, we can use Newton’s method. For the
sub-problem with respect to β and γ , we can use the standard LASSO solver [20].

5.2 Base model for cascading process prediction

We will first present a basic model to achieve this goal.
The entire flow of the basic model is illustrated in Algorithm 1:
When a new node ui is added to the cascade at t (ui ), the algorithm will launch a process

to estimate the final size of the sub-cascade that ui will generate, with a temporal size counter
replynum(ui ) and a survival function Sui (t) starting at t (ui ). If ui is involved by others, the
algorithm also increases the temporal size of the re-tweet set of its parent rp(ui ) by one.

After all the pre-deadline information is collected, the result will be finalized by aggre-
gating all the values estimated by every sub-cascade process. Since the post number is at
most |V | (all nodes in the network are involved into the cascade), the value of death rate
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Algorithm 1 Basic Model
Input:

Set of users U involved in the cascade C before time tlimit , survival functions of users Su j (t), predicting
time te;

Output:
Size of cascade si ze

(
Cte

)
;

1: for all user ui ∈ U do
2: creates a subcascade process with replynum(ui ) = 0
3: if ui is not root node then
4: replynum(rp(ui )) = replynum(rp(ui )) + 1
5: end if
6: end for
7: sum = 1
8: for all user ui ∈ U do

9: deathrate(ui ) = max
(
1 − Sui (tlimit − t (ui )),

1
|V |

)

10: f drate(ui ) = max
(
1 − Sui (te − t (ui )),

1
|V |

)

11: sum = sum + replynum(ui )· f drate(ui )
deathrate(ui )

12: end for
13: return si ze

(
Cte

) = sum

deathrate(ui ) and final death rate f drate(ui ) (complement to their survival rates) at line 9
and line 10 is set to be 1/|V | when it is lower than 1/|V |.
Complexity analysis Only constant time operations are involved in the two for-loops. There-
fore, the complexity of the algorithm is O(n) where n is the number of users in the cascade.

6 Sampling models for efficient prediction

Real applications often need to predict the cascading process of all cascades dynamically in
a streaming environment so that the process can be continuously monitored, which imposes
more burden on prediction tasks. Although the basic model solves the estimation problem, it
is still computationally expensive and does not fit with a streaming environment in real time.

Tomake the algorithm scalable, an instinctive idea is to reduce the number of recalculations
for sub-cascades by using previous calculationswith an acceptable approximation error.Here,
we propose two models: The first is to make a fixed-time-query prediction, and the second
is to make an arbitrary-time-query prediction.

6.1 Fixed-Time-Query Sampling Model

For fixed-time-query prediction, the prediction time te in the prediction task remains
unchanged. An example is to predict the size of the cascade in one hour starting from any
time point when we make a prediction. For such settings, the final death rate f drate(ui ) for
every sub-cascade will not change. Thus, we can utilize the following two facts to make the
estimation process more efficient:

1) For a sub-cascade generated by ui , the estimation of the size will always be zero if there
is no user involved in it, which means that we can ignore the calculation.

2) If we do not re-estimate the final number of a sub-cascade (when there is no new user
involved in it), the temporal size counter replynum(ui ) and final death rate edrate(ui )
will not change, but the death rate deathrateui (t) will increase over time. Suppose that
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the previous time stamp of the sub-cascade set estimation is t0, this will cause a relative

error rate of 1 − deathrateui (t0)
deathrateui (t1)

≤ deathrateui (t1)
deathrateui (t0)

− 1 at t1.

By exploiting these two rules, the relative error rate will be at most ε if we sample
S−1
u (1 − (1 + ε) · deathrateui (t0)) as the next calculation time point and re-estimate the

final number of the sub-cascade at that time. Then, we propose a sampling model as shown
in Algorithm 2.

Complexity Analysis The following theorem analyzes the complexity of Algorithm 2.

Theorem 2 With an overall O(n log(|V |)) when counting to estimate the number of sub-
cascades, the sampling model can approximate a fixed-time-size of the cascade estimated by
the basic model at any time with a relative error rate of at most ε.

Proof For each approximation request, we only need to report the number directly; for
every new sub-cascade, the initial operation number is also constant, and we need to
perform the threshold adjustment at most O(log1+ε(|V |)) times for sub-cascades which
have new users involved in, since the lower bound of deathrate is 1

|V | and the upper
bound is 1 (all the people are involved in the cascade). Above all, the final complexity
is O(t) + O(n) + O(n log1+ε(|V |)) = O(t + n log1+ε(|V |)) for each cascade (with n users
and t requests). If we put this algorithm into an online environment, the complexity will be
O(T + N log1+ε(|V |)) ∼ O(T ) for all cascades with N users in total4 (we see log1+ε(|V |)
as a constant with respect to T and N ∼ T as the number of users involved in cascades
increases over time). 
�
6.2 Arbitrary-time-query sampling model

In arbitrary-time-query prediction, the prediction time te continuously changes in the pre-
diction task. An example is to predict the size of the cascade in one hour from anytime
when we make a prediction. Therefore, the final death rate for every sub-cascade will change
over different prediction times, such that the sampling idea proposed in the Fixed-Time-
Query Sampling Model cannot be straightforwardly transferred into Arbitrary-Time-Query
Sampling Model.

To avoid the irregularity caused by different prediction times, the final death rate term
to calculate the size of the sub-cascade at a specific time point is ignored in contrast to the
first sampling stage described in the previous method. Instead, for every estimation time
in the first sampling stage, we initiate a second-level sampling stage to present the future
sub-cascading process as follows.

1. For one sub-cascade generated by ui , when we need to present the sub-cascading process
at time t0, we choose t0 as the first sampling point.

2. Once the latest sampling time point tk of S(ui ) is determined, we choose tk+1 =
S−1
u

(
1 − (1 + ε2) · deathrateui (tk)

)
as the newer sampling time point unless (1+ ε2) ·

deathrateui (tk) is no longer lower than 1.

It can be proved that the relative error rate caused by second-level sampling will be at
most ε2, while the size of the second-level sampling time point set for every sub-cascade will
be O

(
log1+ε2

(|V |)) since the minimum value of deathrate at the time point is 1
|V | (i.e.,

at least one user participated in the sub-cascade) and the maximum value is 1 (i.e., all the
people are involved in the cascade).

4 It will be counted multiple times if a specific user is involved in multiple cascades.
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Algorithm 2 Fixed-Time-Query Sampling Model
Input:

survival functions of users Su j (t), and set of users U in one cascade C(given dynamically);
Output:

for every size prediction request to te at t0, output si ze
(
Cte

)
;

1: sum = 0;
2: t = ∅;
3: replynum = ∅;
4: app = ∅;
5: deathrate = ∅;
6: while request = model.acceptRequest do
7: switch request.type do
8: case APPROXIMATION
9: return si ze

(
Cte

) = sum

10: case INVOLVED_USER
11: involve(request)
12: case THRESHOLD_CHANGE
13: thresChange(request)
14: end while
15: function involve(request)
16: ui=request.user, t0=request.time
17: createSubcascadeProcess(ui , t0, te)
18: if ui is root node then
19: sum = 1;
20: else
21: trep = t0 − t (rp(ui ));
22: replynum(rp(ui )) = replynum(rp(ui )) + 1;
23: sum = sum − app(rp(ui ));

24: deathrate(rp(ui )) = max
(

1
|V | , 1 − Srp(ui )(trep)

)
;

25: app(rp(ui )) = replynum(rp(ui ))· f drate(rp(ui ))
deathrate(rp(ui ))

;

26: sum = sum + app(rp(ui ));
27: if (1 + ε1) · deathrate(rp(ui )) ≤ 1 then
28: tnew = S−1

rp(ui )
(1 − (1 + ε) · deathrate(rp(ui )))

29: +t (rp(ui ));
30: sendRequest(THRESHOLD_CHANGE,rp(ui ),tnew);
31: end if
32: end if
33: end function
34: function createSubcascadeProcess(user, time, ptime)
35: t (user) = time
36: app(user) = 0
37: replynum(user) = 0

38: f drate(user) = max
(

1
|V | , 1 − Srp(user)(ptime − time)

)
;

39: end function
40: function thresChange(request)
41: ui = request.user , t0=request.time
42: sum = sum − app(ui );

43: deathrate(ui ) = max
(

1
|V | , 1 − Sui (t0 − t (ui ))

)
;

44: tnew = S−1
ui (1 − (1 + ε) · deathrate(ui )) + t (ui );

45: sendRequest(THRESHOLD_CHANGE,ui ,tnew);

46: app(ui ) = replynum(ui )· f drate(ui )
deathrate(ui )

;

47: sum = sum + app(ui );
48: end function
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For the ease of maintaining the sub-cascading process, we choose the following repre-
sentation so that we can make adjustments using BBST (balanced binary search tree), which
will reduce the complexity:

1. For the first sampling time point (t0) in the sampling set of the sub-cascade, set the
corresponding value to be replynum(ui )

deathrate(t0)
· deathrate(t1).

2. For the succeeding time point tk , set the corresponding value to replynum(ui )
deathrate(t0)

·
(deathrate(tk+1) − deathrate(tk)), which estimates the number of users involved in
the sub-cascade within the time interval [tk, tk+1].
The entire flowof theArbitrary-Time-Query SamplingModel is illustrated inAlgorithm3.

Complexity Analysis

Theorem 3 By using an overall O(n log2 |V | · log (n log |V |)) time complexity algorithm,
themodel can approximate the cascading process estimated by the basicmodel with a relative
error rate within max (ε1, ε2).

Proof For every sub-cascade, the function thresChange() will be involved at most
O(log1+ε1

(|V |)) times, since the lower bound of deathrate is 1
|V | and the upper bound

is 1; for each re-tweet, the function involve() will be involved exactly once. For these two
functions, the most time-consuming steps are the removeSubcascadeOldEffect() and
addSubcascadeEffect() functions. We need to adjust O(log |V |) nodes in the balanced
binary search tree, while the tree size is O(n log |V |). Therefore, the overall time complexity
is O (log(|V |) log (n log |V |)).

Furthermore, the predicted size may decrease within a relative error rate of ε1 during the
first sampling stage, and it may increase within a relative error rate of ε2 during the second
sampling stage. Thus, the overall relative error rate will not exceed max (ε1, ε2). 
�

With the streaming models, for the task of final cascade size prediction task, we only need
to set the prediction time te to be infinite so that the deathrate of all sub-cascades will be
1 when using the Fixed-Time-Query Sampling Model. For the size prediction for arbitrary
time point t , we can aggregate all corresponding values of all sampling time points lower
than t in all sub-cascades in the BBST by using the Arbitrary-Time-Query Sampling Model.
We can also solve the outbreak time prediction and process prediction problem by directly
using the Arbitrary-Time-Query Sampling Model directly. In all cases, the streaming models
will be much more efficient when compared to the base model.

7 Experiments

Experiments are performed on the dataset introduced in Sect. 3.1. Since the proposed method
can be applied in a broad range of application scenarios, to evaluate the performances and
fully demonstrate the advantages of the proposed methods, we conduct the experiments in
three steps. First, we test our method on the size prediction problem, to calculate the final
size of the cascade. Second, we test our method on the outbreak time prediction problem to
find out when an outbreak cascade will reach the outbreak threshold. Finally, we test for our
ultimate goal—the cascading process prediction problem—to predict the future growth of
the cascade.

We also test the running speed of all the methods and find that the sampling models pro-
posed in Sect. 6 are far more efficient than other methods under different kinds of problem
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Algorithm 3 Arbitrary-Time-Query Sampling Model
Input:

survival functions of users Su j (t), and set of users U in one cascade C(given dynamically);
Output:

1. for every size prediction request to te at t0, output si ze
(
Cte

)
;

2. the future cascading process when needed;
1: BalancedBinarySearchTree tree.ini tiali zed();
2: TimeSamplingSets tsss = ∅;
3: replynum = ∅;
4: deathrate = ∅;
5: while request = model.acceptRequest do
6: switch request.type do
7: case APPROXIMATION
8: return approx(request)
9: case CASCADINGPROCESS
10: return tree
11: case INVOLVED_USER
12: involve(request)
13: case THRESHOLD_CHANGE
14: thresChange(request)
15: end while
16: function approx(request)
17: te=request.prediction_time
18: return si ze

(
Cte

) = tree.allvalueKeyLowerT han(te) + 1
19: end function
20: function involve(request)
21: ui=request.user, t0=request.time
22: createSubcascadeProcess(ui , t0)
23: if ui is not root node then
24: trep = t0 − t (rp(ui ));
25: replynum(rp(ui )) = replynum(rp(ui )) + 1;
26: removeSubcascadeOldEffect(rp(ui ))
27: addSubcascadeEffect(rp(ui ), t0)
28: if (1 + ε1) · deathrate(rp(ui )) ≤ 1 then
29: tnew = S−1

rp(ui )
(1 − (1 + ε1) · deathrate(rp(ui )))

30: +t (rp(ui ));
31: sendRequest(THRESHOLD_CHANGE,rp(ui ),tnew);
32: end if
33: end if
34: end function
35: function createSubcascadeProcess(user, time)
36: t (user) = time
37: app(user) = 0
38: replynum(user) = 0
39: T imeSamplingSettssu = ∅;
40: tsss(user) = tssu;
41: end function
42: function thresChange(request)
43: ui = request.user , t0=request.time
44: removeSubcascadeOldEffect(ui )
45: addSubcascadeEffect(ui )t0
46: tnew = S−1

ui (1 − (1 + ε1) · deathrate(ui ))
47: +t (ui );
48: sendRequest(THRESHOLD_CHANGE,rp(ui ),tnew);
49: end function
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50: function removeSubcascadeOldEffect(user)
51: for all elem ∈ tsss(user) do
52: tree.remove(elem.Key, elem.Value);
53: end for
54: tsss(user) = ∅;
55: end function
56: function addSubcascadeEffect(user, time)

57: ds = dr = max
(

1
|V | , 1 − Suser (t ime − t (user))

)
;

58: TimeSamplingSet tssu = ∅;
59: elem = ∅
60: elem.Key = time
61: elem.Value = replynum(user) · (1 + ε2);
62: tssu.pushback(elem);
63: dr = dr ∗ (1 + ε2);
64: while dr ≤ 1 do
65: do = dr ;
66: dr = dr ∗ (1 + ε2);
67: tnew = S−1

rp(ui )
(1 − dr);

68: elem.Key = tnew
69: elem.Value = replynum(user)

ds · (dr − do);
70: tssu.pushback(elem);
71: end while
72: for all elem ∈ tsss(user) do
73: tree.add(elem.Key, elem.Value);
74: end for
75: end function

settings (the Fixed-Time-Query Sampling Model for the final cascade size prediction prob-
lem and the Arbitrary-Time-Query Sampling Model for the cascading process prediction
problem). Furthermore, we will provide additional insights about the proposed method.

7.1 Baselines and evaluation metrics

Since we are the first to investigate the cascading process prediction problem, no previous
models can be adopted as direct baselines. Hence, we implemented the following methods
which can be potentially applied to our targeted problem as baselines:

• Cox Proportional Hazard Regression Model (Cox): This model assumes that the behav-
ioral dynamics of all users have different scale parameters while sharing the same shape
parameter. We use the same covariates as in our model and find the optimal scale para-
meters for all users and the shared shape parameter. We implement it as in [5].

• Exponential/Rayleigh Proportional Hazard Regression Model (Exponential/Rayleigh):
Since the shape parameters of both Exponential and Rayleigh distributions are fixed
values (1 for an Exponential distribution and 2 for a Rayleigh distribution), they are two
special cases of the Cox model.

• Log-linear Regression Model (Log-linear): We refer to [3] which extracted 4 class fea-
tures to characterize cascades, including node features, structural features of cascades,
temporal features, and content features. In our case, we ignore the content features which
are not covered in our dataset and also reported by [3] to be unimportant for cascade
prediction. Then, we use a log-linear regression model to predict the cascade size.

It is noted that log-linear can only predict the cascade size and is not appropriate for time-
related predictions, while Cox, Exponential and Rayleighmodels are applied to all prediction
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Fig. 7 RMSLE results for different methods with different numbers of observed nodes in cascades. We
excluded the log-linear results in the first sub-figure since their RMSLE values all exceeded 1.5

tasks. Furthermore, the goals of the Cox, Exponential and Rayleigh models are to elucidate
the behavioral dynamics. Then, we use the same cascade prediction model as in our method
to conduct cascade-level predictions.

For each cascade, our dataset includes its complete cascading process as the ground truth.
In Tencent Weibo, the activities of users are highly affected by daily cycle. They are highly
active in daytime and quieter at midnight. Therefore, it is better to quantify the dynamics by
event time instead of real time. The average number of events that occurred in the data per
second is about 427, from which we can map the event time into real time.

Next, we use the following metrics to evaluate the performances.

• Root Mean Square Log Error (RMSLE): It is not appropriate to use standard RMSE
to evaluate the prediction accuracy for power-law distributed data. For example, for a
cascadewith a ground truth size of 1000, it is significantly different to predict its size to be
2000 or 0, but these results give the same RMSE. Thus, we first calculate the logarithmic
results for both the ground truth and the predicted value and then calculate RMSE for the
logarithmic results to evaluate the accuracy of the proposed method and the baselines.
The lower the RMSLE, the better the result.

• Precision with σ -Tolerance (�σ -Precision): In real applications, a small deviation from
the ground truth value is often acceptable. In our case, we regard a predicted value
within the range of (1 + σ)±1groundtruth as tolerable, and the resulting precision is
�σ -Precision. The larger the value of �σ -Precision, the better the result.

For parameter setting, there are 4 parameters in our method, including μ, η, αβ , and αγ .
We tune these parameters using grid searching, and the optimal parameters used in our
experiments are μ = 10, η = 10, αβ = 6 × 10−5, αγ = 8 × 10−6.

7.2 Cascade size prediction

We randomly separate the cascades into 10 folds and conduct a 10-fold cross-validation
by using 9 of them as training data and the other one as testing data. For cascades with sizes
over k, we use the first s(s < k) nodes as observed data, and the target is to predict the final
cascade sizes.

The prediction performances for all the methods are shown in Fig. 7. It can be seen that the
proposedmethodNEWERsignificantly outperforms other baselines in terms ofRMSLE value
for different sized datasets. When we set the observation number to 50, the RMSLE value of
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Table 3 Running time of final cascade size prediction for different methods in different datasets using a server
with 3.4 GHz Quad Core Intel i7-3770 CPU and 16 GB of memory

Method Base model Fixed-Time-Query
Sampling Model (δ = 0.1)
(s)

Directed learning
method (s)

Size ≥20 8.47 × 105s 10.73 899

Size ≥50 7.61 × 105s 8.62 899

Size ≥100 6.65 × 105s 7.09 898

Size ≥500 4.35 × 105s 4.33 891

Size ≥1000 3.4 × 105s 3.30 881

the NEWER model is 0.36 for all cascades with size over 300, while the RMSLE value for
all the other methods is at least 0.53. The baseline with closest performance to NEWER is
the Cox model. We can see that the margins of improvement from Cox to NEWER are more
obvious in the dataset with a larger k. In a given dataset, the margins are more evident with
a smaller s. These results demonstrate the significant advantage of NEWER in predicting
large cascades at a very early stage.

Comparatively, the log-linear method does not achieve satisfactory results in this task.
The main reason is that the coefficients in the log-linear model are highly biased toward the
dominant number of small-sized cascades, which is also argued by [3]. In our method, we
successfully overcome this bias by shifting from macrocascade-level features to microbe-
havioral dynamics. The substantial gain achieved by all behavioral dynamics-based methods
(including NEWER, Cox, Exponential and Rayleigh) exemplifies the importance of this
micromechanism for cascade prediction.

To demonstrate the efficiency of the proposed method, we also evaluate the compu-
tational cost of NEWER and Sampling-NEWER in a computational environment with
3.4 GHz Quad Core Intel i7-3770 and 16 GB of memory. We track the process of all
cascades. The base cascade prediction model (Base) re-predicts the final size at every
time point (in seconds), while the Fixed-Time-Query sampling model only re-predicts the
final size when the observed sub-cascade sizes increase or reach the threshold change
of the sub-cascade. As shown in Table 3, the sampling model (with a 10 percent per-
formance degradation tolerance) is much more efficient than base model by almost 5
magnitudes.

7.3 Outbreak time prediction

Another interesting problem is to predict when a cascading outbreak will happen. For exam-
ple, in the early stage of a cascade, can we predict when the cascade will reach a specific
size? Without loss of generality, we set the outbreak size threshold to as 1000. We evalu-
ate the prediction performance with different numbers of observed nodes in the cascades.
As shown in Fig. 8, the NEWER model obtains the best performances for both RMSLE
and �σ -Precision metrics, and the average improvements in the early stage is approx-
imately 70%. Although the Exponential and Rayleigh models report better results than
NEWER in the very early stage (fewer than 50 observation nodes), improvements in their
performance with an increasing number of observed nodes are not as significant as for
NEWER.
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Fig. 8 Outbreak time prediction results for different methods with different number of observed nodes in
cascades

Fig. 9 Cascading process
prediction accuracy of different
methods under different
early-stage percentage settings
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7.4 Cascading process prediction

The ultimate purpose of this paper is to predict the cascading process. For each cascade, we
use �t to represent the early stage window and t̂ to represent its end time. Then, we use the
cascade information during [0,�t] to predict the cascading process during [�t, t̂]. At any
time t ∈ [�t, t̂], we calculate whether the predicted cascade size at t is within the σ tolerance
of the ground truth size at t . Then, we calculate the�σ -Precision by integrating t to describe
the prediction accuracy for this cascading process. Finally, we average the �σ -Precision for
all cascades and show the results in Fig. 9. Here, we vary the early-stage percentage (i.e.,
�t/t̂) from 0 to 50% and discover that in all the settings of early-stage percentage, NEWER
achieves the best performances in cascading process prediction. Moreover, the advantage
of NEWER is clearer for lower early-stage percentages. When we set the early stage to be
15% of the whole cascade duration, we can obtain a �0.2-Precision of 0.849, signifying the
correct prediction of cascade sizes at 84.9% time points, which indicates that the cascading
process is predictable and that the proposed method is adequate and superior in cascading
process prediction. Furthermore, changing the precision tolerance value σ will not affect the
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Table 4 Computational numbers
of cascade process prediction for
different methods

Size Base model Arbitrary-Time-Query
Sampling Model
(ε1 = 0.1 and ε2 = 0.1)

20 1.4 × 1012 4.2 × 106

50 3.5 × 1012 7.6 × 106

100 6.9 × 1012 1.4 × 107

500 3.5 × 1013 3.4 × 107

Around 1000 6.9 × 1013 4.2 × 107

relative results of all the methods in our experiments, and the precision value will be smaller
when setting a smaller value of σ . For abbreviation, we only report the results of σ = 0.2,
which is a reasonable tolerance for most application scenarios.

We also make a comparison on the cascading process prediction efficiency between the
base model and the Arbitrary-Time-Query SamplingModel.We randomly select 10 cascades
with fixed sizes, trace the cascading processes over one day, and let themodel predict the one-
day cascading processes dynamically. The base cascade prediction model (Base) re-predicts
the size of every time point in the cascade (in seconds), while the Arbitrary-Time-Query
Sampling Model only re-predicts the cascading process when the observed sub-cascade
sizes increase or reach the first-level sampling time point of the sub-cascades. We evaluate
the average computation number for both methods, with the results being shown in Table 4. It
is obvious that theArbitrary-Time-Query SamplingModel reduces the calculation number by
several magnitudes, and this advantage becomes more obvious as the cascade size increases.

7.5 Out-of-sample prediction

In real applications, the interaction information between nodes is not always available, which
means that some nodes’ behavioral dynamics cannot be directly derived by maximum likeli-
hood estimation from data. We call these nodes out-of-sample nodes. This is the main reason
why we propose NEWER to incorporate the covariates of behavioral dynamics. To evaluate
the performance of NEWER in handling such case, we simulate the scenario by hiding the
interaction information of randomly selected 10% of users as out-of-sample users and then
predict the final sizes of the cascades that these users were involved at an early stage.

In the Cox model, the scale parameters in behavioral dynamics of out-of-sample users can
be regressed by the covariates. For the shape parameter, we calculate the average value of
shape parameters in observed users and apply this value to the shape parameters of out-of-
sample users. In the NEWERmodel, both of shape and scale parameters can be regressed by
covariates with the learned β and γ . We also employ the standard Weibull Regression (Wbl)
as a baseline, which can be derived by simply setting μ and η to be 0 in Eq. 10. Then, we use
the averaged shape and scale parameters of observed users as the parameters of out-of-sample
users.

As shown in Fig. 10, the NEWERmodel can significantly and consistently outperform the
Cox and Wbl models in out-of-sample prediction, which demonstrates that the discovered
covariates from behavioral features of a user’s networked neighbors can effectively be used to
predict the user’s behavioral dynamics. Furthermore, we visualize the regression coefficients
β and γ in Fig. 11. It can be observed that the behavioral features of a user’s followers play
more important roles in predicting both scale and shape parameters for the user, while the
user’s structural features are less important.
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Fig. 10 Prediction result with unknown users
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Fig. 11 Parameter coeffiecients for a scale parameter and b shape parameter

8 Conclusions and future work

In this paper, we raise an important and interesting question: Beyond predicting the final
size of a cascade, is it possible to predict the entire cascading process based on early-stage
information of cascades? To address this problem, we propose to uncover and predict the
macrocascading process via microbehavioral dynamics. Through data-driven analysis, we
findout the commonprinciples and important patterns in the behavioral dynamics andpropose
a novel NEWER model for behavioral dynamics modeling with good interpretability and
generalizability. After that, we propose a scalable method to aggregate microbehavioral
dynamics into macrocascading processes. Extensive experiments on a large-scale real dataset
demonstrate that the proposedmethod achieves the best results in various cascadingprediction
tasks, including cascade size prediction, outbreak time prediction, and cascading process
prediction.

There are still a few limitations on the proposed method. First, although the overall per-
formance is very well, our method cannot give the confidence value of the prediction. Hence,
we cannot tell how confident we are for a specific prediction task. Second, our method can
make good prediction results for most natural information cascading processes. However, the
prediction results are not very well for some abnormal cascading processes, or the cascading
processes generated by some specific patterns (by using machines, zombie followers, etc.).
Both of these are very interesting and we will try to solve them in our future work.
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Appendix: Proof of Theorem 1

Proof It is evident that both G2(β, λ) and G3(γ, k) have global minimum value. Next we
prove that G1(λ, k) also has global minimum value, or to prove log L(λ, k) has global max-
imum value.

Let λ′
i = λ

−ki
i , log L ′(λ′, k) = log L(λ, k) = ∑N

i=1 l
′
i (λ

′
i , ki ) where l ′i (λ′

i , ki ) =
mi log ki + (ki − 1)

∑mi
j=1 log Ti, j + mi log λ′

i − λ′
i

∑mi
j=1 T

ki
i, j , the partial derivatives of

the l ′i are given by:

∂l ′i
∂λ′

i
= mi

λ′
i

−
mi∑
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T ki
i, j ,

∂2l ′i
∂λ′2

i
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λ′2
i

< 0 (15)

∂l ′i
∂ki

= mi
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+
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log Ti, j − λ′
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i, j log Ti, j (16)
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i, j

(
log Ti, j

)2
< 0 (17)

Since
∂2l ′i
∂λ′2

i
< 0 and

∂2l ′i
∂k2i

< 0, the conditional marginal posterior densities of

parameters λ′
i and ki are log-concave. Moreover, when 0 < ki < 1, 0 < λ′
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min

(
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= λ′
i

mi∑
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Ti, j log Ti, j −
mi∑
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log Ti, j +
mi∑

j=1

log Ti, j − λ′
i
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< 0 (20)

which means there should be a global maximum of l ′i , so does log L . 
�
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