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ABSTRACT

The key challenge on estimating treatment effect in the wild
observational studies is to handle confounding bias induced
by imbalance of the confounder distributions between treated
and control units. Traditional methods remove confounding
bias by re-weighting units with supposedly accurate propensi-
ty score estimation under the unconfoundedness assumption.
Controlling high-dimensional variables may make the un-
confoundedness assumption more plausible, but poses new
challenge on accurate propensity score estimation. One s-
trand of recent literature seeks to directly optimize weights to
balance confounder distributions, bypassing propensity score
estimation. But existing balancing methods fail to do selec-
tion and differentiation among the pool of a large number of
potential confounders, leading to possible underperformance
in many high dimensional settings. In this paper, we propose
a data-driven Differentiated Confounder Balancing (DCB)
algorithm to jointly select confounders, differentiate weights
of confounders and balance confounder distributions for treat-
ment effect estimation in the wild high dimensional settings.
The synergistic learning algorithm we proposed is more capa-
ble of reducing the confounding bias in many observational
studies. To validate the effectiveness of our DCB algorithm,
we conduct extensive experiments on both synthetic and real
datasets. The experimental results clearly demonstrate that
our DCB algorithm outperforms the state-of-the-art methods
on treatment effect estimation.
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1 INTRODUCTION

Owing to the popularity of Big Data, abundant data are
accumulated in various domains such as healthcare and ad-
vertising. At the same time, many machine learning and
data mining methods are proposed to exploit these data for
prediction, aiming to estimate the future outcome in the
application of interest. These methods have been proved
to be successful in prediction-oriented applications. Howev-
er, the lack of interpretability of most predictive algorithms
makes them less attractive in many settings, especially those
requiring decision making. How to improve the explanability
of learning algorithms is of paramount importance for both
academic research and real applications.

Causal inference is a powerful statistical modeling tool for
explanatory analysis. One fundamental problem in causal
inference is treatment effect estimation, and its key challenge
is to remove the confounding bias induced by the different
confounder distributions between treated and control unit-
s. The gold standard approach for removing confounding
bias is to conduct randomized experiments like A/B testing.
But fully randomized experiments are usually expensive [14]
and sometimes infeasible [5]. Therefore, many methods are
proposed to estimate treatment effect directly from obser-
vational data under the unconfoundedness assumption [22].
Most of them adopt the propensity score to reweight unit-
s for removing confounding bias [3, 4, 6]. Although these
methods are gaining ground in applied work, they require cor-
rect model specification on treatment assignment or accurate
propensity score estimation. In big data scenarios, controlling
high-dimensional variables may make the unconfoundedness
assumption more plausible, but poses new challenge on accu-
rate propensity score estimation. Recently, some researchers
proposed to balance confounder distributions by directly op-
timizing the weights, without modeling or estimating the
propensity scores [2, 7, 11, 26]. But they balance all observed
variables equally without screening and differentiation of con-
founders, leading to poor performance in high-dimensional
settings. Overall, the previous methods can work well in
well-designed experimental settings or observational studies
with grounded model assumptions and prior knowledge.

In the wild big data scenarios, however, there are almost
always a large number of additional or mostly uncontrolled
confounders and identified variables, and the correlations



among them are complex and unknown in the real world
[23]. Hence, we face the following challenges in estimat-
ing treatment effect in the wild observational studies: (1)
unknown model structure of the interactions among
variables: As stated in [23], pretty much everything in the
real world interacts with everything else, to some degree,
and their interactions are complicated due to the complex
nature of the real world. We hardly know the real model
structure among variables in the wild, so we cannot make
any model specification a priori for removing confounding
bias. (2) high-dimensional and noisy variables: In big
data scenario, there are always a large number of observed
variables, but not all these variables are confounders and dif-
ferent confounders contribute unequally to the confounding
bias in data. Usually, we do not have sufficient prior knowl-
edge to justify the inclusion of hundreds or even thousands
of variables. How to differentiate the confounders and their
confounding bias is quite difficult.

To address these challenges, we propose a data-driven
method, named Differentiated Confounder Balancing (D-
CB) algorithm. The method is based on the framework of
confounder balancing, but in contrast with previous meth-
ods which balance all variables equally, we argue that some
variables should not be regarded as confounders and we the-
oretically prove that the weights of confounders should be
differentiated in confounder balancing. Motivated by this,
we propose an integrated regularization algorithm to jointly
select confounders, differentiate weights of confounders and
balance confounder distributions for treatment effect estima-
tion. During the treatment effect estimation, the selected
confounders and their weights are used to adjust the weights
of units, so that the confounder distributions, approximated
by their moments, over all units can be balanced in treated
and control groups. We validate our DCB algorithm with ex-
tensive experiments on both synthetic and real datasets. The
results show that our algorithm outperforms the state-of-the-
art methods on treatment effect estimation in observational
studies.

The main contributions of this paper are:

• We address the new challenges of estimating treatment
effect in big data scenarios with high-dimensional noisy
variables and insufficient prior knowledge on variable
interactions, which is beyond the capability of previous
methods.

• We propose a novel DCB algorithm to jointly select con-
founders, optimize the confounder weights and sample
weights for confounder balancing, and simultaneously
estimate the treatment effect in the wild observational
studies.

• The advantages of DCB algorithm are demonstrated in
both synthetic and real datasets. We also show that our
method can significantly help to improve the prediction
performance with real online advertising dataset.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces our differenti-
ated confounder balancing estimator. Section 4 proposes the

algorithm that accurately infers the treatment effect. Section
5 gives the experimental results. Finally, Section 6 concludes
the paper.

2 RELATED WORK

Existing weighting based treatment effect estimation methods
in observational studies either employ propensity score or
optimize balance weights directly.

The propensity score was first proposed by Rosenbaum and
Rubin [22], where it was estimated via a logistic regression.
Then many other machine learning algorithms (e.g., lasso
[8, 10], boosting regression [18], bagged CART and neural
network [25]) are employed for propensity score estimation.
Various estimators have been proposed based on propensity
score, such as propensity score matching, inverse propensity
weighting and double robust estimators [3, 4, 6, 16]. But these
estimators require correct model specification on treatment
assignment or precise estimation of the propensity score,
which may not be the case in many applications [2].

Recently, researchers proposed new weighting based esti-
mators by focusing on confounder balancing directly [2, 7,
11, 12, 26]. Hainmueller [11] introduced entropy balancing
to directly adjust sample weights to the specified sample mo-
ments while moving the sample weights as little as possible.
Athey et al. [2] proposed approximate residual balancing for
sample weights learning via a lasso residual regression adjust-
ment. Zubizarreta [26] learnt the stable balancing weights
via minimizing its variance and adjusting for confounder
balancing directly. Chan et al. [7] considered a wide class
calibration weights constructed to attain confounder balanc-
ing directly. Imai et al. [12] introduced covariate balancing
propensity score, which models treatment assignment while
optimizing covariates balancing. Most of these methods are
non-parametrical and require no propensity score estimation,
but they do not differentiate the confounders by treating all
observed variables as confounders and balanced all of them
equally, leading to possible poor performance on treatment
effect estimation in the setting of high dimensional variables.

Hence, it is very likely to improve the treatment effect es-
timation efficiency by fine-tuned selection and differentiated
methods. To achieve the goal, we propose a differentiated con-
founder balancing algorithm to jointly optimize confounder
weights and sample weights for precise treatment effect esti-
mation.

3 PROBLEM AND OUR ESTIMATOR

In this section, we first give the notations and problem for-
mulation, then revisit traditional confounder balancing es-
timators, and propose a novel estimator via differentiated
confounder balancing.

3.1 Notations and Problem Formulation

Our goal is to estimate the treatment effect based on potential
outcome framework [13, 22]. With the framework, we define
a treatment as a random variable T and a potential outcome
as Y (t) which corresponds to a specific treatment T = t.



Table 1: Symbols and definitions.
Symbol Definition

nt (nc) Sample size for treated (control) group

n Sample size (n = nt + nc)

p Dimension of observed (augmented) variables

T ∈ Rn×1 Treatment

Y ∈ Rn×1 Outcome

X ∈ Rn×p Observed variables

Xt ∈ Rnt×p Observed variables of treated units

Mt ∈ Rnt×p Augmented variables of treated units

Mc ∈ Rnc×p Augmented variables of control units

W ∈ Rnc×1 Sample weights on control units

β ∈ Rp×1 Confounder weights

In this paper, we only focus on binary treatment, that is
t ∈ {0, 1}. We define the units which received treatment
(T = 1) as treated units and the other units with T = 0 as
control units. Then, for each unit indexed by i = 1, 2, · · · , n,
we observe a treatment Ti, an outcome Y obs

i and a vector of
observed variables Xi ∈ Rp×1, where the observed outcome
Y obs
i of unit i denotes by:

Y obs
i = Yi(Ti) = Ti · Yi(1) + (1− Ti) · Yi(0). (1)

The numbers of treated and control units are equal to nt

and nc, and the dimension of all observed variables is p. In
our paper, for any column vector v = (v1, v2, · · · , vm)T , let
‖v‖∞ = max(|v1|, · · · , |vm|), ‖v‖22 =

∑m
i=1 v

2
i , and ‖v‖1 =∑m

i=1 |vi|.
Throughout this paper, we assume the unconfoundedness

[22] condition is satisfied.
Assumption 1: Unconfoundedness. The distribution

of treatment is independent of potential outcome when given
the observed variables. Formally, T⊥

(
Y (0), Y (1)

)
|X.

In this paper, we focus on estimating the Average Treat-
ment effect on the Treated (ATT), which represents the
mean (average) difference between the potential outcomes
under treated and control status among the treated subgroup.
Formally, the ATT is defined as:

ATT = E
[
Y (1)|T = 1

]
− E

[
Y (0)|T = 1

]
, (2)

where Y (1) and Y (0) represent the potential outcome of units
with treatment status as treated T = 1 and control T = 0,
respectively. Our method proposed in this paper can be
readily extended to estimate the Average Treatment effect on
the Control (ATC) and hence the Average Treatment Effect
(ATE) for the whole population.

In Eq. (2), E[Y (1)|T = 1] can be straightforwardly es-
timated by the sample analog

∑
i:Ti=1

1
nt
· Y obs

i . But it is

cumbersome to estimate E[Y (0)|T = 1], since we cannot
observe the potential outcome Y (0) for the treated units.
Under Assumption 1, E[Y (0)|T = 1] is usually estimated by
re-weighting techniques for removing the confounding bias.
The re-weighting methods form the surrogates of the unob-
served potential outcome (Y (0)|T = 1) by re-weighting the
control units with sample weights W to make the confounder
distributions on control units mimic the distributions on
treated units. Then with the sample weights W on control
units, we can estimate the ATT by:

ÂTT =
∑

i:Ti=1
1
nt
· Y obs

i −
∑

j:Tj=0Wj · Y obs
j . (3)

3.2 Revisiting on Confounder Balancing

It can been seen from Eq. (3) that the ATT estimation
produces a sample weights learning problem. The classical
approaches for sample weights learning are propensity score
based methods [3, 4, 6]. The good performance of these meth-
ods hinges on the correct model specification for treatment
assignment or accurate estimates of the propensity scores.
Hence, the performance of these methods is often poor in the
wild observational studies, where the model structure among
variables is unknown.

To reduce the model dependency for applying on data in
the wild, researchers proposed non-parametric methods to
optimize the sample weights W by focusing on confounder
balancing directly [2, 11]. The motivation behind these meth-
ods is that the confounders can be balanced by their moments,
which uniquely determine their distributions. Therefore, they
learn the sample weights W by:

W = arg minW ‖Xt −
∑

j:Tj=0Wj ·Xj‖22 (4)

or

W = arg minW ‖Xt −
∑

j:Tj=0Wj ·Xj‖2∞, (5)

where the Xt represents the mean value of observed variables
on treated units. The direct confounder balancing methods
based on Eq. (4) or (5) can be applied on data in the wild.
But they balance all observed variables equally without dif-
ferentiating confounders, which results in poor performance
in the setting of high dimensional variables.

3.3 Differentiated Confounder Balancing

To precisely estimate the treatment effect with high dimen-
sional observational data in the wild, we propose to simulta-
neously learn confounder weights and sample weights. The
confounder weights can determine which variable is included
and its share of contribution on confounding bias, and the
sample weights are designed for confounder balancing.

To be specific, we jointly optimize the confounder weights
and sample weights by learning following optimization under
some constraints to be clarified later.

W = arg minW

(
βT · (Xt −

∑
j:Tj=0Wj ·Xj)

)2
, (6)

where W ∈ Rnc×1 is sample weights and β ∈ Rp×1 is the
confounder weights. In Eq. (6), the confounder weights β
differentiate the roles of each confounder in the balancing
process, which helps for better removing the confounding
bias in the wild observational studies.

Next, we give theoretical analysis on how to differentiate
confounders weights with following proposition.

Proposition 3.1. In observational studies, different con-
founders make unequal confounding bias on ATT with their
own weights, and the weights can be learned via regressing
potential outcome Y (0) on observed variables X.

The general relationship among observed variables X, treat-
ment T and outcome Y can be represented as:

Y = f(X) + T · g(X) + ε, (7)



where the true ATT is E(g(Xt)), and the potential outcome
Y (0) can be represented by:

Y (0) = f(X) + ε. (8)

We prove Proposition 3.1 with following assumption.
Assumption 2: Linearity. The regression of potential

outcome Y (0) on observed variables X is linear, that is
f(X) = c+ αX.

Under assumption 2, we can rewrite estimator of ÂTT as:

ÂTT =
∑

i:Ti=1
1
nt
Y obs
i −

∑
j:Tj=0WjY

obs
j

=
∑

i:Ti=1
1
nt

(c+ αXi + g(Xi) + εi)−
∑

j:Tj=0Wj(c+ αXj + εj)

= E(g(Xt)) + (
∑

i:Ti=1
1
nt
αXi −

∑
j:Tj=0WjαXj) + φ(ε)

= ATT +
∑p

k=1 αk(
∑

i:Ti=1
1
nt
Xi,k −

∑
j:Tj=0WjXj,k) + φ(ε).

where φ(ε) =
∑

i:Ti=1
1
nt
εi −

∑
j:Tj=0Wjεj refers to the differ-

ence of noises between treated and control units, and φ(ε) ' 0

with Gaussian noise. To reduce the bias of ÂTT , we need
regulate the term

∑p
k=1 αk · (

∑
i:Ti=1

1
nt
Xi,k −

∑
j:Tj=0WjXj,k),

where (
∑

i:Ti=1
1
nt
Xi,k −

∑
j:Tj=0WjXj,k) means the difference

of the kth confounder between treated and control units. The
parameter αk represents the confounding bias weight of the
kth confounder, and it is the coefficient of Xk in the function
f(X). Hence, we can learn the confounder weights from the
regression of potential outcome Y (0) on observed variables
X under Linearity assumption.

Actually, the regression of potential outcome Y (0) against
on observed variables X is infeasible, because of the coun-
terfactual problem, that we cannot observe the potential
outcome Y (0) for treated units. Here we utilize the sample
weights W again to facilitate the construction of surrogates
for the potential outcomes Y (0) of the treated units. We will
elaborate on this later.

When the function f(X) is nonlinear, that is f(X) allows
for powers and interactions among observed variables. It is
conceptually easy to extend above results under Linearity
assumption to bound the bias of ATT with Taylor expan-
sion on f(X) by balancing not only observed variables, but
also their powers and interactions. Therefore, when f(X)
is nonlinear, we have to balance the augmented variables
M = (X,X2, XiXj ,X

3, XiXjXk, · · · ), and learn the con-
founder weights by regressing the potential outcome Y (0) on
augmented variables M.

The differentiated confounder balance strategy we propose
focuses on mere bias control of the ATT estimator by mean
modelling of the potential outcome. A possible refined strat-
egy can be developed by incorporating variance modeling of
the potential outcome, which allows one to control the vari-
ance and eventually the MSE of the resultant ATT estimator.
We leave this extension to future work.

4 OPTIMIZATION

In this section, we give details of our DCB algorithm for
treatment effect estimation, and introduce parameters tuning
method for the “no ground truth” problem in observational
causal inference.

4.1 Algorithm

With Proposition 3.1, we know the ATT estimator is affected
by the unbalance of the observed variables, and their high
order terms. That is the augmented variables M:

M = (X,X2, XiXj ,X
3, XiXjXk, · · · ). (9)

Combining Eq. (6)&(9) and Proposition 3.1, we give our
objective function to jointly optimize sample weights and con-
founder weights for ATT estimation in observational studies
as:

min
(
βT · (Mt −MT

c W )
)2
, (10)

s.t.
∑

j:Tj=0(1 +Wj) · (Yj −Mj · β)2 ≤ λ,

‖W‖22 ≤ δ, ‖β‖22 ≤ µ, ‖β‖1 ≤ ν,
1TW = 1 and W � 0,

where W is the sample weights and β is the confounder
weights. Mt represents the mean value of augmented vari-
ables on treated units.

∑
j:Tj=0(1+Wj) · (Yj−Mj ·β)2 refers

to the loss function of potential outcome Y (0) when learning
the confounder weights, including potential outcome loss on
both control units

∑
j:Tj=0(Yj −Mj · β)2 and treated units∑

j:Tj=0Wj · (Yj −Mj · β)2, which is again a surrogate by

weighting. With the constraints ‖β‖22 ≤ µ and ‖β‖1 ≤ ν, we
can remove the non-confounders and smooth the confounder
weights. The formula 1TW = 1 normalizes the sample weight-
s on control units to add up to one, with the sample weights
on treated units. The terms W � 0 constraint each of sam-
ple weights is non-negative. With norm ‖W‖22 ≤ δ, we can
reduce the variance of the sample weights to achieve stability.

These lead to the following optimization problem, which
is to minimize J (W,β) with constraints on parameters W .

J (W,β) =
(
βT · (Mt −MT

c W )
)2

(11)

+λ
∑

j:Tj=0(1 +Wj) · (Yj −Mj · β)2

+δ‖W‖22 + µ‖β‖22 + ν‖β‖1,
s.t. 1TW = 1 and W � 0.

Here, we propose an iterative method to minimize the
above objective function (11).

Firstly, we initialize sample weightsW = {1/nc, · · · , 1/nc}T
and confounder weights β = {1/p, · · · , 1/p}T . Once the ini-
tial values are given, in each iteration, we first update β by
fixing W , and then update W by fixing β. These steps are
described below:
Update β: When fixing W , the problem (11) is equivalent
to optimize following objective function:

J (β) =
(
βT · (Mt −MT

c W )
)2

+ µ‖β‖22 + ν‖β‖1(12)

+λ
∑

j:Tj=0(1 +Wj) · (Yj −Mj · β)2

which is a standard `1 norm regularized least squares problem
and can be solved with any LASSO (or elastic net) solver.
Here, we use the proximal gradient algorithm [19] with prox-
imal operator to solve the objective function in (12).



Algorithm 1 Differentiated Confounder Balancing (DCB)

Input: Tradeoff parameters λ > 0, δ > 0, µ > 0, ν > 0,
Augmented Variables Matrix on treat units Mt, Augment-
ed Variables Matrix on control units Mc and Outcome
Y .

Output: Confounder Weights β and Sample Weights W
1: Initialize Confounder Weights β(0) and Sample Weights
W (0)

2: Calculate the current value of J (W,β)(0) = J (W (0), β(0))
with Equation (11)

3: Initialize the iteration variable t← 0
4: repeat
5: t← t+ 1
6: Update β(t) by solving J (β(t−1)) in Equation (12)

7: Update W (t) by solving J (W (t−1)) in Equation (13)

8: Calculate J (W,β)(t) = J (W (t), β(t))

9: until J (W,β)(t) converges or max iteration is reached
10: return β, W .

Update W : By fixing β, we can obtainW by optimizing (11).
It is equivalent to optimize following objective function:

J (W ) =
(
βT · (Mt −MT

c W )
)2

+ δ‖W‖22 (13)

+λ
∑

j:Tj=0(1 +Wj) · (Yj −Mj · β)2,

s.t. 1TW = 1 and W � 0.

For ensuring non-negative of W with constraint W �
0, we let W = ω � ω, where ω ∈ Rnc×1 and � refers to
the Hadamard product. Then the problem (13) can be
reformulated as:

J (ω) =
(
βT · (Mt −MT

c (ω � ω))
)2

+ δ‖ω � ω‖22 (14)

+λ
∑

j:Tj=0(1 + ωj � ωj) · (Yj −Mj · β)2,

s.t. 1T (ω � ω) = 1.

The partial gradient of term J (ω) with respect to ω is:

∂J (ω)

∂ω
= −4(βT · (Mt −MT

c (ω � ω))) ·Mc · β � ω

+4δω � ω � ω + 2λω � (Yc −Mc · β)2.

Then we determine the step size a with line search, and
update ω at tth iteration as:

ω(t) = ω(t−1) − a · ∂J (ω(t−1))

∂ω(t−1)
.

With constraint 1T (ω � ω) = 1, we normalize ω(t) as:

ω(t) =
ω(t)√

1T (ω(t) � ω(t))
.

Then, we update W (t) at tth iteration with:

W (t) = ω(t) � ω(t).

We update β and W iteratively until the objective func-
tion (11) converges. The whole algorithm is summarized in
Algorithm 1.

Finally, with the optimized sample weights W by our DCB
algorithm, we can estimate the ATT with Eq. (3).

Remark 1. The confounder weights β in our algorithm
can be applied for outcome residual adjustment as [2] did.
Then, with the optimized β and W in our algorithm, we can
estimate the ATT by combining confounder balancing and
residual adjustment as:

ÂTT =
∑

i:Ti=1
1
nt
· Y obs

i −
(
Mt · β +

∑
j:Tj=0Wj(Y

obs
j −Mi · β)

)
.

4.2 Complexity Analysis

During the procedure of optimization, the main cost is to
calculate the loss J (W,β), update confounder weights β
and sample weights W . We analyze the time complexity of
each of them respectively. For the calculation of the loss,
its complexity is O(np), where n is the sample size and p
is the dimension of (augmented) variables. For updating β,
this is standard LASSO problem and its complexity is O(np).
For updating W , the complexity is dominated by the step
of calculating the partial gradients of function J (ω) with

respect to variable ω. The complexity of ∂J (ω)
∂ω

is O(np).
In total, the complexity of each iteration in Algorithm 1

is O(np).

4.3 Parameters Tuning

No ground truth for parameters tuning is the main challenge
of causal inference in observational studies. To address this
challenge, we apply matching method to estimate the ATT
and set it as the “approximal ground truth” as [1, 15, 21] did.
Specially, for each treated unit i, we find its closet match
among control units as follow:

match(i) = arg minj:Tj=0 ‖Xi −Xj‖22. (15)

To make the matching approximate to exactly matching,
we drop unit i if match(i) > ε. Then, we can obtain the
“approximal ground truth” by comparing the average outcome
between the matched treated and control units.

With the “approximal ground truth”, we can tune param-
eters for our algorithm and baselines with cross validation
by grid searching.

5 EXPERIMENTS

In this section, we evaluate our algorithm on both synthetic
and real world datasets, comparing with the state-of-the-art
methods.

5.1 Baseline Estimators

We implement following baseline estimators to evaluate the
ATT for comparison.

• Directly Estimator ÂTT dir: It evaluates the ATT by di-
rectly comparing the average outcome between the treated
and control units. It ignores the confounding bias in data.

• IPW Estimator ÂTT IPW [22]: It evaluates the ATT via
reweighting units with inverse of propensity score. It relies
on correct model specification on treatment assignment.

• Doubly Robust Estimator ÂTTDR [4]: It evaluates the
ATT with combination of IPW and regression method.
It relies on correct specification of propensity score or
outcome regression models.



• Entropy Balancing Estimator ÂTTENT [11]: It evaluates
the ATT by directly balancing on confounders and entropy
loss on sample weights. It ignores the confounder weights.

• Approximate Residual Balancing Estimator ÂTTARB [2]:
It evaluates the ATT by combining weighting adjustment
via directly balancing on confounders and regression ad-
justment on outcome. It ignores the confounder weights.

In this paper, we implemented ÂTT IPW and ÂTTDR with
lasso regression for variables selection.

5.2 Experiments on Synthetic Data

In this section, we introduce how to generate the synthet-
ic datasets and demonstrate the effectiveness of our DCB
algorithm with extensive experiments.

5.2.1 Dataset. To generate the synthetic datasets, we
consider two sample sizes n = {2000, 5000} and also vary
the dimension of observed variables p = {50, 100}. We first
generate the observed variables X = (x1,x2, · · · ,xp) with
independent Gaussian distributions as:

x1,x2, · · · ,xp
iid∼ N (0, 1),

where xi represents value of the ith variable in X.
To test the robustness of all estimators, we generate the

binary treatment variable T from a logistic function (Tlogit)
and a misspecified function (Tmissp) as

Tlogit ∼ Bernoulli(1/(1 + exp(−
∑p·rc

i=1 sc · xi +N (0, 1)))), and

Tmissp = 1 if
∑p·rc

i=1 sc · xi +N (0, 1) > 0, Tmissp = 0 otherwise

where we vary both confounding rate rc and confounding
strength sc from 0 to 1. The confounding rate represents the
ration of confounders to all observed variables, and the con-
founding strength refers to the bias strength of confounders
on treatment.

We generate the outcome Y from a linear function (Ylinear)
and a nonlinear function (Ynonlin) as:

Ylinear = T +
∑p

j=1{I(mod(j, 2) ≡ 0) · ( j
2

+ T ) · xj}+N (0, 3),

Ynonlin = T +
∑p

j=1{I(mod(j, 2) ≡ 0) · ( j
2

+ T ) · xj}+N (0, 3)

+
∑p−1

j=1{I(mod(j, 10) ≡ 1) · p
2
· (x2j + xj · xj+1)},

where the I(·) is the indicator function and function mod(x, y)
returns the modulus after division of x by y.

Under different settings on treatment T and outcome Y ,
we know the true ATT in simulation. We evaluate the ATT
with our algorithm, comparing with baselines.

5.2.2 Results. To evaluate the performance of our pro-
posed method, we carry out the experiments for 100 times
independently. Based on the estimated ATT (ÂTT ), we cal-
culate its Bias, standard deviations (SD), mean absolute
errors (MAE) and root mean square errors (RMSE) with
following definitions:

Bias = | 1
K

∑K
k=1 ÂTT k −ATT |

SD =
√

1
K

∑K
k=1(ÂTT k − 1

K

∑K
k=1 ÂTT k)2

MAE = 1
K

∑K
k=1 |ÂTT k −ATT |

RMSE =
√

1
K

∑K
k=1(ÂTT k −ATT )2

where K is the experimental times, ÂTT k is the estimat-
ed ATT in kth experiment and ATT represents the true
treatment effect.

We report the results in Table 2 for settings T = Tlogit, Y =
Ylinear and T = Tmissp, Y = Ynonlin. The results under other
settings are reported in the supplemental1 to save space.

From Table 2, we have following observations and analyses:

• Directly estimator fails when confounders are associated
with both treatment and outcome. From our results,
we find Directly estimator makes huge error on ATT
estimation, since it ignores the confounding bias in data.

• IPW and DR estimators have poor performance in the
setting of high dimensional variables or when the model
specifications are incorrect. IPW and DR estimators
make huge error under setting 3 and setting 4, where
T = Tmissp and Y = Ynonlin.

• ENT estimator has good performance only when the pa-
rameters sc = 0.2 under setting 2, where the confounding
bias is small in data, but its performance deteriorates
as the confounding bias increasing. Since it ignores the
confounder weights, which makes it unable to effectively
remove the confounding bias in data.

• ARB estimator achieves better performance than oth-
er baselines in most of time, since it is nonparametric
method with regression adjustment. However, it is far
inferior to our proposed estimator. The key reason is
that it balances all observed variables equally.

• Our proposed DCB estimator, by jointly optimizing both
sample weights and confounder weights, achieves signifi-
cant improvements over the baselines in different settings,
when varying sample size n, dimension of variables p,
confounding rate rc and confounding strength sc.

We show the robustness of our estimator in Figure 1 by
varying the sample size n, dimension of variables p, confound-
ing rate rc and confounding strength sc. From Figure 1,
we find that as we decrease n or increase p, rc and sc, the
MAE of our estimator is consistent stable and small, while
the MAE of baseline estimators increases continuously. This
demonstrates that our proposed estimator is more precise
and robust than the baselines.

5.2.3 Parameter Analysis. In our DCB algorithm, we have
hype-parameters λ, δ, µ and ν. As mentioned before, we
tuned these parameters in our experiments with cross vali-
dation by grid searching, and each parameter is uniformly
varied from {0.001,0.01,0.1,1,10,100,1000}. We displayed the
Bias of treatment effect estimation with respect to λ, δ, µ
and ν, respectively. As seen from Figure 2, the Bias do not
change too much and the performance are relatively stable
when parameters λ ≥ 1 and δ, µ, ν ≤ 1. From Figure 2a,
we can see the Bias is huge when parameter λ is too small.
The main reason is that small value of λ would slack the

1https://www.dropbox.com/s/99s9rmkybo7jnbv/paper
supplemental.pdf

https://www.dropbox.com/s/99s9rmkybo7jnbv/paper_supplemental.pdf
https://www.dropbox.com/s/99s9rmkybo7jnbv/paper_supplemental.pdf


Table 2: Results on synthetic dataset in different settings. The Bias refers to the absolute error between the
true and estimated ATT. The SD, MAE and RMSE represent the standard deviations, mean absolute errors

and root mean square errors of estimated ATT (ÂTT ) after 100 times independently experiments, respectively.
The smaller Bias, SD, MAE and RMSE, the better.

Setting 1: T = Tlogit, Y = Ylinear and sc = 1

n/p n = 2000, p = 50 n = 2000, p = 100 n = 5000, p = 50 n = 5000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

ÂTT dir 6.483 (3.460) 6.682 7.349 18.60 (8.859) 18.67 20.61 6.420 (2.050) 6.420 6.739 18.53 (5.148) 18.53 19.23

ÂTT IPW 2.220 (6.224) 4.866 6.609 8.365 (15.40) 14.47 17.52 1.907 (4.092) 3.648 4.514 8.033 (9.852) 10.52 12.71

rc = 0.2 ÂTTDR 0.118 (0.307) 0.253 0.329 1.591 (0.512) 1.591 1.672 0.059 (0.174) 0.145 0.183 1.446 (0.337) 1.446 1.485

ÂTTENT 0.371 (0.477) 0.453 0.605 4.924 (3.167) 5.052 5.855 0.046 (0.254) 0.210 0.258 2.425 (1.229) 2.429 2.719

ÂTTARB 0.074 (0.472) 0.376 0.477 0.868 (0.435) 0.881 0.971 0.027 (0.269) 0.217 0.270 0.365 (0.371) 0.447 0.520

ÂTTDCB 0.014 (0.121) 0.099 0.122 0.006 (0.119) 0.101 0.119 0.001 (0.073) 0.053 0.073 0.001 (0.085) 0.067 0.085

ÂTT dir 51.06 (3.725) 51.06 51.19 143.0 (9.389) 143.0 143.3 50.45 (1.900) 50.45 50.48 142.1 (5.647) 142.1 142.2

ÂTT IPW 29.99 (4.048) 29.99 30.26 98.24 (8.462) 98.24 98.60 29.38 (2.216) 29.38 29.46 96.86 (5.899) 96.86 97.04

rc = 0.8 ÂTTDR 0.345 (0.253) 0.367 0.428 4.492 (0.333) 4.492 4.504 0.338 (0.136) 0.338 0.365 4.306 (0.227) 4.306 4.312

ÂTTENT 15.06 (1.745) 15.06 15.16 63.02 (4.551) 63.02 63.19 10.09 (1.473) 10.09 10.19 51.99 (3.206) 51.99 52.09

ÂTTARB 0.231 (0.645) 0.553 0.685 2.909 (0.491) 2.909 2.951 0.189 (0.504) 0.428 0.538 2.259 (0.468) 2.259 2.307

ÂTTDCB 0.003 (0.127) 0.102 0.127 0.020 (0.135) 0.114 0.136 0.003 (0.088) 0.072 0.088 0.012 (0.088) 0.073 0.089

Setting 2: T = Tlogit, Y = Ylinear and rc = 0.5

n/p n = 2000, p = 50 n = 2000, p = 100 n = 5000, p = 50 n = 5000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

ÂTT dir 11.80 (3.243) 11.80 12.24 43.38 (9.170) 43.38 44.34 11.53 (2.142) 11.53 11.73 42.64 (6.103) 42.64 43.07

ÂTT IPW 3.897 (2.759) 4.144 4.775 18.37 (8.317) 18.38 20.17 3.873 (2.055) 3.875 4.384 17.13 (5.971) 17.13 18.14

sc = 0.2 ÂTTDR 0.053 (0.150) 0.124 0.159 1.255 (0.265) 1.255 1.283 0.056 (0.104) 0.090 0.118 1.148 (0.180) 1.148 1.162

ÂTTENT 0.023 (0.168) 0.128 0.170 0.174 (0.193) 0.208 0.260 0.001 (0.116) 0.090 0.116 0.089 (0.119) 0.120 0.149

ÂTTARB 0.002 (0.170) 0.129 0.170 0.011 (0.184) 0.151 0.185 0.004 (0.119) 0.094 0.120 0.006 (0.121) 0.093 0.122

ÂTTDCB 0.011 (0.107) 0.086 0.107 0.013 (0.098) 0.080 0.099 0.003 (0.065) 0.053 0.065 0.004 (0.073) 0.060 0.073

ÂTT dir 22.81 (3.610) 22.81 23.09 69.28 (9.608) 69.28 69.94 21.91 (1.908) 21.91 21.99 68.72 (5.410) 68.72 68.93

ÂTT IPW 9.984 (4.878) 10.15 11.11 40.64 (12.48) 40.64 42.51 9.263 (3.615) 9.263 9.943 40.31 (7.185) 40.31 40.94

sc = 0.8 ÂTTDR 0.185 (0.256) 0.256 0.316 3.234 (0.449) 3.234 3.265 0.177 (0.166) 0.205 0.243 3.051 (0.245) 3.051 3.061

ÂTTENT 2.805 (1.153) 2.805 3.033 23.53 (4.432) 23.53 23.94 0.742 (0.447) 0.759 0.866 15.97 (2.519) 15.97 16.16

ÂTTARB 0.059 (0.564) 0.455 0.567 1.861 (0.491) 1.861 1.924 0.005 (0.408) 0.327 0.408 1.133 (0.451) 1.133 1.219

ÂTTDCB 0.007 (0.124) 0.102 0.124 0.015 (0.123) 0.102 0.124 0.001 (0.083) 0.067 0.083 0.017 (0.076) 0.063 0.078

Setting 3: T = Tmissp, Y = Ynonlin and sc = 1

n/p n = 2000, p = 50 n = 2000, p = 100 n = 5000, p = 50 n = 5000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

ÂTT dir 6.527 (5.367) 7.041 8.450 18.67 (14.04) 20.01 23.36 7.340 (3.425) 7.366 8.099 20.54 (9.992) 20.54 22.84

ÂTT IPW 5.061 (8.998) 8.542 10.32 17.31 (19.22) 21.90 25.86 6.707 (6.494) 7.934 9.336 19.81 (15.04) 21.79 24.87

rc = 0.2 ÂTTDR 6.334 (8.628) 8.562 10.70 23.65 (26.32) 29.16 35.38 6.493 (6.698) 7.637 9.329 23.44 (16.62) 24.77 28.74

ÂTTENT 3.770 (2.166) 3.842 4.348 13.46 (5.854) 13.58 14.68 3.096 (1.285) 3.102 3.352 12.16 (3.585) 12.16 12.68

ÂTTARB 0.643 (0.292) 0.647 0.706 3.757 (0.483) 3.757 3.788 0.512 (0.247) 0.517 0.569 3.288 (0.262) 3.288 3.299

ÂTTDCB 0.016 (0.316) 0.263 0.317 0.021 (0.364) 0.294 0.365 0.017 (0.169) 0.139 0.169 0.082 (0.214) 0.183 0.230

ÂTT dir 53.26 (5.308) 53.26 53.53 145.2 (13.47) 145.2 145.9 53.12 (3.673) 53.12 53.24 145.2 (9.247) 145.2 145.4

ÂTT IPW 39.46 (6.404) 39.46 39.97 113.0 (16.91) 113.0 114.3 39.04 (4.424) 39.04 39.29 111.7 (10.19) 111.7 112.1

rc = 0.8 ÂTTDR 15.12 (8.433) 15.40 17.31 34.07 (28.29) 37.09 44.28 14.26 (5.613) 14.28 15.33 30.92 (15.90) 31.70 34.77

ÂTTENT 29.83 (1.795) 29.83 29.89 97.32 (6.507) 97.32 97.54 25.73 (1.155) 25.73 25.76 85.63 (3.114) 85.63 85.68

ÂTTARB 1.342 (0.337) 1.342 1.384 7.440 (0.566) 7.440 7.462 1.102 (0.230) 1.102 1.126 6.526 (0.325) 6.526 6.535

ÂTTDCB 0.076 (0.321) 0.255 0.330 0.024 (0.388) 0.298 0.389 0.003 (0.207) 0.171 0.207 0.021 (0.304) 0.248 0.305

Setting 4: T = Tmissp, Y = Ynonlin and rc = 0.5

n/p n = 2000, p = 50 n = 2000, p = 100 n = 5000, p = 50 n = 5000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

ÂTT dir 18.01 (5.556) 18.01 18.84 59.49 (14.13) 59.49 61.15 18.01 (3.178) 18.01 18.29 60.34 (8.923) 60.34 60.99

ÂTT IPW 7.288 (6.605) 8.429 9.836 32.24 (19.66) 33.23 37.76 7.372 (4.505) 7.516 8.639 33.39 (12.87) 33.39 35.78

sc = 0.2 ÂTTDR 3.408 (5.953) 5.735 6.859 13.87 (21.90) 21.33 25.92 3.130 (4.146) 4.360 5.194 13.87 (12.53) 15.54 18.69

ÂTTENT 1.812 (0.818) 1.812 1.988 25.54 (6.241) 25.54 26.29 0.273 (0.160) 0.282 0.317 14.49 (2.800) 14.49 14.76

ÂTTARB 0.159 (0.254) 0.244 0.300 2.960 (0.385) 2.960 2.985 0.055 (0.150) 0.131 0.160 1.899 (0.241) 1.899 1.915

ÂTTDCB 0.005 (0.223) 0.178 0.223 0.011 (0.288) 0.228 0.288 0.012 (0.120) 0.095 0.120 0.025 (0.158) 0.125 0.160

ÂTT dir 24.58 (5.276) 24.58 25.14 72.30 (13.95) 72.30 73.63 24.10 (3.219) 24.10 24.31 71.20 (8.771) 71.20 71.74

ÂTT IPW 18.34 (6.819) 18.34 19.56 57.07 (18.02) 57.07 59.85 17.65 (4.755) 17.65 18.28 54.95 (9.861) 54.95 55.83

sc = 0.8 ÂTTDR 11.23 (8.757) 12.46 14.24 32.35 (26.22) 35.39 41.65 11.17 (5.492) 11.17 12.44 28.06 (14.24) 28.29 31.46

ÂTTENT 12.88 (1.956) 12.88 13.03 48.40 (5.818) 48.40 48.75 10.46 (1.315) 10.46 10.55 40.79 (2.773) 40.79 40.88

ÂTTARB 0.993 (0.343) 0.993 1.050 6.052 (0.525) 6.052 6.075 0.807 (0.255) 0.807 0.846 5.176 (0.279) 5.176 5.183

ÂTTDCB 0.042 (0.310) 0.246 0.313 0.023 (0.364) 0.306 0.365 0.006 (0.211) 0.167 0.211 0.013 (0.237) 0.194 0.238
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Figure 1: MAE on ATT estimation when varying different parameters, with setting T = Tlogit, Y = Ylinear.
The sub-figure on the top left corner of each main figure is plot by freezing MAE on Y-axis with a limit. The
results show our proposed DCB estimator is more precise and robust than the baselines.

(a) (b) (c) (d)

Figure 2: The effect of hyper-parameters λ, δ, µ and ν.

constrain on confounder weights learning, resulting in im-
precise confounder weights, even the trivial solution β = 0.
From Figure 2c and 2d, we find that the Bias increased as
the increasing of µ and ν. This is because that large value
of µ and ν would enforce the confounder weights close to
zero. The Figure 2b demonstrates that the performance is
insensitive to the parameter δ. To sum up, we can easily
obtain the best hype-parameters for our DCB algorithm.

5.3 Experiments on Real Data

In this section, we apply our DCB algorithm on two real
datasets for ATT estimation and application, including the
LaLonde dataset and an online advertising dataset.

5.3.1 LaLonde Dataset. First, we apply our DCB algorith-
m on the LaLonde [17] dataset2, a canonical benchmark in
the causal inference literature [9, 11]. The LaLonde dataset
used in our paper consists of two parts. The first part comes
from a randomized experiment on a large scale job training
program, the National Support Work Demonstration (NSW)3.
In the second part data, as [11] did, we replace the control
group in randomized experiment with another control group
drawn from the Current Population Survey-Social Security
Administration file (CPS-1) where the measured covariates
are the same with the experimental data. The treatment in
this data is whether the participant attend the particular job

2The dataset is available at http://users.nber.org/∼rdehejia/data/
nswdata2.html
3Notice that we focus on the Dehejia and Wahha sampled dataset of
the LaLonde.

training program or not, and the outcome is the earning in
the year 1978. The data contains 10 raw observed variables,
including earnings and employment status for year 1974 and
1975, education status (years of schooling and an indicator
for completed high school degree), age, ethnicity (indicators
for black and hispanic) and the married status.

Overall, there are 185 program participants (the treated
units) and 260 nonparticipants (the control units) in the
experimental data NSW. In the observational data CPS-1, we
have 185 program participants and 15,992 nonparticipants.
The randomized experimental data NSW provide the ground
truth for estimating the ATT of the program. We estimate
the ATT with the observational data CPS-1, comparing our
proposed algorithm with the baselines.

Experimental Settings. In our experiments, we ran-
domly split the observational data CPS-1 as 6 partitions, with
the first 3 partitions, we train our model and baseline models
for parameters tuning with cross validation by grid searching,
and test model performance and robustness with the last 3
partitions. We conduct our DCB algorithm and baselines
on two variables sets, V-RAW and V-INTERACTION. The
V-RAW refers to the 10 raw observed variables, and the
V-INTERACTION refers to the set of raw variables, their
pairwise one-way interaction, and their squared terms.

Results. We report the results in Table 3, where the
smaller Bias and SD, the better. From the results, we have
following observations. (1) Directly estimator failed due to
the existing of confounding bias in the LaLonde data. (2) IP-
W generates a big error on ATT estimation in both V-RAW
and V-INTERACTION settings. The main reason is that

http://users.nber.org/~rdehejia/data/nswdata2.html
http://users.nber.org/~rdehejia/data/nswdata2.html


Table 3: ATT estimation results on LaLonde dataset,
where the true ATT from randomized experiment is
1,794. The smaller Bias and SD, the better.

Variables Set V-RAW V-INTERACTION

Estimator ÂTT Bias (SD) ÂTT Bias (SD)

ÂTT dir -8471 10265 (374) -8471 10265 (374)

ÂTT IPW -4481 6275 (971) -4365 6159 (1024)

ÂTTDR 1154 639 (491) 1590 204 (812)

ÂTTENT 1535 259 (995) 1405 388 (787)

ÂTTARB 1537 257 (996) 1627 167 (957)

ÂTTDCB 1958 164 (728) 1836 43 (716)

Table 4: Confounder weights learnt from our DCB
algorithm with V-RAW variables set.

Rank Confounder Weight

1 Earnings 1975 0.335

2 Earnings 1974 0.241

3 Employed 1975 0.141

4 Education 0.138

5 Employed 1974 0.050

6 Married 0.039

7 High School Degree 1975 0.017

8 Age -0.013

9 Black -0.003

10 Hispanic -0.001

the specification model of IPW is incorrect and the sample
size between treated and control units is unbalanced. (3)
Our proposed DCB estimator achieves the best performance
compared with the baselines, since our estimator simultane-
ously optimizes sample weights and confounder weights, and
requires no any model specification on treatment assignment.
(4) Our estimator obtains a more accurate ATT estimation
with V-INTERACTION variables set than V-RAW variables
set. This demonstrates that our estimator can achieve a
better confounder balancing with including the high order
terms of observed variables in augmented variables.

In Table 4, we show the confounder weights optimized by
our DCB algorithm with V-RAW variables set. From this
table, we know that the confounders Earnings 1975 & 1974
and Education are very important for the outcome (Earning
1978), but the Black and Hispanic have few effects on the
outcome. Thus the confounders of Earnings 1975 & 1974 and
Education are more important, and should be balanced first.

5.3.2 Online Advertising Dataset. The real online adver-
tising dataset we used is collected from Tencecnt WeChat
App4 during September 2015. In WeChat, each user can
share (receive) posts to (from) his/her friends as like the
Twitter and Facebook. Then the advertisers could push their
advertisements to users, by merging them into the list of the
user’s wallposts. For each advertisement, there are two types
of feedbacks: “Like” and “Dislike”. When the user clicks the
“Like” button, his/her friends will receive the advertisements
with this action.

4http://www.wechat.com/en/

The online advertising campaign used in our paper is about
LONGCHAMP handbags for young ladies5. This campaign
contains 14,891 user feedbacks with Like and 93,108 Dislikes.
For each user, we have 56 features including (1) demographic
attributes, such as age, gender, (2) number of friends, (3)
device (iOS or Android), and (4) the user settings on WeChat,
for example, whether allowing strangers to see his/her album
and whether installing the online payment service.

Experimental Settings. In our experiments, we set
the feedback of users on the advertisement as outcome Y .
Specifically, we set the outcome Yi = 1 when user i likes the
advertisement and Yi = 0 when user i dislikes it. And we
alternatively set one of the user features as the treatment
T and others as the observed variables X. Therefore, we
can estimate the ATT for each user feature. We tuned
the parameters in our algorithm and baseline methods with
the “approximal ground truth” via cross validation by grid
searching.

Evaluation and baselines. In this dataset, we have
no ground truth about the treatment effect of each user
feature, but we are interesting in whether the top k features
ranked by our proposed DCB estimator is able to get good
performance in predicting the Like and Dislike behaviors of
users, comparing with all above ATT baseline estimators and
two commonly used methods for correlation-based feature
selection, including MRel (Maximum Relevance) [24] and
mRMR (Maximum Relevance Minimum Redundancy) [20].
Our estimator and other ATT baseline estimator rank the
user features by their absolute causal effect. We use MAE as
the evaluation metric, which is defined as:

MAE = 1
m

∑m
i=1 |Ŷi − Yi|,

where m is the number of users in test data, Ŷi and Yi

represent the predict and actual feedback of user i on the
advertisement.

Results. We plot the results in Figure 3. From the results,
we can find that our proposed DCB estimator achieves the
best prediction accuracy with different number of features.
Also, our method can get almost the optimal prediction
performance with much less features than other baselines.
The main reason is that with differentiating the confounders,
our estimator can estimate the causal effect of each user
feature more precise by better confounding bias removing.
Another important observation is that the two commonly
used correlation-based feature selection methods perform
worse than our method and even the other causal estimators.
This is because of the sample selection bias between the
training and testing datasets, the correlation-based methods
cannot handle this issue, while the causal estimators can
solve the problem to a certain extent by balancing treated
and control units and removing the confounding bias.

The results demonstrate that treatment effect estimation
can significantly help to improve the prediction performance,
as long as the confounding problems are appropriately ad-
dressed.

5http://en.longchamp.com/en/womens-bags
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Figure 3: Our proposed DCB estimator outperform-
s the baselines when selecting the top k significant
causal features to predict whether user will like or
dislike an advertisement.

6 CONCLUSION

In this paper, we focus on how to estimate the treatment ef-
fect more precisely with high dimensional observational data
in the wild. We argued that most previous weighting based
estimators do not take confounder differentiation into account
or require model specification, leading to poor performance
in the setting of high dimensional variables or in the wild.
Therefore, we proposed the concept of confounder weights
for confounders differentiation with theoretical analysis. We
proposed a differentiated confounder balancing algorithm to
jointly optimize the confounder weights and sample weight-
s for treatment effect estimation. Extensive experiments
on both synthetic and real datasets demonstrated that our
proposed algorithm can significantly and consistently outper-
forms the start-of-the-art methods. We also demonstrated
that the top ranked features by our algorithm have the best
prediction performance on an online advertising dataset.

Our future work will focus on causal inference with unob-
served confounders in observational studies by data driven
approach.
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