
Algorithmic Decision Making with Conditional Fairness
Renzhe Xu

xrz19@mails.tsinghua.edu.cn

Tsinghua University

Peng Cui

cuip@tsinghua.edu.cn

Tsinghua University

Kun Kuang

kunkuang@zju.edu.cn

Zhejiang University

Bo Li

libo@sem.tsinghua.edu.cn

Tsinghua University

Linjun Zhou

zhoulj16@mails.tsinghua.edu.cn

Tsinghua University

Zheyan Shen

shenzy17@mails.tsinghua.edu.cn

Tsinghua University

Wei Cui

cuiwei@songshuai.com

Squirrel AI Learning

ABSTRACT
Nowadays fairness issues have raised great concerns in decision-

making systems. Various fairness notions have been proposed to

measure the degree to which an algorithm is unfair. In practice,

there frequently exist a certain set of variables we term as fair

variables, which are pre-decision covariates such as users’ choices.

The effects of fair variables are irrelevant in assessing the fair-

ness of the decision support algorithm. We thus define conditional

fairness as a more sound fairness metric by conditioning on the

fairness variables. Given different prior knowledge of fair vari-

ables, we demonstrate that traditional fairness notations, such as

demographic parity and equalized odds, are special cases of our

conditional fairness notations. Moreover, we propose a Derivable

Conditional Fairness Regularizer (DCFR), which can be integrated

into any decision-making model, to track the trade-off between

precision and fairness of algorithmic decision making. Specifically,

an adversarial representation based conditional independence loss

is proposed in our DCFR to measure the degree of unfairness. With

extensive experiments on three real-world datasets, we demonstrate

the advantages of our conditional fairness notation and DCFR.
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1 INTRODUCTION
Nowadays fairness issues have raised great concerns in decision-

making systems such as loan applications[24], hiring processes[28],

and criminal justice[22]. Poorly designed algorithms tend to am-

plify the bias existed in data, resulting in discriminations towards

specific groups of individuals based on their inherent character-

istics, which are often named as sensitive attributes in fairness

problems. For example, race is a sensitive attribute for crime judg-

ment. ProPublica[22] found it is unfair that African Americans were

more likely to be incorrectly labeled as higher risk compared with

Caucasians in the COMPAS system. However, what is fair and how

to develop fair algorithms for algorithmic decision making are of

paramount importance for both academic research and practical

applications.

Recently, many works defined their fairness and proposed corre-

sponding fair algorithms, from which, the definition of fairness

can be divided into three types: individual fairness[11], group

fairness[15, 20], and causality-base fairness notions[6, 19, 21, 25,

29, 34]. Individual fairness requires similar individuals should have

similar outcomes. However, it is difficult to define the similarity

between individuals. Group fairness requires equity among differ-

ent groups but they only use sensitive attributes and outcomes as

measuring features. As a result, these notions may fail to distin-

guish between fair and unfair parts in the problem. For example,

Pearl [26] studied the case of Berkeley’s alleged sex bias in graduate

admission[4] and found that data showed a higher rate of admission

for male applicants overall but the result is different when looking

into the department choice. The bias caused by department choice

should be considered fair but traditional group fairness notions fail

to judge fairness since they do not take the department choice into

account. Inspired by this, causality-based fairness notions arise. In

these papers, the authors firstly assumed a causal graph between

the features, and afterward, they could define the unfair causal

effect from the sensitive attribute to the outcome as a metric. How-

ever, these fairness notions need very strong assumptions and they

are not scalable.

In practice, there frequently exist a certain set of variables we

term as fair variables, which are pre-decision covariates such as the

department choice in Berkeley’s graduate admission problem. The

effects of fair variables are irrelevant in assessing the fairness of

the decision support algorithm. We thus define conditional fairness
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as a more sound fairness metric by conditioning on the fairness

variables. In detail, outcome variables should be independent of

sensitive attributes conditional on these fair variables.

The definition of conditional fairness has several advantages.

Firstly, the fair variables can be any variables determined by the

decision-makers or decision-making system inspectors, which pro-

vides a more flexible judging method. Secondly, conditional fairness

can be viewed as a more general fairness notion since it can be eas-

ily reduced to demographic parity and equalized odds. If we believe

that none of the features are fair variables, the conditional indepen-

dence constraint becomes a normal independence constraint. If we

choose fair variables as the outcome, the constraint is transformed

into the target in equalized odds. Thirdly, the definition does not

need strong assumptions in causality-based fairness definitions,

which makes it much easier to be applied to real problems with a

large amount of data and features.

The main challenge of this definition is to formulate the condi-

tional independence constraint into a derivable loss function, which

makes it impossible to be applied to commonly used gradient-based

methods. Inspired by the conditional independence testing tech-

niques in causality structure discovery literature[8, 32, 38], we

formulate the conditional independence constraint into a compu-

tationally amenable form, which serves as a regularizer and is

subsequently appended to the prediction loss function. We call the

working regularizer as the Derivable Conditional Fairness Regular-

izer (DCFR).

As fair representation learning is a common in-processing frame-

work to deal with fairness issues, we apply the regularizer and

handle the conditional fairness constraint in this framework. With

the regularizer, the target optimization problem can be cast as a

minimax problem, which can be solved via adversarial learning. We

further show that our method is also a general method that can be

used in common group fairness notions (demographic parity and

equalized odds). Most interestingly, when we believe none of the

variables are fair, the target problem is reduced to demographic

parity and our method also becomes the same as that proposed by

Madras et al. [23] when dealing with the same problem.

Finally, we apply our method to real datasets and plot accuracy-

fairness curves for three targets (demographic parity, equalized

odds and, conditional fairness). We show that our method performs

better on the conditional fairness task while having similar results

with the state-of-the-art on the other two tasks.

In summary, our contributions are highlighted as follows:

• By exploring the fair variables, we propose conditional fair-

ness, which is more general than previous definitions on

fairness.

• We propose a novel Derivable Conditional Fairness Regu-

larizer (DCFR) to optimize conditional fairness by learning

conditional independent representation. Our DCFR can be

easily integrated into decision-making models to improve

fairness.

• We demonstrate the effectiveness of our proposed algorithm

on fair decision making with three real-world datasets. Fur-

thermore, DCFR performs especially better than baselines

when increasing the number of values that fair variables can

take.

2 RELATEDWORKS
There are several common types of fairness notions including indi-

vidual fairness, group fairness, and causality-based fairness. The

most commonly used individual fairness notion is fairness through

awareness[11] which requires that similar individuals should be

treated similarly. However, it is difficult to define the similarity

function between different individuals. Therefore, individual fair-

ness still lacks further research up to today. Group fairness notions

require the algorithm should treat different groups of individuals

equally. The most commonly used group fairness notions include

demographic parity[11], equal opportunity[15], equalized odds[15]

and calibration[20]. These fairness notions are easy to understand

and implement in real machine learning problems. However, they

only use sensitive attributes and outcomes as measuring features.

As a result, these notions may fail to distinguish between fair and

unfair parts in the problem. To define fairness more elaborately,

causality-based fairness notions are proposed recently. In these

causality-based fairness notions such as counterfactual fairness[21],

path-specific counterfactual fairness[6, 25, 34], the authors first de-

fine a causal graph among the features, and afterward, they can

distinguish the unfair causal effect from the sensitive attribute to the

outcome. However, these fair notions need very strong assumptions

and they are not scalable.

Kamiran et al. [18] proposed the most similar fairness notions as

us. In [18], the authors defined the variables as explanatory variables

and proposed algorithms to mitigate the illegal discrimination they

defined. However, their method is limited as it may do great harm

to accuracy and it cannot be applied in practice as it cannot provide

a tunable tradeoff between fairness and utility. Recently, Dutta et al.

[10] also proposed an information-theoretic decomposition of the

total discrimination.

Methods that mitigate biases in the algorithms fall under three

categories: pre-processing[13, 17, 33], in-processing[16, 35], and

post-processing[15] algorithms. Representation learning is a com-

mon in-processing method which is first proposed by Zemel et al.

[36]. The authors try to mitigate individual unfairness and demo-

graphic discrimination simultaneously. Recently, learning repre-

sentations via adversary has become the state-of-the-art method.

Edwards and Storkey [12] first proposed this kind of method and

they provided a framework to mitigate demographic discrimination.

Several works followed this framework such as [1, 3, 23, 37, 39]. In

particular, Madras et al. [23] proposed to use different adversarial

loss function when faced with different fair notions. Zhao et al. [39]

redesigned the loss functions to mitigate the gap of demographic

parity and equalized odds simultaneously, which is proved to be dif-

ficult in [20]. However, these works all focus on the most commonly

used group fairness notions. Therefore they cannot be applied to

the general conditional fairness target. Agarwal et al. [2] proposed a

general method to mitigate any fairness notions that can be written

as linear inequalities on conditional moments. But they still require

the categorical fair variables which makes it difficult to be extended

to more general form.

Conditional independence tests have been popularly used in

causal structure discovery problems[31]. In order to deal with more

flexible distributions, several novel conditional independence tests

have been proposed[14, 27, 30, 32]. However, these methods cannot



be mixed with gradient-based machine learning algorithms, since

they usually calculate a statistic first and estimate a p-value with

random methods. Our method is based on an equivalent relation of

conditional independence[8] and is tractable in common machine

learning algorithms.

3 PRELIMINARY
3.1 Notations
We suppose the dataset consists of a tuple 𝐷 = (𝑆, 𝑋,𝑌 ), where
𝑆 represents sensitive attributes such as gender and race, 𝑋 rep-

resents features, and 𝑌 represents the outcome. Furthermore, we

divide features𝑋 into two parts𝑋 = (𝐹,𝑂), where 𝐹 represents fair

variables and 𝑂 represents other features. We use𝑚𝑋 ,𝑚𝐹 ,𝑚𝑂 to

denote the dimension of the features and we have𝑚𝑋 =𝑚𝐹 +𝑚𝑂 .

We use calligraphic fonts to represent the range of corresponding

random variables. For example X represents the space of 𝑋 and

X ⊂ R𝑚𝑋
. Similarly, we have F ⊂ R𝑚𝐹

. To simplify, we suppose

the sensitive attribute and the outcome are binary, which means

Y,S = {0, 1}. We set 𝑆 = 1 as the privileged group and 𝑌 = 1 as

the favored outcome.

We suppose there are 𝑁 samples in total and we use 𝑆𝑖 , 𝑋𝑖 , 𝑌𝑖 ,

𝐹𝑖 , 𝑂𝑖 to represent the features of 𝑖-th sample. In addition, for a

condition 𝐸, we use 𝐷 (𝐸) to represent the samples that satisfy the

condition and |𝐷 (𝐸) | to represent the number of these samples.

For example, 𝐷 (𝑌 = 1) means the samples that satisfy 𝑌𝑖 = 1 and

|𝐷 (𝑌 = 1) | is the total number of such samples.

A fair machine learning problem is to design a fair predictor 𝑌

with parameters 𝜽 : X × S → Y, which maximizes the likelihood

𝑃 (𝑌,𝑋, 𝑆 |𝜽 ) while satisfying some specific fair constraints, which

we will introduce in the next section.

3.2 Fairness Notions
We first introduce some well-known fair notions in machine learn-

ing problems.

Definition 3.1 (demographic parity (DP)). Given the joint distri-

bution 𝐷 , the classifier 𝑌 satisfies demographic parity with respect

to sensitive attribute 𝑆 if 𝑌 is independent of 𝑆 , i.e.

𝑌 ⊥ 𝑆. (1)

The definition of DP is clear and concise, representing that S has

no predictive power to 𝑌 , but in practice we are also interested in

some evaluation metric to reveal how fair the system is. Thus the

following equivalent form Δ𝐷𝑃 is proposed to measure the degree

of fairness.

Δ𝐷𝑃
Δ
= |𝑃 (𝑌 = 1|𝑆 = 1) − 𝑃 (𝑌 = 1|𝑆 = 0) |. (2)

Easy to show that 𝑌 ⊥ 𝑆 if and only if Δ𝐷𝑃 = 0.

One of the drawbacks of Δ𝐷𝑃 is that when the base rate differs

significantly among two groups, i.e., 𝑃 (𝑌 = 1|𝑆 = 0) ≠ 𝑃 (𝑌 = 1|𝑆 =

1), the utility could be limited. Hardt et al. [15] further proposed

another notion Equalized Odds to avoid this problem.

Definition 3.2 (Equalized odds (EO)). Given the joint distribution

𝐷 , the classifier 𝑌 satisfies equalized odds with respect to sensitive

attribute 𝑆 if 𝑌 is independent of 𝑆 conditional on 𝑌 , i.e.

𝑌 ⊥ 𝑆 | 𝑌 . (3)

Similarly, the metric Δ𝐸𝑂 is defined as the expectation of the

absolute difference of true positive rate and false positive rate across

two groups.

Δ𝐸𝑂
Δ
= E𝑦

[��𝑃 (𝑌 = 1|𝑆 = 1, 𝑌 = 𝑦) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝑌 = 𝑦)
��]

= 𝑃 (𝑌 = 0)
��𝑃 (𝑌 = 1|𝑆 = 1, 𝑌 = 0) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝑌 = 0)

��
+ 𝑃 (𝑌 = 1)

��𝑃 (𝑌 = 1|𝑆 = 1, 𝑌 = 1) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝑌 = 1)
�� .
(4)

It is also easy to show that 𝑌 ⊥ 𝑆 | 𝑌 if and only if Δ𝐸𝑂 = 0.

None of the fairness notions above take fair variables into ac-

count, inspired by Kamiran et al. [18] and Corbett-Davies et al. [7],

we denote conditional fairness as

Definition 3.3 (Conditional fairness (CF)). Given the joint distri-

bution 𝐷 , the classifier 𝑌 satisfies conditional fairness with respect

to sensitive attribute 𝑆 and fair variables 𝐹 if 𝑌 is independent of 𝑆

conditional on 𝐹 , i.e.

𝑌 ⊥ 𝑆 | 𝐹 . (5)

In addition, similar to Δ𝐸𝑂 , we define a metric Δ𝐶𝐹 as:

Δ𝐶𝐹
Δ
= E𝑓

[��𝑃 (𝑌 = 1|𝑆 = 1, 𝐹 = 𝑓 ) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝐹 = 𝑓 )
��]

(6)

Specifically, when fair variables are continuous, Equation 6 be-

comes:

Δ𝐶𝐹

=

∫
𝑓 ∈F

��𝑃 (𝑌 = 1|𝑆 = 1, 𝐹 = 𝑓 ) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝐹 = 𝑓 )
��
dP(𝑓 ).

(7)

and when fair variables are categorical, Δ𝐶𝐹 becomes

Δ𝐶𝐹

=
∑
𝑓 ∈F

��𝑃 (𝑌 = 1|𝑆 = 1, 𝐹 = 𝑓 ) − 𝑃 (𝑌 = 1|𝑆 = 0, 𝐹 = 𝑓 )
�� 𝑃 (𝐹 = 𝑓 ) .

(8)

Δ𝐶𝐹 aims to calculate the mean of the absolute difference between

two groups among all potential values of the fair variables. Similarly,

we have 𝑌 ⊥ 𝑆 | 𝐹 if and only if Δ𝐶𝐹 = 0.

Compare CF with DP and EO. On the one hand, conditional fair-

ness can take more complex situations into account. On the other

hand, conditional fairness is more general and it can be easily re-

duced to DP and EO.

Consider the data-generating graph for a toy example of a col-

lege admission case in figure 1. Because qualification requirements

usually differ among various departments, it is fair to determine out-

comes according to department choices and qualifications. Hence

any predictors with form 𝑌 = 𝑓 (𝑄, 𝐷) can be considered fair in

practice. It is easy to show that when setting department choice

𝐷 as the fair variable, 𝑌 is conditional fair. However, DP and EO

fail to judge the fairness of 𝑌 as equation (1) and (3) may not be

satisfied.

In addition, conditional fairness is a more flexible fairness notion

as:

• If we believe none of the features 𝑋 is fair, which means

𝐹 = ∅, the conditional independence target is reduced to

the independence condition as shown in equation (1) and

conditional fairness is reduced to DP.
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Figure 1: The data-generating graph for a toy example of
a college admission case. 𝑆 , 𝐷 , 𝑄 , 𝑌 represent gender, de-
partment choice, qualification, and historical admission de-
cision, respectively. 𝑌 represents a conditional fair decision-
making system.

• If we set 𝐹 as 𝑌 , the conditional independence target is re-

duced to the conditional independence as shown in equation

(3) and conditional fairness is reduced to EO.

Compare CFwith causality-based fairness notions. Generally speak-
ing, conditional fairness requires much fewer assumptions than

causality-based fairness notions, which makes CF practical in real

problems.

Under some circumstances, a conditional fair decision-making

system can satisfy causality-based fairness notions. Consider path-

specific fairness[6] in the example shown in figure 1. The directed

path 𝑆 → 𝑌 can be viewed as an unfair path while 𝑆 → 𝐷 → 𝑌 and

𝑄 → 𝑌 are fair paths. Hence, the historical decisions 𝑌 is not path-

specific fair for the existence of unfair path 𝑆 → 𝑌 . However, the

conditional fair decision-making system 𝑌 = 𝑓 (𝑄, 𝐷) successfully
satisfies the requirement as the unfair path 𝑆 → 𝑌 does not exist. As

for deeper connections between conditional fairness and causality-

based fairness notions, we remain as future works.

3.3 Problem Formulation
Next we will apply our definition of conditional fairness into real

fair problems. In general, the goal of a fairness problem is to achieve

a balance between fairness and algorithm performance. Formally,

we need to design a loss function on prediction 𝐿
pred
(𝑌,𝑌 ) and

another loss function on fairness 𝐿
fair
(𝑌, 𝑆, 𝐹 ). The optimization

goal of a fairness problem can be formulated as:

𝜽 = argmin

𝜽
𝐿(𝑌 ) = argmin

𝜽
𝐿
pred
(𝑌,𝑌 ) + _ · 𝐿

fair
(𝑌, 𝑆, 𝐹 ), (9)

where the hyper-parameter _ provides a trade-off between fairness

and performance. When _ is large, the target tends to make 𝐿
fair

small which can ensure fairness while doing harm to performance,

and the result is opposite when _ is small.

As for the prediction loss, any form of traditional loss functions

are suitable such as cross-entropy or L1 loss. While the fairness

loss targeted for conditional fairness is difficult to design relatively.

When fair variables are categorical, we can use the Δ𝐶𝐹 metric as a

loss function. However, in practice, the fair variables may contain

many different values or they may be continuous. Under this cir-

cumstance, the metric can no longer be a suitable loss function for

Origin features (S, X = (F, O))
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Figure 2: The framework of our method. The variables in-
clude sensitive attribute 𝑆 , features 𝑋 , outcome 𝑌 , represen-
tation 𝑍 , and prediction 𝑌 . 𝑋 is divided into fair variables 𝐹
and other variables 𝑂 . The function 𝑔 maps the original fea-
tures into the representation space, and function 𝑘 maps the
representations into the outcome space. There are two loss
functions that measure utility and fairness respectively.

optimization. Inspired by this issue, we will propose a new deriv-

able loss function that can deal with these situations in the next

section.

4 PROPOSED METHOD
An intuitive way to deal with this conditional independence is to

divide the whole training samples into different groups with re-

spect to the value of fair variables and then deal with these groups

separately using traditional methods handling naive independence

problems. The main drawback is that this method assumes that fair

variables are categorical and |F | is small. Meanwhile, when |F |
becomes very large, representing that fair variables can take many

different values, this naive method requires exactly |F | different
models to deal with different subgroups, which has the potential of

overfitting due to lack of training data in each subgroup. Further-

more, when fair variables are continuous, it becomes impossible

to group by fair variables directly. Hence we need a more general

framework to ensure the model’s scalability.

Our solution to this problem is to learn a latent representation

𝑍 , which satisfies condition (5). Suppose the representation has

𝑚𝑍 dimensions, 𝑔 : R𝑚𝑋 × {0, 1} → R𝑚𝑍
is the function from the

space of 𝑋 and 𝑆 to representation space. The prediction function

𝑘 : R𝑚𝑍 → [0, 1] yields the probability of the sample in the posi-

tive class. The framework of our model is shown in figure 2. We

now rewrite the equation (9) under this representation learning

framework as:

𝜽 = argmin

𝜽
𝐿
pred
(𝑘 (𝑔(𝑋, 𝑆)), 𝑌 ) + _ · 𝐿

fair
(𝑔(𝑋, 𝑆), 𝐹 , 𝑆). (10)



Table 1: Important Math Notations

Notation Explanation

𝑆 Sensitive attributes

𝑋 = (𝐹,𝑂) Features (fair Variables, others)

𝑍 Latent features

𝑌,𝑌 True outcome, predicted outcome

ℎ(𝑍, 𝐹 ) Adversary function

𝑄 (ℎ) Adversary loss w.r.t. ℎ

𝐿2
𝑍𝐹

Function space of ℎ(𝑍, 𝐹 ), see Eqn. (13)
E𝑍𝐹 Function space of

˜ℎ(𝑍, 𝐹 ), see Eqn. (14)
𝐻𝑍𝐹 Function space of ℎ(𝑍, 𝐹 ), see Eqn. (19)

4.1 Conditional Independence
In this section, we first introduce a conditional independence theo-

rem proposed by Daudin [8]. Afterward we will transform it into

the form that can be applied to fairness problems. Finally we will

give a regularizer to measure conditional independence.

Lemma 4.1 (Characterization of conditional independence

[8]). The random variables 𝑍 , 𝑆 are independent conditional on 𝐹

(𝑍 ⊥ 𝑆 | 𝐹 ) if and only if, for any function 𝑢 ∈ 𝐿2
𝑆
, ˜ℎ ∈ E𝑍𝐹 ,

E[𝑢 (𝑆) · ˜ℎ(𝑍, 𝐹 )] = 0, (11)

where

𝐿2𝑆 =
{
𝑢 (𝑆) | E[𝑢2] < ∞

}
, (12)

𝐿2𝑍𝐹 =
{
ℎ(𝑍, 𝐹 ) | E[ℎ2] < ∞

}
, (13)

E𝑍𝐹 =

{
˜ℎ(𝑍, 𝐹 ) ∈ 𝐿2𝑍𝐹 | E[ ˜ℎ |𝐹 ] = 0

}
. (14)

Lemma 4.1 is designed for general cases and can be simplified

in fairness issues. Considering cases of one single binary sensitive

attribute, whichmeans 𝑆 is binary, the condition can be transformed

into the following form.

Proposition 4.2. If random variable 𝑆 is binary and 𝑆 ∈ {0, 1},
the random variables 𝑍 , 𝑆 are independent conditional on 𝐹 (𝑍 ⊥ 𝑆 |
𝐹 ) if and only if, for any ˜ℎ ∈ E𝑍𝐹 ,

E[I(𝑆 = 1) · ˜ℎ(𝑍, 𝐹 )] = 0, (15)

where E𝑍𝐹 is shown in equation (14) and I(𝑆 = 1) is the indicative
function defined as follow:

I(𝑆 = 1) =
{
1, if 𝑆 = 1,

0, if 𝑆 = 0.
(16)

However, proposition 4.2 can hardly be applied to practice di-

rectly because of the complexity of function space E𝑍𝐹 shown in

equation (14). Therefore, we need to transform equation (15) to

another form which depends on a simpler function space.

Theorem 4.3 (Characterization with binary variable). If
random variable 𝑆 is binary and 𝑆 ∈ {0, 1}, the random variables 𝑍 ,
𝑆 are independent conditional on 𝐹 (𝑍 ⊥ 𝑆 | 𝐹 ) if and only if, for any
ℎ ∈ 𝐿2

𝑍𝐹
,

𝑄 (ℎ) Δ= E [I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 )ℎ(𝑍, 𝐹 )]
− E [I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 )ℎ(𝑍, 𝐹 )] = 0.

(17)

Compared with function space E𝑍𝐹 in proposition 4.2, 𝐿𝑍𝐹 space

in theorem 4.3 is much simpler. Based on this theorem, we propose

the following regularizer:

Definition 4.4 (Derivable Conditional Fairness Regularizer). 𝑍, 𝐹, 𝑆
are random variables. 𝑆 is binary and 𝑆 ∈ {0, 1}. 𝑄 (ℎ) is defined in

equation (17). Define the regularizer 𝐿
fair
(𝑍, 𝐹, 𝑆)

𝐿
fair
(𝑍, 𝐹, 𝑆) Δ= sup

ℎ∈𝐻𝑍𝐹

|𝑄 (ℎ) |, (18)

where

𝐻𝑍𝐹 =
{
ℎ ∈ 𝐿2𝑍𝐹 |0 ≤ ℎ(𝑍, 𝐹 ) ≤ 1

}
. (19)

The motivations of regularizer are that, firstly, notice that if there

exists a function ℎ ∈ 𝐿2
𝑍𝐹

so that 𝑄 (ℎ) ≠ 0, then supℎ∈𝐿2
𝑍𝐹
|𝑄 (ℎ) |

can be arbitrarily large. And the 𝐿2
𝑍𝐹

space is too large for further

analysis. Therefore we first bound the range of ℎ into [0, 1], which
produces the 𝐻𝑍𝐹 space. Secondly, when 𝐿

fair
(𝑍, 𝐹, 𝑆) = 0, accord-

ing to theorem 4.3, the random variables 𝑍 and 𝑆 are independent

conditional on 𝐹 .

Furthermore, we can simplify equation (18) by the following

theorem.

Theorem 4.5. 𝐿fair (𝑍, 𝐹, 𝑆), 𝐻𝑍𝐹 , and 𝑄 (ℎ) are defined in theo-
rem 4.3 and definition 4.4. Then

𝐿fair (𝑍, 𝐹, 𝑆) = sup

ℎ∈𝐻𝑍𝐹

|𝑄 (ℎ) | = sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ) . (20)

Theorem 4.5 provides a computationally amenable form, which

serves as a regularizer and is applied to the prediction loss function.

To better understand 𝑄 (ℎ), we transform the equation (17) as a

weighted L1 loss when using ℎ(𝑍, 𝐹 ) to predict 𝑆 .

𝑄 (ℎ)
=E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 )ℎ(𝑍, 𝐹 )] − E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 )ℎ(𝑍, 𝐹 )]
=𝐶 − [E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) (1 − ℎ)] + E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 )ℎ]] ,

(21)

where

𝐶 = E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 )] (22)

is a constant.

The term in the bracket is a weighted L1 loss and conditional

probability 𝑃 (𝑆 = ·|𝐹 ) is the weight. Actually, this weight can be

learned from finite samples with any non-parametric or parametric

algorithms such as regression methods. Therefore our model can

be applied to real large datasets with continuous fair variables.

In addition, we give the formulation of 𝑄 (ℎ) when fair variables

are categorical in order to apply it to simpler circumstances, such

as demographic parity or equalized odds. In detail, we can use

|𝐷 (𝑆 = 1 − 𝑆𝑖 , 𝐹 = 𝐹𝑖 ) |/|𝐷 (𝐹 = 𝐹𝑖 ) | to estimate the weight for the

𝑖-th sample, therefore the equation (21) can be written as

𝑄 (ℎ) ≈ 𝐶 − 1

𝑁

[
𝑁∑
𝑖=1

|𝐷 (𝑆 = 1 − 𝑆𝑖 , 𝐹 = 𝐹𝑖 ) |
|𝐷 (𝐹 = 𝐹𝑖 ) |

|ℎ(𝐹𝑖 , 𝑍𝑖 ) − 𝑆𝑖 |
]
.

(23)



4.2 Adversarial Learning
Now we combine the total loss function as shown in equation (10)

and the conditional independence in equation (20) and get:

𝜽 =argmin

𝑔,𝑘

𝐿
pred
(𝑘 (𝑔(𝑋, 𝑆)), 𝑌 ) + _ · sup

ℎ

𝑄 (ℎ)

=argmin

𝑔,𝑘

sup

ℎ

𝐿
pred
(𝑘 (𝑔(𝑋, 𝑆)), 𝑌 ) + _ ·𝑄 (ℎ). (24)

As 𝑄 (ℎ) is actually a weighted L1 loss, the loss function above can

be optimized with the method of adversarial learning by setting

the 𝑄 (ℎ) as the adversarial loss. There are several works that use
adversarial learning to solve fairness notions.While the frameworks

among these works are similar, the main difference lies in the design

of loss functions.

Our method is most closed to LAFTR[23]. And actually, when

𝐹 = ∅, which means the conditional independence constraint 𝑌 ⊥
𝑆 | 𝐹 is reduced to 𝑌 ⊥ 𝑆 , our method is exactly the same as theirs.

Consider 𝑄 (ℎ) with finite samples as shown in equation (23),

when 𝐹 = ∅, the weight of sample 𝑖 is actually |𝐷 (𝑆 = 1 − 𝑆𝑖 ) |/𝑁 .

Multiple equation (23) with 𝑎 = 𝑁 2/(|𝐷 (𝑆 = 0) | · |𝐷 (𝑆 = 1) |) and
we get

𝑄DP (ℎ)
Δ
= 𝑎 ·𝑄 (ℎ) ≈ 𝐶 ′ −

𝑁∑
𝑖=1

1

|𝐷 (𝑆 = 𝑆𝑖 ) |
|ℎ(𝑍𝑖 ) − 𝑆𝑖 |, (25)

which becomes the same as the adversarial loss function provided

by [23].

When facing with equalized odds task, we can replace the fair

variables 𝐹 in equation (23) with 𝑌 and get:

𝑄EO (ℎ)
Δ
= 𝐶 − 1

𝑁

[
𝑁∑
𝑖=1

|𝐷 (𝑆 = 1 − 𝑆𝑖 , 𝑌 = 𝑌𝑖 ) |
|𝐷 (𝑌 = 𝑌𝑖 ) |

|ℎ(𝑌𝑖 , 𝑍𝑖 ) − 𝑆𝑖 |
]
.

(26)

With equation (25) and (26), we can apply our method into demo-

graphic parity and equalized odds target.

4.3 Practical Implementation
In practice, we cannot enumerate all the functions in𝐻𝑍𝐹 , we use an

MLP with sigmoid as an estimation. Furthermore, we find it difficult

to optimize with L1 loss as we use sigmoid functions to bound

the ℎ into [0, 1] and this can result in vanishing gradient problem

in practice. Instead, We define the L2 loss function 𝑄 ′(ℎ) as the
surrogate of𝑄 (ℎ) and the corresponding conditional independence
regularizer 𝐿′

fair
.

𝑄 ′(ℎ) Δ= 𝐶 −
[
E
[
I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) · (1 − ℎ)2

]
+ E

[
I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 ) · ℎ2

] ]
,

(27)

where𝐶 is the constant defined in equation (22). The corresponding

regularizer is

𝐿′
fair

Δ
= sup

ℎ∈𝐻𝑍𝐹

𝑄 ′(ℎ) . (28)

To show that directly optimizing L2 loss could also reach our

target, we give the following theorem.

Theorem 4.6. 𝐿′fair provides an upper bound of 𝐿fair, i.e.

𝐿′fair ≥ 𝐿fair . (29)

Algorithm 1 Derivable Conditional Fairness Regularizer (DCFR)

Input: Dataset 𝐷 = (𝑋,𝑌, 𝑆), 𝑋 = (𝐹,𝑂), EPOCH, BATCH_SIZE,
ADV_STEPS.

Output: 𝑔, 𝑘 , ℎ as in equation (24)

1: /* Step I */

2: for epoch_i← 1 to EPOCH do
3: Random mini-batch 𝐷 ′ = (𝑋 ′ = (𝐹 ′,𝑂 ′), 𝑌 ′, 𝑆 ′) from 𝐷 .

4: Freeze ℎ. Unfreeze 𝑔, 𝑘 .

5: Optimize 𝑔, 𝑘 with gradient descent according to 𝐷 ′.
6: Freeze 𝑔, 𝑘 . Unfreeze ℎ.

7: for adv_step← 1 to ADV_STEPS do
8: Optimize ℎ with gradient descent according to 𝐷 ′.
9: end for
10: end for
11:

12: /* Step II */

13: Freeze 𝑔, ℎ. Unfreeze 𝑘 .

14: for epoch_i← 1 to EPOCH do
15: Random mini-batch 𝐷 ′ = (𝑋 ′ = (𝐹 ′,𝑂 ′), 𝑌 ′, 𝑆 ′) from 𝐷 .

16: Optimize 𝑘 with gradient descent according to 𝐷 ′.
17: if accuracy on validation set does not increase for continuous

20 epochs then
18: Break.

19: end if
20: end for
21: return 𝑔, 𝑘, ℎ.

With this theorem, it makes sense to directly optimize with L2

loss, as L1 loss will decrease synchronously with L2 loss during the

optimization process. Using L2 loss instead of L1 loss makes the

algorithm much easier to converge in real experiments.

Our algorithm has two steps. We train the model 𝑔, ℎ, 𝑘 adver-

sarially firstly, and afterward we fine-tune the function 𝑘 for better

performance. During the training step, for each sampled mini-batch,

we train predictor part 𝑔 and 𝑘 once and train adversarial part ℎ

for several times. The number of adversarial steps is also a hyper-

parameter. During the fine-tuning step, we run the models with

early stop when the accuracy on the validation set does not increase

for continuous 20 epochs. The pseudo-code is shown in algorithm

1.

5 EXPERIMENTS
In this section, we provide the experimental settings and verify the

effectiveness of our method in multiple real datasets.

5.1 Datasets
We perform experiments on three real-world datasets that are

widely used in fair machine learning problems, including the Adult

dataset[9], theDutch census dataset[5], and the COMPAS dataset[22].

• Adult: The goal of the Adult dataset is to predict whether a

person makes more than $50k per year or not. Each instance

contains 112 attributes including sex, gender, education level,

occupation, etc. In our experiments, we set gender as the

sensitive attribute, and consider occupation (with 14 possible

categorical values) as the fair variable. The target variable
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Figure 3: The accuracy-fairness trade-off curves for different fairness metrics (Δ𝐷𝑃 , Δ𝐸𝑂 , Δ𝐶𝐹 from left to right) on various
datasets (Adult, Dutch census, COMPAS dataset from top to bottom, with |F | = 14, 7, 2 respectively). The upper-left corner is
preferred. Our method is shown in bolded lines. The UNFAIR algorithm is a triangle mark while other baselines are in dashed
lines. We take different values of _ from 0.1 to 20, get the mean of accuracy and fairness metric across 5 runs for each model,
and plot the Pareto front on the test dataset. While our model performs similarly on Δ𝐷𝑃 and Δ𝐸𝑂 task with baselines, with
the increase of |F |, our method performsmuch better than baselines on Δ𝐶𝐹 task. Note that we do not plot the curve of CFAIR
in the Adult dataset because the curve goes beyond the axis range.

(income) is binary andwe set "≥ $50k per year" as the favored
outcome.

• Dutch census: This dataset is sampled from the Dutch cen-

sus dataset, which is conducted by Statistics Netherlands to

predict whether a person has a prestigious occupation. Each

instance contains 35 attributes including age, gender, marital

status, etc. In our experiments, we set gender as the sensitive

attribute and level of educational attainment (with 7 possible

categorical values) as the fair variable. The target variable is

binary and we set "having a prestigious occupation" as the

favored outcome.

• COMPAS: The COMPAS dataset aims to predict whether

a criminal defendant will recidivate within two years or

not. Each instance contains 11 attributes including age, race,

gender, number of prior crimes, etc. In our experiments, we

set race as the sensitive attribute and set the charge degree

(with 2 possible categorical values) as the fair variable. The

target variable (recidivism or not) is binary and we define

"not recidivism" as the favored outcome.

As a summary, the basic statistics of the datasets are listed in

table 2.

Table 2: Basic statistics of the datasets

Dataset Train/Test 𝑃 (𝑆 = 0) 𝑃 (𝑌 = 1) |F |
Adult 30,162/15,060 0.325 0.248 14

Dutch census 27,060/11,595 0.492 0.521 7

COMPAS 4,321/1,851 0.659 0.455 2

5.2 Baselines
As adversarial representation learning has become a prominent

solver for fairness-related constrained optimization problems, we

also adopt it to solve our target problem. For a fair comparison,

we mainly select the following state-of-the-art fairness optimiza-

tion algorithms that are also solved by adversarial representation

learning as baseline methods.



• UNFAIR: We design a baseline predictive model without

any fairness constraint by setting _ to be 0 in equation (24).

• ALFR[12]: ALFR is specifically designed for demographic

parity problems.

• CFAIR[39]: CFAIR aims to mitigate the gap of demographic

parity and equalized odds simultaneously.

• LAFTR[23]: LAFTR consists of two different loss functions,

which target demographic parity and equalized odds respec-

tively. Therefore, we implement two variants LAFTR-DP
and LAFTR-EO.

For general conditional fairness, since none of the methods above

propose the method to handle this situation explicitly, we extend

the method of LAFTR-EO by replacing the conditional target 𝑌

as 𝐹 in adversarial loss, namely LAFTR-CF. In detail, the original

target adversarial loss function in LAFTR is

𝐿𝐸𝑂
𝐴𝑑𝑣
(ℎ) = 2 −

𝑁∑
𝑖=1

1

|𝐷 (𝑌 = 𝑌𝑖 , 𝑆 = 𝑆𝑖 ) |
|ℎ(𝑍𝑖 ) − 𝑆𝑖 |. (30)

We transform it into conditional fairness setting as

𝐿𝐶𝐹
𝐴𝑑𝑣
(ℎ) = |F | −

𝑁∑
𝑖=1

1

|𝐷 (𝐹 = 𝐹𝑖 , 𝑆 = 𝑆𝑖 ) |
|ℎ(𝑍𝑖 ) − 𝑆𝑖 |. (31)

The differences between the equation above and our methods lie

on the input of function ℎ and the sample weight. Equation (31)

tends to assign relatively high weights to minority groups with the

same 𝐹 compared with majority groups, which may lose stability

while our method treats different groups divided by 𝐹 equally.

As conditional fairness is a general notion that encompasses

the demographic parity and equalized odds, we implement the

following three variants of our method:

• DCFR-DP: We transform our method by setting F to be a

null set and optimize it by equation (25), so that it can be

used directly to solve demographic parity problems.

• DCFR-EO: We transform our method by setting F to be

Y = {0, 1} and optimize it by equation (26), so that it can be

used directly to solve equalized odds problems.

• DCFR-CF: We use the general form of our method to solve

general conditional fairness problems.

For demographic parity, we compare our DCFR-DP with ALFR,

CFAIR, and UNFAIR. For equalized odds, we compare our DCFR-EO

with LAFTR-EO, CFAIR, and UNFAIR, while ALFR cannot handle

this fairness target. For conditional fairness, we mainly compare

our DCFR-CF with LAFTR-CF. Note that CFAIR method can hardly

be applied to conditional fairness target as it requires |F | different
adversarial predictors when calculating adversarial loss, which is

impractical in real problems. For the sake of fair comparison and

easier convergence, we replace L1 loss with L2 loss function for

adversary losses in LAFTR model and our model DCFR. In addition,

we use cross-entropy loss as the prediction loss function in our

model DCFR.

As fair variables are categorical in these experiments, we use

Δ𝐷𝑃 , Δ𝐸𝑂 , Δ𝐶𝐹 as evaluation metrics, and smaller values of these

metrics mean higher fairness. More experimental details are shown

in the appendix.

5.3 Results
The results are shown in Figure 3. The columns show the accuracy-

fairness trade-off curves for demographic parity, equalized odds,

and conditional fairness respectively, and the rows correspond to

different datasets.

For the tradeoff curves, there are two observation points.

(1) If a curve is closer to the left-top point than other curves in

the majority range of an evaluation metric, the correspond-

ing method is better. Because it means that given a certain

degree of fairness, the method can achieve higher predic-

tion accuracy, while given a certain prediction accuracy, the

method can achieve better fairness.

(2) As a fair algorithm, it is important to evaluate how much

fairness can be achieved, which is indicated by the left-end

point of a curve.

From figure 3, we can get the following observations.

• For the conditional fairness task, it is obvious that our DCFR-

CF is more advantageous than LAFTR-CF in the sense of

both two observation points. In the COMPAS dataset, both

methods can reach similar fairness ranges, while our DCFR-

CF can achieve better trade-off performance. In Adult and

Dutch census datasets, the two curves are close, while DCFR-

CF can reach a higher fairness region than LAFTR-CF, which

is more obvious in the Adult dataset. The plausible reason is

that a larger |F | in Adult will make the limitation of LAFTR-

CF more obvious as it is designed in the context of one single

binary conditional variable.

• For the demographic parity and equalized odds tasks, the

degenerated variants of our method produce comparable

performances with state-of-the-art baselines that are specifi-

cally designed for these tasks. In some datasets, our method

reports even better results, for example, in the Adult dataset

of Δ𝐸𝑂 setting and COMPAS dataset in Δ𝐷𝑃 setting. We

attribute this to the strong expressive ability of DCFR.

• The overall performance of CFAIR is not satisfactory, espe-

cially in the Adult dataset where the curve of CFAIR goes

beyond the axis range. We notice that, as shown in table 2, 𝑌

is seriously biased in the Adult dataset. In CFAIR, however,

the balanced error rate is used in optimization.

6 CONCLUSIONS
In this work, we propose the conditional fairness concerning fair

variables and show that it is a general fairness notion with several

practical reductions. However, conditional fairness is difficult to

optimize directly as it cannot be written as a derivable loss function

straightforwardly especially when fair variables are continuous

or contain many categorical values. Inspired by conditional in-

dependence test methods, we derive an equivalent condition of

conditional independence under fairness settings. Based on the

equivalent condition, we propose a conditional independence regu-

larizer that can be integrated into gradient-based methods, namely

Derivable Conditional Fairness Regularizer (DCFR). We apply the

regularizer into the representation learning framework and solve

it with adversarial learning. We validate the effectiveness of our

method on real datasets and achieve good performance on con-

ditional fairness targets. It is worth mentioning that our method



becomes much better than baselines when the number of potential

values of fair variable increases.

Potential future work is to apply our method into unsupervised

settings as the conditional fairness notion does not rely on 𝑌 under

most circumstances. With the information of 𝐹 , we can ideally get a

more elaborate representation compared with demographic parity.

Besides, we find it difficult to measure the performance between

different models. On the one hand, the target fairness notions of

various models are usually different, which makes it impossible to

compare with each other. On the other hand, even for the same

fairness target, the most common practice is to plot the fairness-

utility trade-off curve, which cannot become an accurate metric.

This issue remains open and we believe it is worthwhile to study

on.
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A PROOFS
A.1 Proof of Proposition 4.2

Proposition. If random variable 𝑆 is binary and 𝑆 ∈ {0, 1}, the
random variables 𝑍 , 𝑆 are independent conditional on 𝐹 (𝑍 ⊥ 𝑆 | 𝐹 )
if and only if, for any ˜ℎ ∈ E𝑍𝐹 ,

E[I(𝑆 = 1) · ˜ℎ(𝑍, 𝐹 )] = 0,

where E𝑍𝐹 is shown in the equation (14) and I(𝑆 = 1) is the indicative
function defined as follow:

I(𝑆 = 1) =
{
1, if 𝑆 = 1,

0, if 𝑆 = 0.

Proof. On the one hand, I(𝑆 = 1) ∈ 𝐿2
𝑆
. Thus when 𝑍 , 𝑆 are

independent conditional on 𝐹 , for any ˜ℎ ∈ E𝑍𝐹 , according to lemma

4.1, E[I(𝑆 = 1) · ˜ℎ] = 0.

On the other hand, 𝑆 ∈ {0, 1}. Therefore for any𝑢 ∈ 𝐿2
𝑆
, function

𝑢 can be expressed as:

𝑢 (𝑆) = 𝑎 · I(𝑆 = 0) + 𝑏 · I(𝑆 = 1)
= 𝑎 + (𝑏 − 𝑎) · I(𝑆 = 1),

where 𝑎, 𝑏 ∈ R. Thus for any ˜ℎ ∈ E𝑍𝐹 , when equation (15) is

satisfied,

E[𝑢 · ˜ℎ] = E
[
(𝑎 + (𝑏 − 𝑎) · I(𝑆 = 1)) ˜ℎ

]
= 𝑎 · E[ ˜ℎ] + (𝑏 − 𝑎) · E[I(𝑆 = 1) · ˜ℎ]

= 𝑎 · E[E[ ˜ℎ |𝐹 ]]
= 0.

As a result, according to lemma 4.1, 𝑍 and 𝑆 are independent condi-

tional on 𝐹 . □

A.2 Proof of Theorem 4.3
Theorem. If random variable 𝑆 is binary and 𝑆 ∈ {0, 1}, the

random variables 𝑍 , 𝑆 are independent conditional on 𝐹 (𝑍 ⊥ 𝑆 | 𝐹 )
if and only if, for any ℎ ∈ 𝐿2

𝑍𝐹
,

𝑄 (ℎ) Δ= E [I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 )ℎ(𝑍, 𝐹 )]
− E [I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 )ℎ(𝑍, 𝐹 )] = 0.

Proof. On the one hand, if 𝑍 ⊥ 𝑆 | 𝐹 , according to proposition

4.2, for any
˜ℎ ∈ E𝑍𝐹 , E[I(𝑆 = 1) · ˜ℎ] = 0. Then for any function

ℎ ∈ 𝐿𝑍𝐹 , define the corresponding ˜ℎ as

˜ℎ(𝑍, 𝐹 ) = ℎ(𝑍, 𝐹 ) − E[ℎ |𝐹 ] .

Because

E[ ˜ℎ |𝐹 ] = E [[ℎ(𝑍, 𝐹 ) − E[ℎ |𝐹 ]] |𝐹 ] = E[ℎ |𝐹 ] − E[ℎ |𝐹 ] = 0,

we can know that
˜ℎ ∈ E𝑍𝐹 . Hence, we have

𝑄 (ℎ) =E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) · ℎ] − E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 ) · ℎ]
=E[I(𝑆 = 1) · ℎ] − E[𝑃 (𝑆 = 1|𝐹 ) · ℎ]
=E[I(𝑆 = 1) · ℎ] − E [E[𝑃 (𝑆 = 1|𝐹 ) · ℎ |𝐹 ]]
=E[I(𝑆 = 1) · ℎ] − E [𝑃 (𝑆 = 1|𝐹 ) · E[ℎ |𝐹 ]]
=E[I(𝑆 = 1) · ℎ] − E [E[I(𝑆 = 1) |𝐹 ] · E[ℎ |𝐹 ]]
=E[I(𝑆 = 1) · ℎ] − E [E [I(𝑆 = 1) · E[ℎ |𝐹 ] |𝐹 ]]
=E [I(𝑆 = 1) · ℎ − I(𝑆 = 1) · E[ℎ |𝐹 ]]

=E[I(𝑆 = 1) · ˜ℎ] = 0.

On the other hand, if for any ℎ ∈ 𝐿𝑍𝐹 , 𝑄 (ℎ) = 0, then consider

any function
˜ℎ ∈ E𝑍𝐹 . Similarly, we can get

E[I(𝑆 = 1) · ˜ℎ] = 𝑄 ( ˜ℎ) = 0.

According to proposition 4.2, 𝑍 and 𝑆 are independent conditional

on 𝐹 . □

A.3 Proof of Theorem 4.5
Theorem. 𝐿fair (𝑍, 𝐹, 𝑆), 𝐻𝑍𝐹 , and 𝑄 (ℎ) are defined in theorem

4.3 and definition 4.4. Then

𝐿fair (𝑍, 𝐹, 𝑆) = sup

ℎ∈𝐻𝑍𝐹

|𝑄 (ℎ) | = sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ) .

Proof. Because

𝑄 (ℎ) +𝑄 (1 − ℎ)
=E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 )] − E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 )]
=E [E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) |𝐹 ]] − E [E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 ) |𝐹 ]]
=E [𝑃 (𝑆 = 0|𝐹 )E[I(𝑆 = 1) |𝐹 ]] − E [𝑃 (𝑆 = 1|𝐹 )E[I(𝑆 = 0) |𝐹 ]]
=E [𝑃 (𝑆 = 0|𝐹 )𝑃 (𝑆 = 1|𝐹 )] − E[ 𝑃 (𝑆 = 0|𝐹 )𝑃 (𝑆 = 1|𝐹 )] = 0,

we have

sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ) = inf

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ)

Hence,

sup

ℎ∈𝐻𝑍𝐹

|𝑄 (ℎ) | = max

{
sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ), inf

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ)
}
= sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ).

□

A.4 Proof of Theorem 4.6
Theorem. 𝐿′fair provides an upper bound of 𝐿fair, i.e.

𝐿′fair ≥ 𝐿fair .

Proof. Since ℎ ∈ 𝐻𝑍𝐹 , we have 0 ≤ ℎ ≤ 1. Therefore ℎ ≥ ℎ2

and 1 − ℎ ≥ (1 − ℎ)2. As a result, for any ℎ ∈ 𝐻𝑍𝐹 ,

𝑄 ′(ℎ)
=𝐶 −

[
E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) · (1 − ℎ)2] + E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 ) · ℎ2]

]
≥𝐶 − [E[I(𝑆 = 1)𝑃 (𝑆 = 0|𝐹 ) · (1 − ℎ)] + E[I(𝑆 = 0)𝑃 (𝑆 = 1|𝐹 ) · ℎ]]
=𝑄 (ℎ) .
Finally we get

𝐿′
fair

= sup

ℎ∈𝐻𝑍𝐹

𝑄 ′(ℎ) ≥ sup

ℎ∈𝐻𝑍𝐹

𝑄 (ℎ) = 𝐿
fair

.

□



B EXPERIMENTAL DETAILS

Table 3: Hyper-parameters in the experiments

Adult COMPAS Dutch

# of hidden units in prediction 60 8 35

# of hidden units in adversary 50 8 20

# of adversarial steps 10 5 5

Batch size 512 256 512

Epoch 400 400 400

Learning algorithm Adadelta Adadelta Adadelta

Learning rate 1.0 1.0 1.0

We fix the baseline network architectures so that they are shared

among different methods. In detail, we set UNFAIR as a single

hidden layer MLP with ReLU as activation function and logistic

regression as the outcome function. For the adversary part of CFAIR,

LAFTR, and ALFR, we also use a single hidden layer MLP. Its input

is the hidden layer in UNFAIR and we apply logistic regression

to the outcome. As for our method, we add another |F | units to
the input of the adversarial network. The information about the

hyper-parameters is shown in table 3.

To get the accuracy-fairness trade-off curve, we sweep across

the coefficient _ in equation (24) from 0.1 to 20. For each coefficient

and each model, we train and fine-tune it for 5 times and get the

mean of accuracy and fairness metric on the test set. Finally, we

calculate the Pareto front of these results as commonly used in

literatures[2, 23].
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