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Abstract

Estimating counterfactual outcome of different treatments from observational
data is an important problem to assist decision making in a variety of fields.
Among the various forms of treatment specification, bundle treatment has been
widely adopted in many scenarios, such as recommendation systems and online
marketing. The bundle treatment usually can be abstracted as a high dimensional
binary vector, which makes it more challenging for researchers to remove the
confounding bias in observational data. In this work, we assume the existence of
low dimensional latent structure underlying bundle treatment. Via the learned latent
representations of treatments, we propose a novel variational sample re-weighting
(VSR) method to eliminate confounding bias by decorrelating the treatments and
confounders. Finally, we conduct extensive experiments to demonstrate that the
predictive model trained on this re-weighted dataset can achieve more accurate
counterfactual outcome prediction.

1 Introduction

Accurately predicting the counterfactual outcome of different treatments is of paramount importance
for decision makers across many domains, such as healthcare [4] and marketing [5]. As the prediction
tasks being different, the treatment specification can also be in various forms, for instance, binary,
continuous, multi-level and bundle. Among these forms, bundle treatment, which can be abstracted
as a high dimensional binary vector, has been widely used in many real scenarios. For example, in
recommendation systems, the treatment can be a bundle of exposed items which are selected from a
large item pool. Each dimension of the treatment means whether the corresponding item is in the
bundle.

The availability of ample observational data reveals a promising possibility of applying machine
learning to predict the outcome when assigned different treatments. Nevertheless, a nonnegligible
challenge in this way is that when we collect observational data, the treatment is usually assigned not
randomly, but to be correlated with the confounders which can also affect outcomes. For instance, the
exposure of products in recommendation systems is usually been confounded with the profiles and
visiting history of the users. Such phenomenon, namely confounding bias, induce the distribution
discrepancy between the distribution from which the observational data is collected and the one where
the treatment is randomly assigned. This discrepancy may cause the predictive model to focus on
the outcome estimation for the treatment that the assignment policy puts larger probability on but
ignore the other treatments. Therefore, to obtain the reliable estimation regardless the dependency
between treatments and confounders, we need to reduce the confounding bias of observational data
by decorrelating confounders and treatments.

There has been a large amount of literature that attempted to resolve the challenge in counterfactual
prediction problem. For binary treatment, Johansson et al. [16] introduced the treatment invariant
representation learning borrowed from domain adaptation [8, 33, 6] to address the confounding bias.
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Figure 1: Diagram of generation of bundle treatments.

Based on the treatment invariant representation, Hassanpour and Greiner [11] used the propensity
score based sample re-weighting to remove confounding bias more completely. Further, Liu et al.
[21] extended the treatment invariant representation to the multi-level treatment setting. Yoon et al.
[35] introduced the generative adversarial networks (GAN) to predict counterfactual outcome of
multi-level treatment. However, the literature above all focus on single treatment setting, rather than
bundle treatment. Although we can naively transform the bundle treatment into multi-level setting by
binary coding, the high dimensional property of original treatment may lead to exponential growth
on treatment levels which induces infeasible computation complexity for conventional methods.

To address the high-dimension problem of bundle treatment, we assume that there exists a low dimen-
sional latent structure which could generate the original treatment. For example, in recommendation
systems, the recommended items in a bundle are usually determined by several latent factors, such
as item categories and prices. The data generation process under the bundle treatment setting can
be abstracted as the diagram in Figure 1. Therefore, instead of decorrelating the high dimensional
original treatments and confounders, it is a natural idea that we can remove the confounding bias
through inferring the latent factors of treatments and decorrelating them with confounders.

In this paper, we propose the variational sample re-weighting (VSR) algorithm to decorrelate the con-
founders and bundle treatments by utilizing the latent structure of treatments. We leverage variational
autoencoder (VAE) [18, 26], a widely used generative model to learn the latent representations of
treatments, and conduct density ratio estimation [30, 32, 1] based on deep neural networks to decorre-
late the confounders and latent representations. Instead of point-wise estimation, we calculate sample
weights distribution-wisely by aggregating the density ratio in the whole variational distribution of
latent variables. After re-weighting samples by these weights, we can create a pseudo-population
where the confounding bias is effectively reduced, with which the off-the-shelf predictive model can
achieve more accurate counterfactual outcome estimation. Finally, we conduct extensive experiments
on both synthetic datasets and real world datasets to demonstrate the advantages of our proposed
variational sample re-weighting algorithm.

2 Related Works

Counterfactual Prediction Under the binary treatment setting, some literature [16, 29, 34, 11]
learned treatment invariant representation of confounders to remove confounding bias, adjust obser-
vational distribution and predict counterfactual outcome. As an alternative method, Johansson et al.
[17] applied sample re-weighting instead of treatment invariant representation learning. Furthermore,
Hassanpour and Greiner [12] assumed that some part of confounders have no effect on treatment
assignment or outcome, and proposed to neglect these confounders when learning sample weights.
As for multi-level treatment, Yoon et al. [35] introduced GAN and proposed GANITE to predict
counterfactual outcome of each treatment. When the existence of unobserved confounders may
mislead the counterfactual prediction, Louizos et al. [23] attempt to infer the unobserved confounders
from proxies, and Hartford et al. [10] introduced instrumental variable to address this problem.

Sample Re-weighting in Causal Inference The traditional methods in causal inference usually
re-weight samples based on propensity score [28, 20, 3] to remove confounding bias for binary
treatments. Some researchers studied the problem under a multi-level treatment setting by extending
the propensity score to generalized propensity score [14, 15, 22]. However, the (generalized)
propensity score estimation usually requires correct model specification. This may not be accessible
in many applications. To reduce the model dependency problem, some researchers proposed new
technology that can directly learn the sample weights by balancing the moments of confounders
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[19, 2, 9, 36]. The motivation behind these methods is that the distribution can be determined by the
collection of all moments. However, only finite moments can be involved in balancing computation,
and this needs to be designed manually by researchers.

3 Problem Statement and Approach

In this section, we first introduce the concepts and notations of the problem. Then we detailly give a
description of our variational sample re-weighting algorithm.

3.1 Counterfactual Prediction for Bundle Treatment

We aim to learn the outcome of each treatment on the individual with different contexts from the
observational data. The observational data comprises the confounders X ∈ X ⊂ Rd, the bundle
treatment T ∈ T ⊂ {0, 1}p assigned to the individual and the outcome y ∈ R given the treatment
and the confounders. Therefore, the observational data can be notated as {(xi, ti, yi)}1≤i≤n, where
n is the number of samples. We take item recommendation as an example for explanation. The
confounder vector xi encodes the context information of the user including the user attributes and
visiting history, which can influence both the treatment assignment (i.e. item bundle) and outcome
(i.e. user’s response). The treatment vector ti represents the displayed items where each bit ti,j
corresponds to an item in the pool. That is ti,j = 1 or 0 means the jth item is displayed or not. The
outcome variable yi means the user’s response to the item bundle, such as the click rate.

With the observational data, we hope to learn a hypothesis fθp : X × T 7→ R with model parameters
θp, which predicts the outcome based on the confounder and treatment variables. Counterfactual
prediction aims that the learned hypothesis can predict accurate outcome of all the available treatments
for each individual. Formally, the prediction error for the individual X can be defined as E(X) =
ET∼p(T)[L(fθp(X,T),y(X,T))], where L(·, ·) is the error function (e.g. square error), y(·, ·) is
the ground truth of outcome given X and T. Therefore, the target of counterfactual prediction is
minimizing Ecf = EX∼p(X)[E(X)].

Classical supervised learning can be applied to learn the hypothesis. However, in the observational
data, the treatment T is assigned based on confounders. Directly using supervised machine learning
may lead to accurate outcome estimation for the treatment that the assignment policy put larger
probability on p(T|X) but inaccurate outcome estimation for other treatments. To address this
distribution discrepancy induced by confounding bias, we assume the standard assumptions [28] in
causal inference, such as unconfoundedness, overlap and stable unit treatment value are satisfied.
We also introduce the ideas of re-weighting samples wi = WT (xi, ti) from causal inference to
decorrelate confounders and treatments for removing confounding bias, and then optimize the
prediction error on the re-weighted data Ewf = EX,T∼p(X,T)[L(fθp(X,T),y(X,T))WT (X,T)].

Here, we give an upper bound of Ecf based on Ewf and Integral Probability Metric (IPM) [31, 29],
which is a metric of distribution distance. Specifically, for two distribution on X × T , p1(X,T),
p2(X,T) and a family G of functions g : X × T 7→ R, we have: IPMG(p1(X,T), p2(X,T)) =
supg∈G |

∫
X

∫
T
(p1(X,T)− p2(X,T))g(X,T)dXdT|.

Theorem 1. Assuming a family G of functions g : X ×T 7→ R, l(X,T) = L(f(X,T),y(X,T)) ∈
G and overlap assumption is satisfied, formally, p(T|X) > 0,∀T ∈ T ,X ∈ X , we have:

Ecf ≤ Ewf + IPMG(WT (X,T)p(X,T), p(X)p(T)). (1)

More specifically, IPMG = 0 and Ecf = Ewf , when WT (X,T) = p(T)/p(T|X).

Proof can be found in supplementry material. From Eq. (1), we can observe that if we do not decor-
relate treatments and confounders after sample re-weighting, which means WT (X,T)p(X,T) 6=
p(X)p(T), IPMG value may be large and directly minimizing Ewf can not guarantee the result of
Ecf . On the other hand, if the confounding bias is successfully removed (e.g. IPMG ≈ 0), we
can optimize Ecf by minimizing Ewf . Under mild assumption, it can be proved that the weights
wd = {wdi }ni=1 = {p(ti)/p(ti|xi)}ni=1 is one of the optimal sample weights that induce lowest
counterfactual prediction error Ecf by minimizing the empirical re-weighted prediction error Ewf .

However, the high dimensional property of bundle treatment bring challenges to decorrelating con-
founders and treatments. To address it, we assume that the bundle treatment T is determined by the
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Figure 2: The framework of variational sample re-weighting algorithm.

low dimensional latent representation Z. From Figure 1, we can observe that if the latent representa-
tion is decorrelated with confounder in the re-weighted distribution, which means pw(Z|X) = pw(Z),
the treatment is also decorrelated with confounder and the confounding bias is removed. Formally,

pw(T|X) =

∫
Z

pw(T|Z)pw(Z|X)dZ =

∫
Z

pw(T|Z)pw(Z)dZ = pw(T). (2)

Therefore, we propose variational sample re-weighting to learn latent representations of treatments and
remove confounding bias through decorrelating the latent treatment representations and confounders.

3.2 Variational Sample Re-weighting

In this section, we introduce our VSR algorithm. This method can be a data pre-processing method
to improve performance of the trained counterfacutal predictive model fθp : X × T 7→ R.

3.2.1 Latent Treatment Representation Learning

To learn the latent representation of treatment, we introduce variational autoencoder (VAE), which
makes weaker assumption on the data generation process and latent structure. It simultaneously
learns encoder qφ(Z|T) and decoder pϕ(T|Z) by maximizing evidence lower bound (ELBO):

LELBO =
1

n

n∑
i=1

Ez∼qφ(z|ti)[log pϕ(ti|z) + log p(z)− log qφ(z|ti)], (3)

where p(Z) is the prior distribution of the latent treatment representation and usually assumed to
be an standard normal distribution N (0, I). With the encoder component, we can infer the latent
representation z ∼ qφ(z|ti) of treatment ti. Then we transform the original dataset to the joint
space of confounders and latent representations, that is {(xi, z)}1≤i≤n, z ∼ qφ(z|ti). In the target
decorrelated distribution, the latent representations should be assigned to each sample independently
of confounders, formally, the target distribution is {(xi, z)}1≤i≤n, z ∼ p(z).

3.2.2 Variational Sample Weight Learning

The classical sample weights learning methods in causal inference field almostly focused on the single
treatment setting, which can hardly be extended to decorrelate the latent treatment representation and
confounders. To address this problem, we introduce density ratio estimation based on deep neural
networks [30]. Since the learned latent representation of treatment is of a variational distribution
qφ(z|ti) rather than a single point, we can not naively use point-wise estimation of density ratio
in latent space as the sample weight. Instead, considering all the point-wise estimation of density
ratio in the variational distribution, we start from WT (X,T) = p(T)/p(T|X) [7, 27] and propose
variational sample weight which is calculated distribution-wisely as following:
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wdi =WT (xi, ti) =
p(ti)

p(ti|xi)
=

p(ti)∫
z
p(z|xi)p(ti|z)dz

=
1∫

z
p(z|xi)p(ti|z)p(ti)

dz

=
1∫

z
p(z|xi)p(z|ti)p(z) dz

=
1∫

z
p(z|ti)p(z|xi)p(z) dz

=
1∫

z
p(z|ti) p(z,xi)

p(z)p(xi)
dz

=
1∫

z
p(z|ti) 1

WZ(xi,z)
dz

=
1

Ez∼qφ(z|ti)[
1

WZ(xi,z)
]
, (4)

where WZ(X,Z) is the density ratio estimation for the points in space X × Z to decorrelate X and
Z. It can be guaranteed that with the weights wd = {wdi }ni=1, the treatments can be decorrelated
with confounders in the observational data, and therefore we can obtain a pseudo-data with alleviated
confounding bias. Besides, as the variational sample weights are estimated distribution-wisely from
the inferred variational distribution in latent space, the sample weights will be more smooth and have
larger effective sample size [24] than the point-wisely estimated weights as previous literature [30]
did.

To estimateWZ(X,Z), we set the transformed data points from observational dataset {(xi, z)}1≤i≤n,
z ∼ qφ(z|ti) as positive samples (L = 1) and data points from decorrelated target dataset
{(xi, z)}1≤i≤n, z ∼ p(z) as negative samples (L = 0). After fitting these data points into a
deep neural networks based classifer pθd(L|X,Z), we can get the density ratio in the space X × Z
via Bayes theorem:

WZ(X,Z) =
p(X,Z|L = 0)

p(X,Z|L = 1)
=
p(L = 1)

p(L = 0)
· p(L = 0|X,Z)
p(L = 1|X,Z)

=
p(L = 0|X,Z)
p(L = 1|X,Z)

, (5)

where the term p(L|X,Z) is estimated by the classifier pθd(L|X,Z), and the term p(L=1)
p(L=0) equals one

for all the data points. The diagram of our VSR algorithm is shown in Figure 2. The whole process
above can be seen as a pre-processing of the training data, with which the confounding bias in the
original data can be effectively reduced and any off-the-shelf predictive model can be seamlessly
applied after that.

3.3 Outcome Prediction

Some work assume prior knowledge on the form of the outcome function [25]. But it may not be
true in practice. Therefore, we apply deep neural network fθp : X × T 7→ R with model parameters
θp to predict the outcome considering the potential complex relationship between outcomes and
confounders/treatments. With the variational sample weights learned above, the prediction loss is
defined as the empirical estimation of Ewf :

Lpre =
1

n

n∑
i=1

wdi · L(fθp(xi, ti), yi), (6)

where L(·, ·) is loss function, such as square error for regression tasks, or cross entropy for clas-
sification tasks. With this prediction network fθp trained on the re-weighted data which have less
confounding bias, we can achieve accurate counterfactual prediction of outcomes.

4 Experiments

Evaluating the methods of counterfactual prediction problems requires the ground truth of different
treatment outcomes, which can hardly be satisfied by the observational data in reality. To partially
overcome this obstacle, we conduct experiments on both synthetic datasets and datasets from a
simulator mimicking recommendation systems in real world to evaluate the effectiveness of our
method.

4.1 Experiment Settings and Baselines

We compare our VSR algorithm with the following methods. They are all based on the same
prediction network architecture for fair comparision.
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• DNN: It directly uses deep neural networks to predict the outcomes given confounders and
treatments without any pre-processing to the observational data.

• DNN&Wraw: Before training the deep predictive model, it assigns the sample weights
calculated by point-wise density ratio estimation in the joint space of confounders and raw
treatments.

• DNN&WAE : It uses autoencoder to learn the low dimensional representations of treatments
and assigns sample weights by point-wise density ratio estimation in the joint space of
confounders and learned representations.

In counterfactual prediction problem, the common goal is to achieve lower counterfactual outcome
prediction error of the treatments randomly assigned among the entire population regardless the
confounders [11, 12]. Therefore, we need to evaluate the models in the unbiased testing dataset
conforming to the distribution where the treatments are assigned independently of confounders. More
specifically, we randomly shuffles the matches of confounders and treatments in the original biased
dataset to create the unbiased testing dataset.

4.2 Synthetic Experiments

In this section, we give a brief overview of how to generate the synthetic datasets and demonstrate
the effectiveness of our proposed method.

4.2.1 Dataset

To evaluate the effectiveness of different methods, we generate the synthetic datasets under different
settings. We first generate the confounders X = (x1, x2, ...., xd), where the elements follows
independent normal distribution:

x1, x2, ..., xd
iid∼ N (0, 1).

In the observational dataset, for each sample, we assign the treatment T ∈ T ⊂ {0, 1}p based on
confounder variables. Firstly, we compute

L = X ·A+ εL, F = L ·B,

where L ∈ Rk is the latent representation with dimension k � p, A ∈ Rd×k,F ∈ Rp, B ∈ Rk×p,
εL ∈ Rk is a normal noise vector and A, B are constant. Then, assuming {i1, i2, .., is} are the s bits
with largest value in F, each bit tj in the bundle treatment T is defined as

tj =

{
1 j ∈ {i1, i2, .., is}
0 j /∈ {i1, i2, .., is} (7)

Since A and B are constant matrices, the treatment T is determined by the latent representation L
of low dimension k. Due to the relationship between L and X, the treatments and confounders are
correlated.

The outcome is generated from a pre-defined function, determined by both confounders and treatments:

y =

d∑
i=1

p∑
j=1

xidi,jtj + εy, (8)

where D = {di,j}1≤i,j≤n is a pre-defined matrix, and εy is a normal noise. To evaluate different
methods, we calculate the root mean square error (RMSE) of estimation in the testing dataset where
the treatments are independent of the confounders.

In this experiment, we set the confounder dimension d = 10, latent dimension k = 3, the number of
one-value bits in treatments s = 5, and the noise variable εy ∼ N (0, 0.012).
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Setting 1:Fix sample size n = 10000, varying dimension of treatments p
p p = 10 p = 20 p = 30 p = 50

Methods Mean STD Mean STD Mean STD Mean STD
DNN 0.617 0.043 0.997 0.139 1.380 0.155 1.940 0.278

DNN&Wraw 0.528 0.044 0.997 0.056 1.197 0.092 1.543 0.108
DNN&WAE 0.529 0.045 0.977 0.069 1.201 0.092 1.520 0.170
DNN&WVSR 0.476 0.037 0.946 0.067 1.126 0.085 1.506 0.152

Setting 2:Fix dimension of treatments p = 10, varying sample size n
n n = 5000 n = 10000 n = 15000 n = 20000

Methods Mean STD Mean STD Mean STD Mean STD
DNN 0.677 0.083 0.617 0.043 0.658 0.159 0.434 0.063

DNN&Wraw 0.647 0.073 0.528 0.044 0.631 0.160 0.385 0.075
DNN&WAE 0.624 0.063 0.529 0.045 0.589 0.072 0.400 0.066
DNN&WVSR 0.572 0.053 0.476 0.037 0.518 0.064 0.367 0.044

Table 1: The experiment results on synthetic datasets of different methods. Mean and STD refer to
the average value and standard deviation of the RMSE results in independent experiments. The lower
of these metrics, the better.
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4.2.2 Results

We conduct experiments under different settings by varying the sample size n and the dimension of
treatments p. For each experimental setting, we repeatedly carry out the experiments for 10 times
and calculate the average value and standard deviation of RMSE in the testing dataset and report the
prediction performance in Table 1.

From the results, we can clearly observe that compared with vanilla deep neural networks (DNN),
training the predictive model on the re-weighted dataset can effectively reduce the prediction error of
the model in the unbiased testing dataset. Owing to the decorrelation of treatments and confounders,
sample re-weighting methods can significantly reduce the confounding bias in observational data
and therefore produce more satisfactory results. Empirically, we further demonstrate the degree of
correlation between the treatments and confounders before and after sample re-weighting, which
can be measured by classification loss between the original pairs and shuffled pairs of confounders
and treatments, that is {(xi, ti)}1≤i≤n and {(xi, tvi)}1≤i≤n where v = {vi}1≤i≤n is a random
permutation of sample index. It is intuitive that larger classification loss means less correlation
between treatments and confounders. The results are presented in Figure 5. We can find that the
correlation is significantly reduced after sample re-weighting. Among the re-weighting methods,
WAE performs better than Wraw, since WAE also explores the latent structure of treatments and
removes confounding bias better via decorrelating latent representations and confounders.
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Our proposed re-weighting method WVSR achieves lower RMSE than re-weighting methods based on
raw treatments Wraw and representation from autoencoder WAE, since our method learns the sample
weights in a more smooth way through aggregating the density ratio in the variational distribution.
Moreover, the smoothness of weights {wi}1≤i≤n can be measured by effective sample size [24]

which is defined as Neff =
(
∑n
i=1 wi)

2∑n
i=1 w

2
i
. As shown in Figure 4, the effective sample size of our

proposed WVSR is significantly larger than Wraw and WAE.

We also alter the variance of εL in generating treatments while fixing the sample size n = 10000 and
dimension of treatments p = 10. Intuitively, when εL is smaller, the confounding bias in training is
more severe and the prediction error in the unbiased testing dataset tend to be larger. The results are
shown in Figure 3. Our method consistently achieves lowest prediction error across all settings.

4.3 Real World Experiments

Considering that few datasets contain ground truth of different treatment outcomes, we conduct
experiments with simulator Recsim [13] which mimics the recommendation systems in real world.

4.3.1 Data generation

There is a simulation environment about document recommendation 1 in Recsim. In this environment,
a document Di is characterized by the topic (category) ci and quality qi. A user is characterized
by a vector of affinity to each document topic X ∈ Rd, where d is the number of document topics.
To generate observational dataset with confounding bias, we assigned the bundle treatment (i.e.
recommended document list) by the following process:

• Intention vector of each document topic is generated as L = X+ εL, εL ∼ N (0, 0.81I).
• The recommending score of each document Di is calculated as the document quality plus

the intention value of the document topic. Formally, Scorei = lci + qi.
• The s documents with highest score are selected as recommended documents forming the

bundle treatment.

Given the user features (confounder) and recommended documents (treatment), the simulator provide
the ground truth of user’s click rate. The methods is evaluated by the RMSE of click rate prediction
in the unbiased testing dataset. We fixed the sample size n = 10000, the number of document topics
d = 4 and selected documents s = 4. The user affinity and document quality is generated from
standard normal distribution.

4.3.2 Results

We vary the number of available documents and repeatedly conduct experiments 10 times for each
setting. The results are reported in Table 2.

The overall results are quite consistent with the experiments on the synthetic datasets. Since sample re-
weighting process can reduce the correlation between treatments and confounders in the observational
data, the predictive model trained on this less biased pseudo-data can achieve more accurate prediction
in the unbiased testing dataset. Our proposed variational sample re-weighting (VSR) algorithm enjoys
a more smooth estimation of sample weights in the variational distribution space. Therefore, the
prediction RMSE of our method can be smaller.

5 Conclusion

In this paper, we investigate the counterfactual outcome prediction for bundle treatment. We assume
the bundle treatment has low dimensional latent structure and propose the variational sample re-
weighting (VSR) algorithm to decorrelate the learned treatment representations and confounders. Via
extensive experiments on synthetic datasets and real world datasets, we showed that the proposed
sample weights can effectively reduce the confounding bias in the observational data and achieve
more accurate counterfactual outcome estimation. For future works, we will attempt to learn the
optimal treatment for each individual.

1https://github.com/google-research/recsim/blob/master/recsim/environments/interest_exploration.py
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RMSE of click rate prediction (×10−2)
Document number p p = 10 p = 20 p = 30 p = 50

Methods Mean STD Mean STD Mean STD Mean STD
DNN 2.694 0.589 3.941 0.716 4.415 0.582 4.443 0.613

DNN&Wraw 1.950 0.517 3.258 0.621 3.856 0.455 3.788 0.625
DNN&WAE 1.711 0.407 3.312 0.741 3.683 0.515 3.623 0.619
DNN&WVSR 1.596 0.349 2.923 0.407 3.318 0.459 3.385 0.598

Table 2: Experiment results on real world datasets of different methods. Mean and STD refer to the
average value and standard deviation of RMSE. Lower is better.

6 Broader Impact

This work investigates in the problem of counterfactual outcome prediction. This can utilize the power
of machine learning technology to assist better decision making in many domains. For example, the
marketer can be helped to find the best marketing actions to improve user conversion. At the same
time, this work may suffer from some risk. It relies on some standard assumption in causal inference
field, such as unconfoundedness, stable unit treatment value. These assumptions may be violated
in some scenarios. For example, some confounders, such as economic status, may not be measured
due to ethical or technical reasons. The samples may also have interactions with each other in some
scenarios. All these violation can bring risk to the prediction results and lead to poor decision making.
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