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Abstract
Recently, domain adaptation based on deep models has been
a promising way to deal with the domains with scarce labeled
data, which is a critical problem for deep learning models.
Domain adaptation propagates the knowledge from a source
domain with rich information to the target domain. In reality,
the source and target domains are mostly unbalanced in that
the source domain is more resource-rich and thus has more
reliable knowledge than the target domain. However, exist-
ing deep domain adaptation approaches often pre-assume the
source and target domains balanced and equally, leading to
a medium solution between the source and target domains,
which is not optimal for the unbalanced domain adaptation.
In this paper, we propose a novel Deep Asymmetric Trans-
fer Network (DATN) to address the problem of unbalanced
domain adaptation. Specifically, our model will learn a trans-
fer function from the target domain to the source domain and
meanwhile adapting the source domain classifier with more
discriminative power to the target domain. By doing this, the
deep model is able to adaptively put more emphasis on the
resource-rich source domain. To alleviate the scarcity prob-
lem of supervised data, we further propose an unsupervised
transfer method to propagate the knowledge from a lot of un-
supervised data by minimizing the distribution discrepancy
over the unlabeled data of two domains. The experiments on
two real-world datasets demonstrate that DATN attains a sub-
stantial gain over state-of-the-art methods.

Introduction
Nowadays, deep learning models have been successfully ap-
plied to many applications (Krizhevsky and Hinton 2011;
Mikolov et al. 2010; Wang, Cui, and Zhu 2016). However,
the performance for deep models relies heavily on the vol-
ume of training data, especially labeled data. When the la-
beled data are insufficient, the performance would be largely
degraded.

To solve the problem, domain adaptation based on deep
models attracts much interest in both academia and indus-
try. These methods resort to an auxiliary domain, i.e. the
source domain, and transfer its knowledge to the target do-
main. The key problem is how to bridge the source and the
target domain to transfer the knowledge. Most of the ex-
isting methods either map them to a new common space
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(Hubert Tsai, Yeh, and Frank Wang 2016) or minimize the
discrepancy between the latent representations of different
domains to correlate the two domains (Zhuang et al. 2015;
Shu et al. 2015). When these methods transfer the knowl-
edge, they all pre-assume that the importance of the source
and target domain data is equivalent. Thus, they always find
medium solutions between the source and target domains.
However, in most real-world cases, the source and target
domains are unbalanced in that the source domain is often
more resource-rich and has more reliable knowledge than
the target domain. For example, we often use textual data
to help image applications and it is much easier to classify
texts than images because textual data have a smaller se-
mantic gap (Shu et al. 2015; Zhang et al. 2013). Another
typical example is that the English corpora is often used as
the source domain to improve the task in minor languages,
because we have much more annotated English documents
to extract more reliable knowledge than those of minor lan-
guages (Zhou et al. 2014). But how to take the domain im-
balance into domain adaptation is still an unsolved problem.

There are three challenges for unbalanced domain adap-
tation: (1) Domain Heterogeneity: Data from different do-
mains have different statistical properties and distributions
(Srivastava and Salakhutdinov 2012), resulting in the do-
main discrepancy, thus posing a great challenge for repre-
sentation space alignment and knowledge transfer. (2) Un-
balanced Knowledge Transfer. The knowledge in the source
and target domains is unbalanced. We need to discriminate
the two domains and transfer the knowledge in an asym-
metric way to get an optimal solution, which makes exist-
ing transfer methods inadequate. (3) Data Scarcity. Most ex-
isting transfer methods only utilize labeled data to perform
knowledge propagation. However, the labeled data are of-
ten scarce, which leads to the transfer model sensitive to the
noises. How to incorporate more information to alleviate the
scarcity is also critical for domain adaptation.

To address the above challenges, we propose a novel Deep
Asymmetric Transfer Network (DATN), to perform unbal-
anced domain adaptation. Our model contains two pathways
of deep models for source and target domains respectively,
which are able to project the data into the high-level space,
i.e. the semantic space, to bridge the domain heterogene-
ity (Srivastava and Salakhutdinov 2012). Considering that
the knowledge in source and target domains is unbalanced,



we propose an asymmetric transfer model. Specifically, we
learn a feature transfer in the high-level space from the tar-
get domain to the source domain to align their representa-
tion spaces. Then, we adapt the source domain classifier with
more discriminative power to the transformed target domain
space. These two asymmetric transfer processes of super-
vised information make the model more focus on the source
domain richer knowledge. Furthermore, to solve the scarci-
ty problem of the supervised data, we also utilize unsuper-
vised data to perform transfer. We conduct the experiments
on a heterogeneous and a homogeneous dataset. The exper-
imental results demonstrate our proposed method achieves
substantial gains compared to the existing approaches.

Related Work
Domain adaptation, also known as transfer learning (Pan
and Yang 2010) aims at propagating the knowledge in the
source domain to the target domain. Most of existing meth-
ods (Oquab et al. 2014; Glorot, Bordes, and Bengio 2011;
Long and Wang 2015; Yosinski et al. 2014) focus on homo-
geneous domain adaptation, which assumes that data of the
source and target domains lie in the same domain, such as
the images in NUS-WIDE and ImageNet. For this branch,
methods often use a share-parameter model for the two do-
mains. Some other works work on heterogeneous domain
adaptation, which assumes that the data of source and tar-
get domains lie in different domains and different feature
spaces. For both homogeneous and heterogeneous domain
adaptation, their key bottleneck is to alleviate the domain
discrepancy to perform knowledge transfer. Most of existing
methods (Zhu et al. 2011; Qi, Aggarwal, and Huang 2011;
Shi et al. 2009; Dai et al. 2009) adopt shallow models at-
tempting to explicitly reduce the discrepancy. However, the
transferability of shallow models will be greatly limited due
to the task-specific variability (Long and Wang 2015), there-
by these models cannot achieve satisfied performance.

Recently deep neural networks have been demonstrated
to be able to discover invariant factors underlying different
datasets which are transferrable between different domain-
s and tasks (Yosinski et al. 2014). Therefore, some recen-
t works start to apply deep neural networks to bridge the
source and target domains to perform domain adaptation
(Zhuang et al. 2015; Shu et al. 2015; Hubert Tsai, Yeh, and
Frank Wang 2016; Zhou et al. 2014). However, these meth-
ods assume that the knowledge in two domains are balanced
and thus just find a medium solution between the source and
target domains, which is not optimal as we have explained
before. Although (Zhou et al. 2014) attempts to rely more on
the source domain data, it assumes that all the knowledge in
the source domain can be totally transferred, which is also
detrimental to the transfer performance. Furthermore, most
of these methods only use the labeled data to perform trans-
fer, resulting in a non-robust solution when the labeled data
is scarce. In this paper, we propose a deep transfer model,
which is able to extract the knowledge from both the labeled
and unlabeled data and adaptively transfer knowledge from
the resource-rich source domain to the target domain in an
asymmetric way.

The Methodology
Problem Statement and Notations
Given a set of target domain unlabeled data XuL

T =

{xuLTi
}n

uL
T
i=1 and labeled data {XL

T ,yT } = {(xLTi
, yTi

)}n
L
T
i=1,

similarly a set of source domain unlabeled data XuL
S =

{xuLSi
}n

uL
S
i=1 and labeled data {XL

S ,yS} = {(xLSi
, ySi

)}n
L
S
i=1,

and additionally a set of paired data across two domain-
s {Xc

S , X
c
T } = {(xcSi

,xcTi
)}nc
i=1, where xuLSi

, xLSi
and xcSi

are in R1×dS , xuLTi
, xLTi

and xcTi
are in R1×dT and ySi ,

yTi
∈ {1, ..., k}, our problem is to transfer the knowledge

mined from the source domain data to the target domain.
To solve the problem, we propose a novel Deep Asym-

metric Transfer Network (DATN) to perform unbalanced
domain adaptation, whose framework is shown in Figure 1.
It contains two components: the intra-domain representation
learning (in Figure 1(a)) to initialize the deep models, and
unbalanced domain adaptation (in Figure 1(b)) to propagate
the knowledge. Some other notations regarding the model
are listed in Table 1. Note that for simplicity, the superscript
of the top layer’s parameters is omitted. For example, WS ,
WT and z∗i all denote the notations in the top layer of the
deep model. In addition, the subscript and superscript of z(l)

are corresponded with its input. For example, zuL(l)Si
is the

hidden representations corresponded with the input xuLSi
.

Table 1: Terms and Notations
Symbol Definition

∗ ∗ ∈ {S, T} represents the source or target domain
m∗ the number of hidden layers
k the number of categories
d the dimensionality of the top-layer representations

X∗ X∗ = XuL
∗ ∪XL

∗ ∪X
c
∗ = {x∗i}

n∗=nuL
∗ +nL

∗ +nc
i=1

x̂∗i The reconstruction of the input x∗i
Z(l)

∗ Z(l)
∗ = {z(l)

∗i
}n∗
i=1, the l-th layer hidden representations

W (l)
∗ , b(l)

∗ the l-th layer’s weight matrix or biases in encoder
Ŵ (l)

∗ , b̂(l)
∗ the l-th layer’s weight matrix or biases in decoder

ϑ∗ the softmax parameters
θ∗ {W (l)

∗ }
m∗
l=1 ∪ {b

(l)
∗ }

m∗
l=1 ∪ {ϑ∗}

Intra-domain High-level Representation Learning
We propose a semi-supervised deep autoencoder for each
domain to utilize both of its labeled and unlabeled data to
perform intra-domain representation learning. It acts as an
initialization for the deep models, which facilitates the fol-
lowing unbalanced domain adaptation because it maps the
data into the high-level space, where cross-domain data are
easy to be correlated and transferred (Ngiam et al. 2011).

The proposed model, shown in Figure 1(a), consists of
a deep autoencoder to utilize unsupervised information and
a softmax layer to incorporate supervised information. For
each layer, we use Relu (Nair and Hinton 2010), i.e. g(x) =
max(0, x) as the non-linear function, because it can pre-
vent gradient vanishing. Additionally, given the input, how
to obtain the representations of each layer is the same as



…

…

…

…

…

…

…

…

…

…

…

…

…

…

… …

Source Domain

(Labeled and Unlabeled data)

Target Domain

(Labeled and Unlabeled data)

Unsupervised Cost

(Reconstruction error)

Supervised Cost

(Softmax error)

Supervised Cost

(Softmax error)

Unsupervised Cost

(Reconstruction error)

Intra-domain Representation Learning Intra-domain Representation Learning

top-level 

representations

top-level 

representations

(a) Intra-domain Representation Learning

…

…

…

…

…

…

…

…

… …

Source Domain

(Labeled and Unlabeled data)

Target Domain

(Labeled and Unlabeled data)

…

…
Transfer Cost

top-level 

representations
top-level 

representations

Distribution

Matching

Asymmetric Mapping

Unbalanced Domain Adaptation

Classifier Adaptation

Representation

Matching

Classification layer Classification layer

(b) Unbalanced Domain Adaptation

Figure 1: The framework of our proposed model DATN

many deep-model based papers do, like (Wang et al. 2015a;
2015b), which we omit in this paper due to the limit of space.

Deep autoencoder is an unsupervised model, which aim-
s at minimizing the reconstruction error for the input sam-
ples and is able to capture the data manifolds smoothly
(Salakhutdinov and Hinton 2009). Its loss function is:

L∗,recon =

n∗∑
i=1

‖x̂∗i − x∗i‖22 (1)

To further utilize the supervised information, we add a
softmax layer on the deep autoencoder. The loss function
can be formulated as follows:

L∗,soft = −
1

nL
∗

nL
∗∑

i=1

k∑
j=1

1{y∗i = j} log e
zL∗i

·ϑ∗j∑k
l=1 e

zL∗i
·ϑ∗l

(2)

where 1(·) is the indicator function.
Then we combine Eq. 1 and Eq. 2 to form the loss func-

tion for intra-domain representation learning.

J intra∗ = L∗,recon + L∗,soft + Lreg (3)

By minimizing Eq. 3 for each domain respectively, we
can initialize the deep models for each domain. However, it
cannot get satisfied performance on the target domain due to
the lack of data. Then we propose unbalanced domain adap-
tation method in the next section to do knowledge transfer.

Unbalanced Domain Adaptation
To transfer the knowledge from the source domain to the
target domain, two questions remain to be answered: where
and how to transfer?

For the first question, (Srivastava and Salakhutdinov
2012) suggests that, cross-domain data have more explicit
relationships in the high-level space, where representation-
s of cross-domain data contain much semantic information.
Therefore, we process all the transfers in the top-level space.

As we discussed before, in most cases source domain da-
ta have much richer and more reliable knowledge than tar-
get domain data. Then how to transfer the knowledge when
the two domains are unbalanced is the other question. First,

we propose an asymmetric transfer strategy which is able
to emphasize on the richer knowledge within the source do-
main supervised data and adaptively transfer the knowledge
to the target domain. Second, to alleviate the scarcity prob-
lem of supervised data, we utilize unsupervised data in both
domains to perform unsupervised transfer by using distribu-
tion matching. The framework is shown in Figure 1(b).

Asymmetric Transfer To transfer the knowledge across
domains, we first need to bridge the source and the target do-
main. Most methods seek to find a medium solution to sym-
metrically bridge the data in the two domains. These meth-
ods do not make good use of the richer and more reliable
knowledge in the source domain. To solve the problem, we
propose an asymmetric transfer process to bridge them. The
process contains two parts, one to transfer the knowledge
existing in the representation spaces and the other to further
transfer the knowledge in the classifier.

In the first part, the key idea is that for a data pair, its
high-level representations in the target domain can be trans-
formed to approximate its high-level representations in the
source domain. Accordingly, we map the data of the target
domain to the source domain through a mapping function G
and minimize the mis-alignment error. The loss function is
shown as follows:

Lpair = ‖ZcS − ZcT ·G‖2F + λ′‖G‖2F
where λ′ > 0 is a parameter to balance the mis-alignment
loss and the regularization penalty.

By doing the aforementioned asymmetric mapping, the
high-level representation spaces of the source and target do-
mains are aligned. Then we further adapt the source do-
main classifier to classify the target domain data through the
learned mapping function G. The reason why we adapt the
classifier of the source domain to the target domain is that
the richer knowledge in the source domain will lead to a
more discriminative source domain classifier. Additionally,
we use the target domain labeled data to refine the adapted
classifier. The objective function can be shown as follows:

Ltrans = −
1

nLT

nL
T∑

i=1

k∑
j=1

1{yTi
= j} log ez

L
Ti
·G·ϑSj∑k

l=1 e
zL
Ti
·G·ϑSl



where 1(·) is the indicator function.
To summarize, our proposed asymmetric transfer method

focuses more on the resource-rich source domain, which has
richer and more reliable knowledge. It is able to transfer
more informative source domain knowledge existing in both
the representation space and classifier parameters to help the
target domain. Furthermore, the proposed classifier adapta-
tion method can prevent transferring unhelpful source do-
main knowledge to the target domain.

Unsupervised Transfer To make the model robust to the
noises (Zhu 2005), we additionally utilize unlabeled data
to perform transfer. However, unlike supervised data which
have explicit information to bridge the two domains such as
the labels or corresponded pairs, it is challenging to bridge
the unlabeled data between different domains and thus is d-
ifficult to perform transferring.

To address the challenge, we use the distributions over the
high-level representations as the bridge for cross-domain un-
labeled data. Given enough unlabeled data, we assume that
the marginal distributions over the high-level representation-
s across two domains should be similar. Specifically, like
many other papers do (Long et al. 2014), we use the Max-
imum Mean Discrepancy (MMD) (Sejdinovic et al. 2013)
as the distance measure to compare two distributions. Then
the loss functions for unsupervised transfer is introduced as
follows, which measures the distribution discrepancy:

Lunsup =MMD(ZS , ZT ) = ‖
1

nS

nS∑
i=1

zSi −
1

nT

nT∑
i=1

zTi‖
2
2

Final Objective and Optimization
Based on the above analysis, we derive the following objec-
tive function for our transfer model:

J cross = Lpair + αLtrans + βLunsup + Lreg (4)

where Lreg is the regularization term defined as:

Lreg = λ
∑

∗∈{S,T}

m∗∑
l=1

(‖W (l)
∗ ‖2F + ‖b(l)∗ ‖22)

To train the model, we first optimize Eq. 3 to do intra-
domain representation learning, which acts as an initializa-
tion. Then we do fine-tuning to perform the cross-domain
knowledge transfer.

In fine-tuning, our goal is to minimize J cross to get opti-
mized parameters of the deep model θS , θT and addition-
ally the cross-domain mapping function G. It is difficult
to simultaneously derive the optimal θS , θT and G while
minimizing J cross. To optimize them, we adopt Block Co-
ordinate Descent (BCD) (Sontag, Globerson, and Jaakkola
2011), which iteratively optimizes the parameters of the two
deep models θS , θT and G in a recurrent process.

In detail, to learn G, we fix the parameters of the deep
models θS and θT and then get ZcT and ZcS . When ZcT and
ZcS are obtained, from Eq. 4, the gradient of Ltrans with
respect to G is:

∂Ltrans
∂G

= −2Zc
T

T · (ZcS − ZcT ·G) + 2λ′G

Then by setting ∂Ltrans/∂G to zero, we can derive the
the closed form of G as follows:

G = (Zc
T

T · ZcT + λ′I)−1 · Zc
T

T · ZcS
where I is the identity matrix with the dimensionality of d.

To learn θS and θT , we fix G and use the back-
propagation to update the parameters from the top layers
down through the whole deep model. The full algorithm is
shown in Alg. 1.

Algorithm 1 Training Algorithm for the DATN
Require: XS , XT

Ensure: Optimized parameters: θ̃S , θ̃T and G̃
1: Randomly initialize parameters θS and θT .
2: // Perform intra-domain representation learning
3: repeat
4: Get J intra

∗ (X∗; θ∗) based on Eq. 3, ∗ ∈ {S, T} .
5: θ∗ = θ∗ − µ · ∂J intra

∗ (X∗; θ∗)/∂θ∗
6: until converge
7: t = 0, θ

(1)
S = θS , θ

(1)
T = θT

8: // Perform Unbalanced Domain Adaptation
9: repeat

10: t = t+ 1
11: Get G(t) by using XS , XT , θ(t)S and θ(t)T .
12: Get J cross(XS , XT ; θ

(t)
S , θ

(t)
T , G(t)) from Eq. 4.

13: θ
(t+1)
∗ = θ

(t)
∗ − µ · ∂J cross/∂θ

(t)
∗ , ∗ ∈ {S, T}

14: until converge
15: θ̃S = θ

(t+2)
S , θ̃T = θ

(t+2)
T , G̃ = G(t+1)

Discussion
In this paper, we use deep autoencoder as the basic block to
achieve the transfer. There are other kinds of deep models,
such as the CNN (Krizhevsky, Sutskever, and Hinton 2012)
and LSTM (Mikolov et al. 2010). Similarly, DATN can also
be applied to other deep feed-forward models. For example,
we can achieve the proposed asymmetric transfer and unsu-
pervised transfer approach in the top layer of the CNN or
LSTM. Since our main focus is to introduce the asymmetric
transfer model to do unbalanced domain adaptation, we will
omit the discussion about different deep architectures.

Then we introduce the complexity of the transfer method.
In each iteration of BCD for fine-tuning, the complexity for
optimizing θS and θT isO(nS+nT ). For the optimization of
G, although it includes the inversion of a matrix, the matrix
G’s dimension is only d × d. Therefore, the complexity for
this part is O(d3 + d2nc). Since d is a constant and often
small, the overall complexity for cross-domain transfer is
also linear to the number of the overall samples. Therefore,
our transfer method is scalable for real applications.

Experiments
Datasets
In our experiments, we use two real-world datasets, i.e.
NUS-WIDE and AMAZON REVIEWS.

NUS-WIDE (Chua et al. 2009) is a public web im-
age dataset, which consists of 269,648 images from Flick-
r. These images are surrounded by a total of 5,018 unique



tags. We use tags as the source domain to help image clas-
sification. In our experiment, we use the data of the 10 cate-
gories, i.e. birds, buildings, car, cat, dog, fish, horses, flow-
ers, mountain and plane. These categories can provide e-
nough data to support our experiment and are also used by
(Shu et al. 2015; Qi, Aggarwal, and Huang 2011). For tex-
tual information, we use the 1000 most frequent tags and
thus texts are represented by 1000-dimensional tag occur-
rence vectors. For image features, we use both the provid-
ed 500-dimensional SIFT (Lowe ) features and the 4096-
dimensional CNN features generated by the VGGnet (Si-
monyan and Zisserman 2014) pretrained on the ImageNet.

AMAZON REVIEWS (Prettenhofer and Stein 2010) is a
cross-language dataset, which contains the Amazon reviews
of the products of three categories: books, DVDs and mu-
sic on four languages: English (EN), German (GE), French
(FR) and Japanese (JP). We use the English reviews as the
source domain and each of the other three languages as the
target domain to classify the reviews’ category. Additionally,
the Google translator is applied on part of the non-English
reviews to construct domain-paired data. We use the 128-
dimensional topic distributions obtained by Latent Dirichlet
Allocation (Blei, Ng, and Jordan 2003) as the input features.

Some detailed statistics about the two datasets are shown
in Table 2. There is no overlapped samples among DuL

∗ , DL
∗ ,

Dc and Test, ∗ ∈ {S, T}. In these two datasets, the labeled
data in the target domain are very limited, which is often the
real case and a great challenge for many applications.

Table 2: The statistics of the datasets
Dataset |DuL

S | |DL
S | |DuL

T | |DL
T | |Dc| Test

NUS-WIDE 15000 5000 15000 100 5000 1000
AMAZON 15000 3000 15000 50 2000 1000

Baseline and Evaluation Metrics
We use both non-transfer and transfer methods as the base-
lines. Non-transfer methods only utilize the target domain
data to do classification. We use (1) SVM (Hearst et al.
1998): It is a well-known supervised shallow classification
model and we use LibSVM (Chang and Lin 2011) as the im-
plementation. (2) Deep Neural Network (DNN): It is a su-
pervised deep model and uses softmax regression in the top
layer to predict the labels. (3) Semi-Supervised Deep Au-
toencoder (SSDAE): Its loss function is the combination of
the reconstruction error on the unlabeled data and softmax
error on the labeled data.

For transfer methods, we use recently proposed hetero-
geneous domain adaptation methods as baselines. (1) TTI
(Qi, Aggarwal, and Huang 2011): It is a shallow-structured
transfer method. (2) WSDTN (Shu et al. 2015): It is a deep
transfer method, which transfers the labeling information
and seeks to find a medium solution between the source
and target domain. (3) HHTL (Zhou et al. 2014): It is a
deep transfer model, which assumes that all the knowledge
in the source domain benefits the target domain. (4) CDL-
S (Hubert Tsai, Yeh, and Frank Wang 2016): It is a semi-
supervised domain adaptation method which aims to sym-

metrically find cross-domain landmarks to help knowledge
transfer. (5) DATN sup: It is a simple version of DATN,
which does not take unsupervised transfer into account.

Parameter Settings
For NUS-WIDE, inspired by (Wang et al. 2015a), we use a
5-layer deep model for image pathway, and a 4-layer for text
pathway. For AMAZON REVIEWS, we all use 3-layer deep
models for two domains. The number of neurons in each
layer is summarized in Table 3. All the deep models use the
same structure for a fair comparison.

The values of α and β are selected from
{0, 0.5, 1, 2, 5, 10}. The regularization parameters of
λ′ and λ are set as 0.1 and 0.0001. The final values of all the
parameters are determined by using 5-fold cross-validation
on the training set. For NUS-WIDE, α is set as 2 and β is
set as 1. For AMAZON REVIEWS, they are both set as 2.
Our approach is implemented in Tensorflow. Throughout
the experiments, the learning rate is set as 0.0001, the decay
is set as 0.8 and the momentum is set as 0.8.

Table 3: Number of neurons of each layer of DATN
Dataset Target Domain Source Domain

NUS-WIDE (SIFT) 500-512-128-128-64 1000-512-128-64
NUS-WIDE (VGG16) 4092-1024-256-128-64 1000-512-128-64

AMAZON REVIEWS 128-100-100 128-100-100

Experimental Results
We first report the overall image classification accuracy and
the accuracy over each category on NUS-WIDE using SIFT
and VGG16 features. The results are reported in Figure 2.

From Figure 2, we can get the following observations:
• Regarding the overall accuracy, DATN achieves an at

least 30% improvement when using SIFT features and 7%
improvement when using VGG16 features over state-of-
the-art methods. It demonstrates the effectiveness of our
proposed DATN on heterogeneous domain adaptation.

• The result that DATN sup outperforms CDLS and WS-
DTN demonstrates an advantage of the proposed asym-
metric transfer model.

• The result that DATN sup outperforms HHTL demon-
strates that assuming the knowledge in the source domain
is fully transferrable is detrimental to the performance on
the target domain and our method of adaptively transfer-
ring source domain knowledge is essential.

• The result that DATN outperforms DATN sup demon-
strates the proposed unsupervised transfer is effective.

• The result that the performances of all the deep trans-
fer learning methods are better than those of non-transfer
methods demonstrates that deep domain adaptation is
very essential for a domain with limited data.

• The result shows the performance using VGG16 features
is much better than that using SIFT features. The reason
is that VGG16 features is more powerful because they uti-
lize much more side information on the ImageNet. Even if
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Figure 2: Image classification accuracy on NUS-WIDE using SIFT or VGG16 features.

in this case, the result that DATN can further improve the
performance demonstrates the superiority of our method.
We also conduct the experiment on another application of

transferring the knowledge mined from English corpora to
classify the textual reviews on other languages like French,
German and Japanese.

Table 4: Classification accuracy on AMAZON REVIEWS
Method EN→ FR EN→ GE EN→ JP
DATN 0.737 0.729 0.755

DATN sup 0.724 0.718 0.734
WSDTN 0.675 0.665 0.678
HHTL 0.701 0.673 0.702
CDLS 0.692 0.672 0.681
TTI 0.572 0.563 0.568

SSDAE 0.628 0.602 0.623
DNN 0.601 0.588 0.600
SVM 0.544 0.558 0.571

Table 4 shows that for the three target-domain languages,
our method DATN can achieve better classification accuracy
compared with baselines, which demonstrates the effective-
ness of our method on the cross-language application.

Further Results and Discussions
Discussions about Asymmetric Transfer One assump-
tion behind the unbalanced domain adaptation is that source
domain data have richer and more reliable knowledge than
those of target domain. Then one natural question is that how
the quality of the source domain data affects the transfer per-
formance on the target domain?

To conduct the experiment, we change the number of
source domain labeled data to control the quality of the
source domain. Then we report the classification accuracy
on the target domain. We compare the performance of DAT-
N sup with the performance of WSDTN, CDLS and DNN.
WSDTN and CDLS are symmetric-transfer based method-
s. DNN is non-transfer method. All methods only use the
supervised data for training. The result is shown in Figure 3.

Figure 3 shows that when the source domain accuracy in-
creases, the target domain accuracy of DATN sup increas-
es much faster than that of WSDTN and CDLS. The rea-
son is that symmetric-transfer based methods, i.e. WSDTN
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Figure 3: The target domain classification accuracy of DAT-
N sup, WSDTN, CDLS and DNN when changing the
source domain accuracy performed on DNN.

and CDLS, find a medium solution between the source and
the target domain, while our proposed asymmetric-transfer
method will more focus on the knowledge in source do-
main data. Then for DATN sup, as the accuracy of source
domain increases, i.e. the knowledge in the source domain
becomes more reliable, our proposed asymmetric transfer
model is able to extract and transfer richer and more reli-
able source domain knowledge to the target domain, thus
the performance on the target domain increases much faster.
Furthermore, the result also shows that if the accuracy of
the source domain is not that good, such as at 0.4 accuracy
on NUS-WIDE, DATN sup achieves 0.255 accuracy, which
outperforms 0.247 accuracy of DNN, because DATN sup
transfers the knowledge of the source domain adaptively.

To summarize, when source domain data contain rich-
er knowledge, our proposed asymmetric transfer model can
achieve a significant improvement over symmetric transfer
methods. When the knowledge is not that rich, the improve-
ment also exists but not that significant.

Furthermore, we regard the domain-paired data as the
bridge to connect the representation spaces between source
and target domains, which facilitate the classifier adaptation.
Therefore, we evaluate the effect of the number of the co-
occured pairs on Figure 4.

From Figure 4, we find that the average accuracy of all the
methods increases as the number of the co-occurred pairs
increases, which demonstrates the importance of domain-
paired data for domain adaptation. In addition, we observe
that our proposed method is robust to the number of the
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Figure 4: The classification accuracy of transfer methods
when changing the number of domain-paired data, i.e. |DC |.

paired data because when we only have 100 pairs in NUS-
WIDE, DATN also significantly outperforms baselines.

Discussions about Unsupervised Transfer Then we e-
valuate how the number of unlabeled samples in the source
domain affects the transfer accuracy in Figure 5.
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Figure 5: The classification accuracy of DATN on NUS-
WIDE and AMAZON REVIEWS when the size of the unla-
beled data in source domain , i.e. |DuL

S |, changes.

From Figure 5, we observe that when the size of the
source domain unlabeled dataset is small, the performance
of DATN is similar, or even worse than DATN sup. The
reason is that a small size of dataset cannot characterize the
data distributions well and thus our method of matching the
distributions may introduce noises to degrade the accuracy.
When the size of unlabeled data continuously increases, the
performance becomes better because more data can charac-
terize more reliable distributions to be transferred.

Furthermore, we discard the asymmetric transfer part to
see the result of the unsupervised transfer, denoted as DAT-
N unsup. The performance is shown in Table 5.

Table 5: Transfer Performance for DATN, DATN sup and
DATN unsup

Dataset DATN DATN sup DATN unsup
NUS-WIDE (SIFT) 0.375 0.358 0.285
NUS-WIDE (VGG) 0.861 0.825 0.785
Amazon (EN→ FR) 0.737 0.724 0.638
Amazon (EN→ GE) 0.729 0.718 0.642
Amazon (EN→ JP) 0.755 0.734 0.661

Table 5 shows that the result of DATN unsup is far less
than DATN and DATN sup. It demonstrates that transfer-
ring supervision information, i.e. domain-paired data and

classifier, is more informative for domain adaptation than
transferring unsupervised information. Although unsuper-
vised information is also helpful, it should be combined with
supervised information, which is able to better bridge the
source and target domains and then fascilitate the unsuper-
vised transfer process.

Parameter Sensitivity
We investigate the parameter sensitivity of α and β defined
in Eq. 4 on NUS-WIDE.
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Figure 6: The study of parameter sensitivity for DATN on
NUS-WIDE (SIFT).

From the results, we can see that our model is not sensitive
to the parameter settings in general. Specifically, comparing
Figure 6(a) and Figure 6(b), we find that α has a greater in-
fluence on the performance than β, which implies that the
proposed supervised asymmetric transfer model, especially
the classifier adaptation method is more important than the
unsupervised transfer, which is consistent with the conclu-
sion we just got in the previous experiment.

Conclusion
In this paper, we propose a novel Deep Asymmetric Trans-
fer Network (DATN) to perform unbalanced domain adap-
tation. Our model is able to propagate much richer and more
robust knowledge in the source domain to the target domain
in an asymmetric way. Furthermore, to make the model more
robust, we do unsupervised transfer by distribution matching
over high-level representations across domains. The exper-
iments conducted on two real-world datasets demonstrate a
significant improvement of DATN over baselines. We also
find that the proposed supervised asymmetric transfer mod-
el, especially the classifier adaptation method, has larger ef-
fect than the unsupervised transfer on the classification ac-
curacy. The future directions may focus on transferring the
knowledge from more complex data, such as the natural lan-
guages, heterogeneous networks and so on.
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