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ABSTRACT

Although hashing techniques have been popular for the large
scale similarity search problem, most of the existing methods
for designing optimal hash functions focus on homogeneous
similarity assessment, i.e., the data entities to be indexed
are of the same type. Realizing that heterogeneous entities
and relationships are also ubiquitous in the real world ap-
plications, there is an emerging need to retrieve and search
similar or relevant data entities from multiple heterogeneous
domains, e.g., recommending relevant posts and images to
a certain Facebook user. In this paper, we address the
problem of “comparing apples to oranges” under the large s-
cale setting. Specifically, we propose a novel Relation-aware
Heterogeneous Hashing (RaHH), which provides a general
framework for generating hash codes of data entities sit-
ting in multiple heterogeneous domains. Unlike some ex-
isting hashing methods that map heterogeneous data in a
common Hamming space, the RaHH approach constructs a
Hamming space for each type of data entities, and learns op-
timal mappings between them simultaneously. This makes
the learned hash codes flexibly cope with the characteristics
of different data domains. Moreover, the RaHH framework
encodes both homogeneous and heterogeneous relationships
between the data entities to design hash functions with im-
proved accuracy. To validate the proposed RaHH method,
we conduct extensive evaluations on two large datasets; one
is crawled from a popular social media sites, Tencent Wei-

bo, and the other is an open dataset of Flickr(NUS-WIDE).
The experimental results clearly demonstrate that the RaH-
H outperforms several state-of-the-art hashing methods with
significant performance gains.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
With the fast growth of heterogeneous networks, especial-

ly social media networks like Facebook, Flickr and Twit-

ter, it has attracted increasing attention to study and ex-
plore the interactions across heterogeneous domains. For
example, image tagging aims at giving descriptive textual
tags to images, recommendation on microblogging service
focuses on providing relevant posts to certain users, and the
targeted advertising is to send advertisements to potential
customers via tracking their online traits. In general, these
applications tend to find similar or relevant entities across
different relational domains in heterogeneous networks. As
those networks are often huge and associated with big data,
there is an emerging need to design an efficient and scalable
mechanism to evaluate heterogeneous similarity and search
heterogeneous entities.

Hashing is a highly scalable indexing strategy for approxi-
mate nearest neighbor search [1, 13, 23, 25]. It encodes data
entities into binary hash codes in Hamming space, where the
search can be extremely efficient. In addition, the learned
hash functions are usually in a simple form and the gen-
eration of hash codes can be done in a realtime manner.
However, most of the existing hashing technologies are de-
signed for homogeneous data, i.e., the data points indexed
by a hash table should be of the same type. There are
critical challenges for indexing heterogeneous data entities.
First, different domains often have different characteristics,
thus the corresponding mapped Hamming spaces should be
also different. How to effectively bridge the gaps between
those Hamming spaces and perform search across different
hash tables? Second, it is often to see that there exist het-
erogeneous relationships and connections between the data
entities from different domains. How to leverage such re-
lationships into the hashing function learning process? Al-
though there are a few recent studies designing new hashing
techniques to index multi-modal data entities into a common
Hamming space [4, 26, 15, 20, 27], such a single-Hamming s-
pace mapping strategy could be problematic and does not fit
into real world scenarios due to the intrinsic heterogeneity of
the multi-modal representations. In addition, the heteroge-
neous relationships are very critical but have not been con-
sidered by most of the existing approaches. Hence, rapidly



searching similar data entities over heterogeneous domains
still remains as an open issue.
To address these challenges, in this paper, we propose

a novel hashing technique, namely Relation-aware Hetero-

geneous Hashing (RaHH), for indexing and searching large
scale heterogeneous data. It utilizes the data features, the
homogeneous relationship within each single domain, and
the heterogeneous relationship across different domains to
learn hash functions for each type of data entities, as well as
optimal mappings between the hash codes of different types
of data entities. In particular, we formulate the learning pro-
cedure as a joint optimization problem with respect to both
hash functions and mapping functions. An efficient Block-

Coordinate Descent (BCD) strategy [21] is applied to derive
optimal solutions. Finally we validate the performance of
the RaHH approach on two large datasets; one is crawled
from Tencent Weibo, and the other is an open dataset of
Flickr, i.e. NUS-WIDE[5].
The rest of this paper is organized as follows. Section 2

briefly reviews the related works. The detailed formulation
and solution of RaHH is presented in Section 3. Experi-
mental validation on two real world datasets is presented in
Section 4, followed by our conclusion in Section 5.

2. RELATED WORK
The rapid growth of the applications with big data in

many areas, including social media, genomics, sensor net-
works, and even business analytics, promotes the study of
large scale search and retrieval. Due to computational and
memory efficiency, hashing based indexing techniques have
attracted more attentions in the recent decade. In partic-
ular, many new methods are developed through leveraging
sophisticated machine learning and data mining algorithms
to boost up the search efficiency and accuracy. In this sec-
tion, we will briefly survey the existing hashing techniques
and motivate our study for designing heterogeneous hashing
technique.
The earliest hashing methods, including the well-known

locality sensitive hashing (LSH) [10] and MinHash [3], are
based on either random projections or permutations, re-
sulting in data-independent hash functions. Although the
asymptotic property is theoretically guaranteed, the prac-
tical performance is often limited [24, 25]. Realizing the
limitations of the random techniques, many new hashing
methods are designed through integrating either data prop-
erties or supervision information to achieve compact hash
codes with improved accuracy. Representative unsupervised
methods include spectral hashing [25], graph hashing [17],
iterative quantization hashing [8], isotropic hashing [12], an-
gular quantization hashing [7], spherical hashing [9], and so
on. The key idea for those data-dependent hashing methods
lies in the exploration of data properties for hash function
design. For instance, spectral hashing explores the data
distributions and the graph hashing utilizes the geometric
structure of data for designing data-dependent hash func-
tions. Supervised learning paradigms, ranging from kernel
learning to metric learning to deep learning, have been ex-
ploited to learn binary codes and many supervised hashing
methods are proposed [14, 16, 19, 22]. In addition, the semi-
supervised hashing method was recently proposed to achieve
accurate yet balanced hash codes [24].
Most of the aforementioned hashing techniques are de-

signed for single type homogeneous features. Note that
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Figure 1: The flowchart of how RaHH is applied to
a new query and get its similar items from different
domains.

many practical applications involve the usage of heteroge-
neous feature representations. Recently, several new hash-
ing methods are proposed to index the data points using
multi-modal or multi-view feature representations [26, 27,
20, 4, 15]. For instance, Zhen et al. proposed to use a
co-regularization framework to generate binary codes from
each modality, while enforcing the agreement between the
hash codes from different feature modalities [27]. As men-
tioned earlier, most of these existing heterogeneous hashing
methods attempt to project all the heterogeneous features
or entities to a common Hamming space. However, such a
Hamming embedding often results in poor indexing perfor-
mance due to the lack of commonality among the heteroge-
neous domains. In addition, besides heterogeneous entities,
a typical heterogeneous network, like Facebook and Twitter,
also contains heterogeneous connections or relationships be-
tween those entities, which have not been really considered
during the design of hash functions by most existing work-
s. Hence, for such a social network, it remains as an open
issue to design an efficient and accurate hashing technique
which could leverage all available homogeneous and hetero-
geneous information into the learning process. To address
the above issues, in the following section, we will present a
heterogeneous hashing technique.

3. THE METHODOLOGY
In this section we will introduce our Relation-aware Het-

erogeneous Hashing (RaHH) method in detail. As stated
in the introduction section, the goal of RaHH is to learn a
Hamming embedding for each type of data, and mappings
between different Hamming embeddings such that we can
get the corresponding hash codes in its relational domains.
In this way, given a new query, we can use RaHH to fast re-
trieve similar entities in its own data domain as well as sim-
ilar data entities from other relational domains. Fig.1 pro-
vides a conceptual diagram of the procedure of using RaHH
to retrieve similar items from heterogeneous domains. We
formulate the RaHH as a joint optimization problem over
the homogeneous data hash codes and heterogeneous hash
code mappings, in which we utilize data features, homoge-
neous and heterogeneous relationships. Fig.2 demonstrates
the leveraged information for learning the RaHH functions.
In the following, the notations and symbols are first intro-
duced and will be used throughout the paper. Then, we give
the detailed formulation of the proposed RaHH method, fol-
lowed by an efficient optimization strategy using the block
coordinate descent approach. We also provide an out-of-
sample extension for calculating the hash codes in an on-
line setting. Finally, the complexity analysis for both offline
training and online hash code generation are discussed.
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Figure 2: Different types of information we used in
RaHH.

3.1 Notations and Problem Statement
Suppose we have a set of data items V = {Vp}Pp=1 from

P relational domains, where Vp = {vpi }
mp

i=1 is the dataset
in the p-th domain with vpi being the i-th datum. We use
Xp = [xp

1,x
p
2, · · · ,x

p
mp

] ∈ R
dp×mp to represent the data ma-

trix of the p-th domain, and dp is the dimensionality of the
feature space of the p-th domain. Hp = [hp

1,h
p
2, · · · ,h

p
mp

] ∈

{−1, 1}rp×mp is the hash code matrix for the data in the
p-th domain, with hp

i being the hash code vector for vpi . In
addition, Rp ∈ R

mp×mp denotes the homogeneous relation-
ship matrix of the p-th domain, and Rpq ∈ R

mp×mq is the
heterogeneous relationship matrix between the p-th domain
and the q-th domain. We assume Hp can be mapped to Hq

via a linear mapping Wpq ∈ R
rp×rq . The goal of RaHH is

to obtain the optimal {Hp}Pp=1 and {Wpq}Pp,q=1 via solving
the following optimization problem

min
{Hp}P

p=1
,{Wpq}P

p,q=1

J ho({Hp}) + βJ he({Hp}, {Wpq})(1)

s.t. Hp ∈ Ωp, ∀ p = 1, 2, · · · , P.

Here J ho is the homogeneous loss term, and J he is the
heterogeneous loss term. β > 0 is the tradeoff parameter. Ωp

is the set imposing constraints onHp. Now we will introduce
in detail how these terms are defined in RaHH.

3.2 Homogeneous Loss
In order to construct J ho, we assume that: (1) data ob-

jects with similar individual features are similar to each oth-
er; (2) data objects with strong relationships are similar to
each other; (3) similar data objects tend to have similar
hash codes. For item (1), we can use the data inner product
matrices {(Xp)⊤Xp|p = 1, 2, · · · , P} as the feature based
similarity matrices for each domain if we assume the data in
all domains are normalized to unit norm. For item (2), we
can use the homogeneous relationship matrix Rp to capture
the data similarity. Then we can construct the following
composite data similarity matrix to encode the pairwise da-
ta similarities

Ap = (Xp)⊤Xp + αRp, (2)

where the constant α > 0 is the combination weight.
For item (3), we can construct a smoothness term for the

data hash codes to enforce that similar data would have

similar codes. Specifically, we design the following J ho.

J ho({Hp}) =
1

2

P
∑

p=1

mp
∑

i,j=1

Ap
ij‖h

p
i − hp

j‖
2, (3)

where Ap
ij is the (i, j)-th element of Ap. Clearly, when min-

imizing J ho({Hp}), a larger Ap
ij will cause a closer hp

i and
hp
j . We further construct the constraint set Ωp as

Ωp = {Hp|Hp ∈ {−1, 1}rp×mp ,

Hp1 = 0,Hp(Hp)⊤ = mpI}. (4)

We impose the constraint Hp1 = 0 to preserve the balance
of each bit, and Hp(Hp)⊤ = mpI to enforce that different
bits capture complementary information, as suggested in [24,
25].

3.3 Heterogeneous Loss
As the data from multiple domains might be associated

with different metric spaces, we cannot measure the similar-
ity between heterogeneous items directly. To search similar
items from relational domains, RaHH first assumes that the
hash code for a datum in domain p can be linearly mapped
to the Hamming space of a relational domain q. Then the
mapped hash code is used to search nearest neighbors in the
domain q. More concretely, RaHH mapsHp to each bit(row)
of Hq respectively through utilizing the heterogeneous rela-
tion matrix Rpq ∈ R

mp×mq . By treating Hp as a feature
matrix and Hq

k as class labels, we cast the mapping prob-
lem as a series of binary classification problems and define
J he({Hp}, {Wpq}) as

J he({Hp}, {Wpq}) =
∑

p∼q

∑

k

∑

i,j

lpqijk + λ‖wpq

k ‖2, (5)

where p ∼ q indicates domain p has relationship with domain
q, and the logistic loss

lpqijk = ln(1 + e
−R

pq
ij

H
q
kj

(w
pq
k

)⊤h
p
i ) (6)

measures the prediction loss after we map the hash code of
vpi to the k-th bit on the q-th domain. To minimize the loss,
Hq

kj and (wpq

k )⊤hp
i needs to be close for a large Rpq

ij , which

suggests that for strongly associated vpi and vqj , the mapped
hash code of vpi in the domain q should be as similar as the
hash code of vqj .

3.4 Final Cost and Optimization Strategy
Bringing Eq.(3), Eq.(4) and Eq.(5) together into the o-

riginal cost function defined in Eq. (1), we can derive the
final cost function. Due to the binary constraint expressed
in Ωp, the cost function in Eq.(1) is not differentiable. More-
over, the balance constraint also makes problem 1 NP-hard
to solve [25]. Therefore, we propose to relax those hard con-
straints and convert them into soft penalty terms. Specif-
ically, we add the following three regularizers to the cost



function,

θ1({H
p}) =

P
∑

p=1

‖Hp ⊙Hp −E‖2F (7)

θ2({H
p}) =

P
∑

p=1

‖Hp1‖2 (8)

θ3({H
p}) =

P
∑

p=1

‖Hp(Hp)⊤ −mpI‖
2
F , (9)

where E ∈ R
rp×mp is an all-one matrix, 1 ∈ R

mp×1 is an
all-one vector, and I is an identity matrix. It is easy to see
that these three regularizers correspond to the three relaxed
constraint sets in {Ωp}. Then the relaxed version of the
original cost function is

J = J ho({Hp}) + βJ he({Hp}, {Wpq})

+γ1θ1({H
p}) + γ2θ2({H

p}) + γ3θ3({H
p})(10)

To minimize the above cost J , we will present a Block Co-

ordinate Descent (BCD) approach, as described in the fol-
lowing.

3.4.1 Block Coordinate Descent

Since the final cost function in Eq. (10) is not jointly
convex with respect to all the variables, here we use BCD
method [21] to search a local optimal solution. Specifically,
the gradients are calculated as

∂J

∂wpq

k

=
∑

i

∑

j

−Rpq
ij H

q

kjh
p
i

1 + e
R

pq
ij

H
q
kj

(w
pq
k

)⊤h
p
i

+ 2λwpq

k (11)

∂J

∂Hp

ki

=
∂J ho({Hp})

∂Hp

ki

+ β
∂J he({Hp}, {Wpq})

∂Hp

ki

+γ1
∂θ1({H

p})

∂Hp

ki

+ γ2
∂θ2({H

p})

∂Hp

ki

+ γ3
∂θ3({H

p})

∂Hp

ki

(12)

The gradient components in Eq.(12) are given as follows

∂J ho({Hp})

∂Hp

ki

=
∑

j

Ap
ij(H

p

ki −Hp

kj)

= (Hpdiag(Ap1)− (Hp(Xp)⊤)Xp − αHpR)ki

∂J he({Hp}, {Wpq})

∂Hp

ki

=
∑

q

∑

j

[

∑

g

−Rpq
ij H

q
gjW

pq

kg

1 + eR
pq
ij

H
q
gj

(w
pq
g )⊤h

p
i

+
−Rqp

ji (w
qp

k )⊤hq
j

1 + eR
qp
ji

H
p
ki

(w
qp
k

)⊤h
q
j

]

∂θ1({H
p})

∂Hp

ki

= 4((Hp

ki)
2 − 1)Hp

ki = 4((Hp ⊙Hp −E)⊙Hp)ki

∂θ2({H
p})

∂Hp

ki

= 2
∑

j

Hp

kj = 2(Hp1)k

∂θ3({H
p})

∂Hp

ki

= 4
∑

j

(Hp

k (H
p
j )

⊤ −mpIkj)H
p

kj

= 4((Hp(Hp)⊤ −mpI)H
p)ki

where {Hp(Xp)⊤}, {Hp1} and {(Hp(Hp)⊤−mpI)} are three
statistics denoted by S, which will be used to accelerate the
optimization algorithm.

Algorithm 1 Relation-aware Heterogeneous Hashing (RaH-
H)

Require: {Xp}, {Rp}, {Rpq}
Ensure: {Hp}, {Wpq}
1: initialize {Hp} by CVH and {Wpq} as identity matrix
2: initialize S
3: while the value of objective function don’t converge do
4: for each domain p do
5: for each entity i in domain p do
6: calculate the gradients with respect to hp

i

7: update hp
i by one step gradient descent

8: update statistics S
9: end for
10: for each domain q do
11: for each bit k of domain q do
12: calculate gradients with respect to wpq

k

13: update wpq

k by one step gradient descent
14: end for
15: end for
16: end for
17: end while

Algorithm 2 Out-of-sample Extension for Relation-aware
Heterogeneous Hashing

Require: statistics S, xp
mp+1, r

p
mp+1 and {rpqmp+1}

P
q=1 con-

nected with the out-of-sample entity vpmp+1

Ensure: hp
mp+1

1: initialize hp
mp+1 by CVH

2: while the value of objective function don’t converge do
3: calculate gradients with respect to hp

mp+1

4: update hp
mp+1 by one step gradient descent

5: end while

Finally, we optimize the objective function by iteratively
updating H and W until the value of objective function
converges. We describe the training procedure in Algorithm
1.

3.5 Out of Sample Extension
It is critical to derive the out of sample extension for com-

puting the hash code for any query datum in an online set-
ting. In the formulation of the proposed RaHH, we can
easily compute the hash code for an out-of-sample entity
vpi by minimizing Eq. (10). Since the hash tables are con-
structed and the mappings {Wpq}Pp,q=1 are learned during
the offline training process, we only need to minimize the
cost in Eq. (10) with respect to the new entry vpi . Similar
to the method introduced in Section 3.4, a gradient descent
can be applied to efficiently compute the optimal hash code
for the entity vpi . The detailed procedure for out of sample
extension is described in Algorithm 2.

3.6 Complexity Analysis
We first analyze the online complexity for computing the

hash code of an out-of-sample query point vpi . With the s-
tatistics S calculated previously, the time complexity of cal-
culating gradients and updating for a single entity vpi is

O(dprp + rps
p
i + rp

∑

q

rqs
pq
i ),



where spi is the number of homogeneous relations connected
with vpi , s

pq
i is the number of heterogeneous relations con-

nected with vpi in domain q, and dp is the dimensionality of
the features in domain p. We can see that the time com-
plexity for generating the hash code for vpi is linear with
respect to the number of relations connected with it. As
the relations are often sparse, RaHH can be very efficient to
generate the hash codes and can be applied to large scale
and real-time applications.
During the training procedure, besides the computational

cost of updating for single entities, the additional time com-
plexity for updating statistics S is O(dprp + (rp)

2). Finally,
the time complexity of calculating gradients and updating
Wpq is O(spqrprq), where spq is the number of heteroge-
neous relations across domain p and q. Hence, the total
time complexity of training RaHH is

O(
∑

p

((dprp + (rp)
2)mp + rps

p + rp
∑

q

rqs
pq)),

where sp is the number of homogeneous relations in domain
p. We can see that the training time complexity is linear
to the size of the training set and the number of relations.
In practice, all the scale-free networks, like Facebook and
Twitter, are often sparsely connected. Early study shows
that the total connections for a reliable scale-free network is
sublinear to the number of entities [6]. Therefore, in prac-
tice, the training cost is with linear complexity to the num-
ber of training entities, and the worst case in theory is with
quadratic complexity when the network is fully connected.
In summary, the proposed RaHH method has affordable of-
fline training cost and the online hash code generation is
extremely fast.

4. EXPERIMENTS
In this section we will present the experimental results

on applying our RaHH algorithm to two real world data
sets. First we will introduce the basic information of them.
We run experiments implemented by Matlab on a machine
running Windows Server 2008 with 12 2.4GHz cores, 32GB
memory.

4.1 Dataset Information
Tencent Weibo Dataset is crawled from Tencent Wei-

bo1 which is one of the biggest microblogging service in Chi-
na. We use two domains, users and posts, in our evaluation.
The dataset contains 34,676 users and 439,509 posts. Each
user has 3 user labels2 at least, and there are 4,385 user la-
bels in total. Each post contains at most 140 Chinese char-
acters. We use probability distribution on 50 topics detected
by Latent Dirichlet Allocation (LDA) [2] from user labels as
user feature vector, and friendship as homogeneous relation-
ship for user domain. The post feature vector is construct-
ed with the probability distribution of 50 topics detected
by LDA on post, and no homogeneous relationship in the
post domain is used. We use user-post adoption/rejection
behaviors as positive/negative heterogeneous relationships
between users and posts. User-post adoption behaviors are
recorded when users post or forward posts. However, user-
post rejection behavior, which is defined as a user does not

1http://t.qq.com
2The user labels are specified by the users themselves ac-
cording to their personal interests and biography.

like a post, cannot be observed explicitly, as we are not sure
a user did not adopt a post because he(she) did not like it or
just did not see it. Just like [11], based on the assumption
that users will see the posts around the adopted posts, we
assume t (which is set to 5 in our experiment) nearest un-
adopted posts around adopted post on user’s Timeline3 as
rejected. We obtain 483,038 positive heterogeneous relation-
ships and 1,039,441 negative heterogeneous relationships.

NUS-WIDE Dataset is a fully labeled web image dataset.
It contains about 260,000 images from flickr. Each image
is labeled by at least one concept, and also described by
text tags. We use the probability distribution of 100 L-
DA topics on text tags as feature vector for text tags, and
500-dimensional Shift Invariant Feature Transform (SIFT)
feature [18] as feature vector for images. No homogeneous
relationship is used in either image or text tag domains.

4.2 Baseline Methods
We compare RaHH with the following baseline algorithms.
Cross View Hashing(CVH)[15] performs multi-modal

hashing via a Canonical Correlation Analysis procedure. In
our implementation, we treat each positive relation as a da-
ta object, and the two domains as two modalities. For nov-
el queries, CVH can obtain their codes in both modalities
based on their features.

Modified Spectral Hashing(MSH) is a straightfor-
ward extension of Spectral Hashing(SH)[25]. We construct
a unified similarity matrix. Similarity between entities in
same domain is {Ap}, and similarity between heterogeneous
entities is positive part of Rpq(i.e. (Rpq + |Rpq|)/2). For
out-of-sample data, in order to exploit relation, we calculate
hash codes by Nyström method.

Multimodal Latent Binary Embedding(MLBE)[26]
is a probabilistic model which formulates hash codes as la-
tent variables and learns them in discrete form. It can pre-
serve both homogeneous similarity and heterogeneous rela-
tion.

RaHH NR is a variant of RaHH which does not exploit
heterogeneous relation in out-of-sample extension.

RaHH NC is a variant of RaHH without any regularizers
in both training and out-of-sample extension procedures.

Here CVH is a representative purely feature-based method.
MSH and MLBE are representative relation-aware method-
s. RaHH NR and RaHH NC are used to demonstrate the
effectiveness of heterogeneous relations and regularizers.

4.3 Evaluation Metric
We use precision, recall andMean Average Precision (MAP)

as our evaluation metrics. We propose two ways (i.e. global
and entity-wise) to calculate precision and recall. Specifi-
cally, let P and N be the set of positive and negative pairs
of heterogeneous entities respectively, HD(i, j) be the Ham-
ming Distance between data entities vi and vj , then the
metrics are defined below.

• Global Precision and Global Recall, or GP and GR for
short, are defined as the precision and recall of retrieval

3Posts are pushed to users in chronological order in Tencent
Weibo, and the set of posts pushed to users in this order is
called Timeline
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(b) Large scale dataset,r = 8
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(c) Small scale dataset,r = 16
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(d) Large scale dataset,r = 16
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(e) Small scale dataset,r = 32
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(f) Large scale dataset,r = 32

Figure 3: Results of two settings, i.e., user queries for similar posts and post queries for similar users, on the
Tencent Weibo dataset using various numbers of hash bits (r = 8, 16, 32).

results within Hamming radius d for the query set:

GP (d) =
|{(i, j)|(i, j) ∈ P, HD(i, j) ≤ d}|

|{(i, j)|(i, j) ∈ P ∪N , HD(i, j) ≤ d}|

GR(d) =
|{(i, j)|(i, j) ∈ P, HD(i, j) ≤ d}|

|P|

We obtain the precision-recall curve by series of precision-
recall pairs on different Hamming distance.

• Query-wise Precision (QP) is defined as the precision
of retrieval results within Hamming radius d for query
i:

QP (d, i) =
|{(i, j)|(i, j) ∈ P, HD(i, j) ≤ d}|

|{(i, j)|(i, j) ∈ P ∪N , HD(i, j) ≤ d}|

If the retrieval of similar entities for a query fails, the
precision will be assigned to zero. We use the mean
precision within Hamming radius 2 to evaluate the re-
trieval accuracy.

• Mean Average Precision(MAP) of Hamming ranking:

AP (i) =

∑

j
Pi(j)δi(j)

|{(i, j)|(i, j) ∈ P}|

MAP =

∑

i
AP (i)

m

where Pi(j) denotes the precision of the top j retrieved
entities for query i, δi(j) = 1 if the relation between

j-th entity and query i is positive and δi(j) = 0 other-
wise, and m is the number of query entities.

4.4 Results on Tencent Weibo Dataset
We use two settings to evaluate the effectiveness of RaHH:

(1) given user as query, and retrieve similar posts; (2) given
post as query, and retrieve similar users. We conduct exper-
iment on ten small scale subsets and one large scale subset.
Each small set contains about 500 users and 500 posts, and
the large scale set contains 19,330 users and 169,696 post-
s. We adopt an iterative reduction strategy to obtain the
datasets. All users and posts that are not involved in any
adoption behaviors are deleted from the original data set.
For all those data sets, we use 90% data as the training set,
and the rest 10% data as the query set.

4.4.1 Parameter Setting

There are four tradeoff parameters in the objective of
RaHH as can be seen from Eq.(10). β controls the weight
of heterogeneous relationship term, and γ1, γ2, γ3 control
the weight of regularizer terms. To obtain a good group of
parameters, we did grid search, and change those four pa-
rameters independently. Table 1 shows the mean MAP of
the two retrieval settings using various numbers of hash bits.
Parameter group 4 achieves the best performance, and we
adopt those parameter values in the rest of the experiments.



Table 1: Mean MAP of RaHH for different parame-
ter groups on small scale subsets of Tencent Weibo
Dataset using various numbers of hash bits.

group β γ1 γ2 γ3 mean MAP
1 10 1 0.0003 0.3 0.708
2 10 10 0.003 3 0.680
3 100 1 0.0003 0.3 0.722
4 100 10 0.003 3 0.725
5 100 100 0.03 30 0.696
6 1000 10 0.003 3 0.720
7 1000 100 0.03 30 0.724

4.4.2 Results

Figure 3 shows the precision-recall curve obtained on these
datasets. Figure 4 and 5 show the MAP on those small scale
subsets and large scale subset. MLBE and MSH requires
large computational storage and cannot be tested on our
large scale subset, we only report the results with RaHH and
CVH. From these results we can see that RaHH significantly
outperforms those baselines in all datasets. Some potential
weakness of those baseline algorithms include:

• CVH only preserve homogeneous feature similarity in
out-of-sample extension. It cannot capture the cross-
domain relationships between queries and other do-
mains.

• MSH does not differentiate homogeneous similarity and
heterogeneous relationships which are essentially dif-
ferent.

• MLBE does not require the independency between d-
ifferent bits, and may generate highly redundant bits.
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(a) User query results
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(b) Poster query results

Figure 4: MAP curve on small scale subsets of Ten-
cent Weibo dataset by varying the numbers of hash
bits.
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(a) User query results
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(b) Post query results

Figure 5: MAP curve on large scale subset of Ten-
cent Weibo dataset by varying the numbers of hash
bits.

Comparing the performance of RaHH and RaHH NR, we
can observe that heterogeneous relationships are comple-
mentary with homogeneous similarity and adding hetero-
geneous relationships yields great improvement of perfor-
mance. Comparing the performance of RaHH and RaH-
H NC, we can see that RaHH NC overfits the training set,
which leads to poor generalization performance on the query
set.
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(a) Training time
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(b) Retrieval time

Figure 6: Time costs curve on small subsets of Ten-
cent Weibo dataset by varying the numbers of hash
bits. The time unit is second.

We also test the scalability of RaHH and baseline algo-
rithms and the results are shown in Figure 6. Because of its
quadratic complexity with respect to the training set size
and sextic complexity with respect to the number of hash
bits, MLBE costs most training time which is about one or-
der of magnitude longer than our algorithm. RaHH costs
more test time when the length of hash codes is small, how-
ever, as the number of bits grows, MLBE costs more test
time.

With the flexible mapping across domains, RaHH is al-
lowed to learn hash codes with different lengths for different
domains. Table 2 shows the empirical results on small sub-
sets , where first column and first row are the lengths of hash
codes for user domain and post domain respectively. We can
see that MAPs in left down are larger than that in upper
right which suggests that users tend to need more bits to
represent than posts. One possible reason is that one user is
often interested in more than one topic and one post often
belongs to only one topic, users need more bits to represent
their diverse interests. RaHH achieves best MAP when as-
sign 32 bits for user domain and 16 bits for post domain.
Comparing with the best result (assign 32 bits for each do-
main) in uniform code length setting, the best result with
different code lengths can achieve higher MAP and save 50%
storage in post domain.

Table 2: MAP of RaHH on small subsets of Tencent
Weibo dataset for different pairs of bit numbers
P
P
P
P

P
PP

User
Post

8 12 16 24 32

8 0.716 0.718 0.717 0.712 0.712
12 0.717 0.720 0.721 0.722 0.720
16 0.725 0.728 0.725 0.725 0.731
24 0.726 0.726 0.738 0.729 0.731
32 0.729 0.723 0.739 0.728 0.734

4.5 Results on NUS-WIDE Dataset
Similar to the experiment on Tencent Weibo Dataset, we

also designed two cross-domain retrieval settings on NUS-
WIDE dataset: (1) given text (set of tags) as query, and
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(a) r=8
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(b) r=16
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(c) r=24

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

global recall

g
lo

b
a

l 
p

re
c

is
io

n

Text Queries for Similar Images

 

 

RaHH

CVH

MLBE

MSH

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

global recall

g
lo

b
a

l 
p

re
c

is
io

n

Image Queries for Similar Texts

 

 

RaHH

CVH

MLBE

MSH

(d) r=32
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(f)

Figure 7: Results of two retrieval settings, i.e., text queries for similar images and image queries similar
texts, on NUS-WIDE dataset using various numbers of hash bits(r = 8, 16, 24, 32).

retrieve similar images; (2) given image as query, and re-
trieve similar texts. We select the images and their text tags
belong to 10 largest concepts as our experimental database,
then randomly select 300 images as training set, 10000 im-
ages as test set, 2000 images as query set, and 5% hetero-
geneous relations for training. We applied experiment on 5
such datasets. Figure 8 shows the average MAP curves, our
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(a) Text query results
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(b) Image query results

Figure 8: MAP curve on NUS-WIDE dataset by
varying the number of hash bits.

algorithm outperforms the best baseline about 60% at most.
Figure 7 shows precision-recall curve in the top two rows,
and the curve of mean precision within Hamming radius 2
and corresponding success rate in the bottom row. Just like
the results on Tencent Weibo dataset, the precision-recall
curves of RaHH are much better than the others. When
the length of hash codes is small(e.g. 8 bits and 16 bits),

RaHH obtain better mean precision than the others due to
both high success rate and precision in successful retrievals.
MSH and MLBE obtain poor performance in retrieval set-
ting(1) due to the low success rate. When the length of hash
codes grows longer, as the success rate of retrieval decreases
rapidly, the mean precision of most methods decrease to a
low level that cannot be applied in practice. The mean pre-
cision of MSH in retrieval setting(2) didn’t decrease, but,
the mean precision of MSH is also too low to be applied in
practice.
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(a) Training time
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(b) Retrieval time

Figure 9: Time costs curve on NUS-WIDE dataset
by varying the number of hash bits. The time unit
is second.

Figure 9 shows the training time and test time of different
lengths of hash codes. MLBE is the most time-consuming
method in most situations. The test time cost of one query



in our method is about 30 milliseconds which is reasonable
for real-time applications.

5. CONCLUSIONS
In this paper, we propose a Relation-aware Heterogeneous

Hashing (RaHH) approach for efficient similarity search on
large scale heterogeneous data. In particular, through lever-
aging both homogeneous and heterogeneous relationships,
we learn a Hamming embedding to construct hash tables
for each data domain. Meanwhile, linear mappings are si-
multaneously learned as bridges between different Hamming
embeddings. To achieve efficient training process, a Block
Coordinate Descent method is applied to derive optimal so-
lutions. With this flexible hashing framework, we can cap-
ture the characteristics of different data domains to gener-
ate more effective and accurate hash codes. The empirical
study demonstrates the superiority of the proposed RaHH
method, compared to several state-of-the-art hashing tech-
niques. Our future directions include applying sophisticated
learning algorithms, e.g., kernel learning and metric learn-
ing, to further improve the performance with an affordable
training cost.
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