This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

High-order Proximity Preserved Embedding
For Dynamic Networks

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Fellow, IEEE, Wenwu Zhu, Fellow, IEEE

Abstract—Network embedding, aiming to embed a network into a low dimensional vector space while preserving the inherent
structural properties of the network, has attracted considerable attention. However, most existing embedding methods focus on the
static network while neglecting the evolving characteristic of real-world networks. Meanwhile, most of previous methods cannot well
preserve the high-order proximity, which is a critical structural property of networks. These problems motivate us to seek an effective
and efficient way to preserve the high-order proximity in embedding vectors when the networks evolve over time. In this paper, we
propose a novel method of Dynamic High-order Proximity preserved Embedding (DHPE). Specifically, we adopt the generalized SVD
(GSVD) to preserve the high-order proximity. Then, by transforming the GSVD problem to a generalized eigenvalue problem, we
propose a generalized eigen perturbation to incrementally update the results of GSVD to incorporate the changes of dynamic
networks. Further, we propose an accelerated solution to the DHPE model so that it achieves a linear time complexity with respect to
the number of nodes and number of changed edges in the network. Our empirical experiments on one synthetic network and several
real-world networks demonstrate the effectiveness and efficiency of the proposed method.

Index Terms—Dynamic Network, High-order Proximity, Network Embedding

1 INTRODUCTION

Network embedding has attracted increasing attention
in recent years. The basic idea is to embed a network
into a low-dimensional vector space where the proximity
structure of the network is preserved so that the network
analysis and prediction tasks can be conducted in the vector
space. Although the state-of-the-art proposed methods are
demonstrated to be effective in a variety of applications,
such as link prediction [1], [2], classification [3], [4], [5]
and clustering [6], [7], most of these methods are designed
for static networks. In real world, however, networks are
dynamic in nature, where the edges between nodes evolve
over time. For example, users add or delete friends in
social networks, or neurons establish new connections in
brain networks. These newly added or deleted edges raise
a new challenge to network embedding. Suppose that we
have learned the node embeddings based on the edges
appearing before time t. How to efficiently update these
node embeddings at time ¢+ At so that the changed network
structure caused by the newly added/deleted edges during
At can be reflected by the updated node embeddings?

The previous methods have demonstrated that the node
proximity on networks is a critical structure that should be
maintained in the embedding space [8], [9]. The high-order
proximity is proven to be important in capturing the struc-
ture of network [10]. However, it is much more challenging
for the high-order proximity preserved network embedding
methods to efficiently incorporate the newly added/deleted
edges, because any changed edge will affect the high-order

e D. Zhu, P. Cui, Z. Zhang, and W. Zhu are with the Department of Com-
puter Science and Technology in Tsinghua University, Beijing 100084,
China. E-mail: zhudyl1@mails.tsinghua.edu.cn, cuip@tsinghua.edu.cn,
zw-zhang16@mails.tsinghua.edu.cn, wwzhu@tsinghua.edu.cn

o]. Pei is with the School of Computing Science, Simon Fraser University.
E-mail: jpei@cs.sfu.ca

proximities of far more nodes than the two nodes directly
involved by the edge. An extreme case is an infinite order
proximity preserving method in a connected graph, where
changing any edge will change the proximity of any pair
of nodes in the whole graph. How to efficiently address the
changed edges in high-order proximity preserved network
embedding is still an open problem.

Before network embedding, calculating the high-order
proximities in a large network per se is unaffordable in real
applications. Ou et al. [10] recently find a general form for
the commonly used high-order proximities like Katz [11],
and the transformed form makes it possible to derive the
embedding vectors via generalized SVD without explicitly
calculating the high-order proximity matrix. But how to
efficiently incorporate the newly added/deleted edges in
the generalized SVD framework has not been investigated,
and thus become the major obstacle of high-order proximity
preserved embedding for dynamic networks.

In this paper, we propose DHPE to preserve the high-
order proximity on embedding dynamic undirected net-
works. After transforming the GSVD problem into a ge-
neralized eigenvalue problem, we are able to incorporate
the dynamically changed edges through matrix perturba-
tion and thus derive the updated node embeddings while
preserving the global high-order proximities. As the method
is a global updating, it is inevitable to have some complex
terms involving global structural information during matrix
perturbation process, causing the efficiency bottleneck of the
method. To address this, we further propose an accelerated
solution scheme for these complex terms, which signifi-
cantly reduces the computing complexity.

To verify the advantages of our algorithm, we con-
duct extensive experiments on both synthetic dataset and
real-world large-scale datasets. The empirical experiments
demonstrate that DHPE can approximate the high-order

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

proximities well during the update process and significantly
outperforms the baseline methods in several tasks, inclu-
ding link prediction, node recommendation and multi-label
classification. It is also worthwhile to mention that the pro-
posed method reaches a linear time complexity with respect
to the number of nodes in the network. Considering that
the complexity of globally updating network embedding
is at least linear with respect to the number of nodes in
the network, our method is in the same order with the
theoretical lower bound in the scalability.
The main contributions of this paper are as follows:

e We investigate the important and challenging pro-
blem of high-order proximity preserved embedding
on dynamic networks for the first time.

e We propose a GSVD-based method for dynamic
network embedding with an incremental updating
based on matrix perturbation.

o We propose an acceleration scheme for the method
and optimize its computing complexity to be in the
same order with the theoretical lower bound.

o We comprehensively evaluate the effectiveness and
efficiency of DHPE on several synthetic and large-
scale real-world networks in various applications.

The rest of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, we formally define the
problem of dynamic network embedding and introduce the
framework of DHPE. We introduce the acceleration of the
algorithm in Section 4 and report the experimental results
in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

The research on network embedding algorithm can be tra-
ced back to the time when graph embedding algorithms
[12], [13], [14] have been proposed. The graph embedding
algorithms aim to preserve the feature similarity in the em-
bedded latent space. These algorithms build an adjacency
matrix of graph which are constructed from the feature
similarity, and then embed the graph to a low-dimensional
vector space [15]. For example, Isomap [13] aims to find
the low-dimensional representations for a data set by ap-
proximately preserving the geodesic distances between data
pairs. These graph embedding works focus on modeling
the observed first-order relationship (i.e. edges in graph)
between vertexes, which means they may overfit the origi-
nal graph. These algorithms have drawbacks in real-world
network, because the network inference ability is seriously
limited in such an embedding space.

Motivated by the graph embedding techniques, Hoff et.
al. [16] first proposed to learn latent space representation
of nodes for network analysis, and they apply it to link
prediction problem [17]. Handcock et. al. [18] proposed
to apply the latent space approach to clustering in graph.
And Zhu et. al. [19] proposed to address the classification
problem in network with graph embedding model. Because
of the popularity of networked data, network embedding
has received more and more attention in recent years.
Deepwalk [9] uses the language modeling techniques and
learn the latent representations of a network by truncated

2

random walks. LINE [8] embeds the network into a low-
dimensional space where the first-order and second-order
proximity between nodes is preserved. Node2vec [20] learn
a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving network neig-
hborhoods of nodes. GraRep [21] tries to model the high-
order proximity between nodes in network, but the time
cost of computing high-order proximity is too high. HOPE
[10] proposes a high-order proximity preserved embedding
method. Some other network embedding methods are pro-
posed to process heterogeneous networks [4], [22], [23] or
networks with content information [2], [24].

All the aforementioned approaches can only handle sta-
tic networks. Some approaches based on first-order proxi-
mity can be transformed into dynamic models straightfor-
wardly. For example, the SVD of adjacency matrix can be
used as a simple way to get the embedding of network. Tong
et. al. [25] proposed a fast eigen-tracking algorithm, which
can be used to update the solution of the SVD problem when
the matrix is symmetric. Thus we may get a simple dynamic
model base on SVD, but it only preserves the first-order
proximity between nodes. It is still not clear how to design
a high-order proximity preserved embedding method when
the networks are evolving over time.

3 THE DHPE METHOD

In this section, we formally define the problem of dynamic
network embedding with high-order proximity preserved
and introduce our method, DHPE.

3.1 Notation and Definition

We first summarize some notations and definitions used in
this paper. A dynamic network at time step ¢ is defined

as GO = (VO E®} where V) = {u\ o {0}
denotes a set of nodes and N is the number of the nodes.
E(® is the set of edges between the nodes. In this paper,
we mainly consider undirected networks, so edges in E(*)
are undirected. The adjacency matrix is denoted as A(*),
and AA denotes the change of adjacency matrix. We define
U® € RN*4 as the embedding matrix of the network G(*),

where the i-th row, u? Z(t)

, s the embedding vector of v;”” and
d is the embedding dimension. Similar to previous network
embedding settings, d is a preset constant and d << N. Let
S denotes the high-order proximity matrix of the network
G, where S,E;) is the proximity between v'" and v§t).

In this paper, we focus on the problem of dynamic
network embedding with high-order proximity preserved.
At each time step, nodes and edges may be added/deleted.
By treating the added/deleted nodes as isolated nodes, all
the changes in the network can be regarded as the changes
of the edges [25]. For the ease of presentation, we consider
the number of nodes as constant.

The problem of dynamic network embedding can be
split into two parts. First, we build a static model to em-
bed the static network to a low-dimensional vector space,
where high-order proximities between nodes are preserved.
Second, we propose a dynamic model to update the embed-
ding of nodes in the network at following time steps. These
two parts are summarized as follow:

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

Problem 1. Static network embedding: given adjacency matrix
AW at time step t; output the embedding matrix U") using static
model.

Problem 2. Dynamic network embedding: given adjacency ma-
trix {AHD A@H2) 0 ACEDY ot time steps t+1,t+2, ..., t+
i and the embedding matrix U®) at time step t; output the
embedding matrix {UCTD U2 UL gt time step
t+1,t+2, ot +i.

3.2 GSVD-based Static Model

We begin with the model of static network embedding for
preserving high-order proximity. Specifically, as proposed
in [10], we aim to preserve high-order proximity in the
embedding matrix with the following objective function:

min ||S — UU'"||% (1)

,where U, U’ € RNXd In matrix decomposition, U and
U’ can be seen as the basis and the coordinate [26]. For
undirected networks, U and U’ are highly correlated, as
shown later in equation (3), and without loss of generality
we choose U as the embedding matrix.

We choose Katz Index [11] as S because it is one of the
most widely used measures of high-order proximity. It can
be formulated as:

SKU.tZ — Ma—le
M, = (I - ﬁA) (2)
M, = BA

, where 3 is a decay parameter and I is the identity matrix.
B determines how fast the weight of a path decays when the
length of path grows. It should be properly set to preserve
the series converging, and we discuss how to set 3 in Section
5.1.

Then, as in [10], the original objective function can be
solved by the generalized SVD (GSVD) method [26]. By
GSVD method, we can derive the singular values and sin-
gular vectors of S without knowing S. Formally, the optimal
embedding vectors of objective function (1) can be given as:

U= [V Ulvllv eV Udvld]

Ul = [\/ Ulvlv sy V UdVZ]
where {01,09,...,0n} is the singular values of S sorted
in decreasing order. vi and v! are corresponding left and
right singular vectors of o;. When S is symmetric, [vi| =
|v7|, where | - | means taking absolute value element-wisely.
According to [10], the error bound of the static method is:

N
> ol (4)

i=d+1

®)

IS - UUT|% =

3.3 Problem Transformation for Dynamic Model

The problem of the dynamic modeling is that given AA
and U®, how to incrementally update U*) to U+, With
equation (3), the embedding matrix U*) only depends on
the singular values and singular vectors of S(*), so we focus
on how to update them. At time step t, the results of GSVD
satisfy the following equations:

gt — M((lt)_lMgt) — ViOs®yroT

®)
=) = diag(al(t),ag(t), ey aN(t))

3

where V) and V7(*) are singular vectors in matrices (e.g.
vi(t) is the i-th row of Vl(t)). As mentioned before, the pro-
blem reduces to developing an efficient way to update the
singular values (X)) and singular vectors (V!®),Vr(®)) to
S0+ Vit and VT(t+1) respectively. Due to high time
complexity of calculating S+, it is technically difficult to
directly utilize the equation (5) for the updating.

Here we propose to transform the GSVD problem into
generalized eigenvalue problem, so that the incremental
updating is feasible. In undirected networks, the adjacency
matrix A and the high-order proximity matrix S are sym-
metric matrices. From [27], GSVD can be transformed into
the generalized eigenvalue problem:

M, 'M,X = AX (6)
A = diag(A1, Aoy .oy AN) ?)
i = 0y - sgn(vl-vT) 8
X =V ©9)

,where {)\;} are the eigenvalues of S in descending order,
and X is a matrix which contains the corresponding eigen-
vectors of \; and sgn() is the Sign function. By multiplying
the matrix M, on both sides of equation (6), we have:

MyX = M,AX (10

The above formula is exactly the formulation of generalized
eigenvalue problem. And the results of the generalized
eigenvalue problem can also be transformed back into the
results of GSVD problem:

Vﬁ = X;
o = |\

VI = x; - sgn(\)

)

,where x; is the ¢-th column of the matrix X, which repre-
sents the corresponding eigenvectors of A;.

Based on above equations, we can conveniently derive
A and X from ¥, V! and V7, and vice versa. That means
if we have (), V() and V"), we can get X(*) and A(®*)
according to equation (8) and (9). Meanwhile, if we have
X1 and A+, we can get T, VUE+D) and vrt+D)
according to equation (11). Then the key problem is how
to efficiently update X to X1, In next subsection, we
propose generalized eigen perturbation to fulfill this task.

3.4 Generalized Eigen Perturbation

The goal of generalized eigen perturbation is to update X (*)
to X(*+1). As the perturbation process for any time step t is
the same, we omit the (¢) superscript for brevity. Specifically,
given the change of adjacency matrix AA between two
consecutive time steps, the change of M, and M, can be
represented as:

AM, = —BAA, and AM, = SAA (12)

We use AA and AX to denote the change of the eigenva-
lues and eigenvectors. With the equation (10), we have the
following;:

(M +AM,)(X+AX) = (M, +AM,)(A+AA)(X+AX)
(13)

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

For a specific eigen-pair, we have:

(Mb—‘rAMb)(XZ‘—FAXi) = (A1+A)\1)(Ma+AMa>(Xz+AXZ)
(14)
First, we introduce the calculation of A);. By expanding

equation (14) and using the fact Myx; = A\;M,x;, we get:

MyAx; + AMpz; + AMyAx;

=)\Z‘MGAXZ‘ + AiAMaXi +)\iAManqj

+ ANM x; + AAMAX; + ANAMx; + ANAMAX;
(15)

The higher order terms such as AM,Ax; and \;AM,Ax;
can be removed as they have limited effects on the accuracy
of the solution [28]. Removing the higher order terms in

equation (15) and left multiplying both sides by x,, we
have:
x;rMbel- + x;rAbei =)\Z-x;-rMani (16)
+)\Z‘XZTAMQXZ‘ + A)\iX;rMaXi
Because M, and M, are symmetric, we have:
x; My, = \ix/ M, (17)

Using the above equation, xiT M,Ax; and)\ixiTMani can
be cancelled from both sides of Equation (16), we get:

XIAMin =)\ixZAMaxi + A)\ixg—Maxi

After a few manipulations, we have the formula for calcula-
ting the change of the eigenvalue \;:

x;-rAbei — /\ix;rAMaxi
T
x; Mgx;

AN = (18)

For ease of presentation, we define some notations that will
be used:

H,(i,j) = x; AM, x; (i,j=1.d)
H(i,j) = xZ Abe] (z,] =1..d) (19)
Fo(i,7) = x; M,Xx; (i,5 =1..d)
Fy(i,j) = x; Myx; (i, =1..d)
Equation (18) can be rewritten as:
NH
AN, = H,(,) ali;7) (20)

Next, we introduce the calculation of Ax;. Between two
consecutive time steps, the evolution of the network is
usually smooth. With the matrix perturbation theory [29],
we can assume that the change of the eigenvectors Ax; is
the linear expression of the top-d eigenvectors:

d
E Olinj

j=1j#i

21

;where «;; is the coefficient indicating the contribution of x;
to Ax;. Considering equation (15), replacing all Ax; terms

4
with equation (21) and multiplying the term x,, " (for1 <
p < d,p # i) on both size, we can get d — 1 equations:
d d
Hy(p.i)+ > Hy(p.jloy+ Y Fulpjai
j=1.j#i j=1,j#i
d
= (N + AXN)Ha(p, 1) + (A + AN) Z H,(p, j)cvi;
j=1,j#i
+ A)\iFa(p7) >‘ + A)‘ Z F pv azg
J=1j#i
(22)

For a specific Ax;, we have d — 1 equations (forl < p <
d,p # i) and d—1 unknowns (am,forl <j<d,j#1). Let
o = [a’bla'-'7a2(171)7a2(z+1)a-~-7azd] W € R(d=1)x(d—1)
and B € R@-DX1 are the coefficient matrices. a; can be
obtained by the following formulas:

B(p) = Hy(p,i) — (\i + AX)H,(p. i) — ANFo(p,i) (23)
d
W(p,j) = (A + AN;) Z H.(p,j)— > Hy(p.j)
Jj=1,j#i Jj=1,#i
d
+ (A +AN) Z Fa(p.j)— >, Fu(pj)
J=1,j#i J=1,j#i
(24)
o =W''B (25)

With the equations (20),(21)and(25), we can calculate the
change of the eigenvalues and eigenvectors. Then, we cal-
culate A+ and X+ by adding A\; and Ax; to the
corresponding eigenvalues and eigenvectors respectively.
In order to maintain the consistency of the generalized
eigenvalue problem, we normalize the eigenvector X(+1)
at the end of the updating process.

4 ACCELERATION AND COMPLEXITY ANALYSIS

In this section we introduce the acceleration of the algorithm
and we provide a complexity analysis of the proposed
framework.

4.1 Algorithm Acceleration

For calculating the change of the eigenvalues and eigen-
vectors, calculating F, and Fy, is necessary. However, it is
inefficient to recalculate F, and F} at each time step, as
these terms involving global structural information.

Considering the definition of F, in equation (19), the
term xiTMaxj can be expanded as:

xiTMaxj: Z M, (1, 7)x1:%,

<l,r>€eE

(26)

With above equation, the time complexity of computing
F," is O(Md?), where M is number of edges in E®).
Likewise, the time complexity of computing F,® is the
same as that of F). Calculating these terms causes the
efficiency bottleneck of our dynamic model.

To address this problem, we propose an incremental
calculation scheme for these complex terms. Specifically,

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

Algorithm 1 Dynamic High-order Proximity preserved Em-
bedding

Input: U®, 0 vi®) yvr®&) g, O 0 ,change of the
adjacency matrix AA between time t and t+1
Output: U(t+1), 2(t+1), Vl(t+1), Vr(tJrl), Fa(t+1)’ Fb(tﬂ)
1: Calculate A®, X®) by equation (8) and (9)
2: Calculate AM, , AM, by equation (12)
3: Calculate H, and H; by equation (19)
4: fori=1tod do
5. Calculate A/\ by equation (20)
6
7
8
9

A = A AN

Calculate B and W by equation (23) and (24)
Calculate o; by equation (25)

: Calculate Ax; by equation (21)

10: xgtﬂ) = xl(-t)
11: end for

12: Normalize X **1) and update a;

13: Update F, t+1) and F, V) b by equation (30) and (31)
14: Calculate E(t“) Vl(t“) V7 (t+1) by equation (11)
15: Calculate U*+1) by equation (3)

+ AXZ‘

by using the expression of the change of the eigenvectors
Ax; , we can efficiently update F, and F; at new time
step. Without loss of generality, we use updating F{" as
an example:

t T ¢ t
(xl(.)+ Ax;) (Ma(f) + AMa)(XE)+ Aéj%

F, (i,) =

Replacing Ax; and Ax; with equation (21), we get:

d
t+1 Zle (M, @® + AM,) ZVJ x(®)
@
,where
1 i=j,
i = 29
i {Oéij Z?éj @9

®(1,r) and re-
placing all x, (" AM,x") terms with H,,*)(1,7), we get:

d
Z 7117]7 a)

1r=

T
Replacing all x(t) M, (t)xst) terms with F

+H,(1,r)) (30)

Mg

F (tJrl

N
Il
—

With above equation, the time complexity of updating
F,®Y will reduce to O(d*). Likewise, F;,**) can be
updated in the same fashion:

-y

=1lr

F, O,) +H,D(1,r) (31)

M&

F (t+l) 'Yll’Y]r

N
I
—

With this acceleration technique, the time complexity of our
model is unrelated to the number of edges in the network at
last time step, which greatly improves the efficiency of the
algorithm. Algorithm 1 lists the steps of our method.

4.2 Complexity Analysis

Here, we analyze the complexity of the proposed frame-
work. According to [26], the time complexity of the static

5

model is O(Md?L), where M is the number of edges in the
network at time step t and L is the iteration number. This is
the partial update algorithm, and we only need to run the
static model once at the beginning of the update algorithm.
At time step t, Fa(t) and Fb(t) need to be calculated by
definition which takes O(Md?).

The efficiency of dynamic model is summarized in
Lemma (4.1). The time complexity of dynamic model is
linear with respect to the number of the nodes in the
network and total number of the time steps.

Lemma 4.1. Complexity of dynamic model Suppose T is
the total number of the time steps, s is the average number of edges
in AA. The time complexity of dynamic model is O(T((N +
s)d? + d*)), the space complexity of dynamic model is O(Nd +
d? + s)

Proof. We use step (i) to refer the i*" step in the Algorithm 1.
For time complexity, step (1) takes O(Nd) and step (2) takes
O(s). The term xiTAMaxj can be expanded as:

Z AM, (1, 7)xiXrj
<l,r>eAA

XiTAMan = (32)

With above equation, the time complexity of computing H,
and Hj, in step (3) is O(sd?). Steps (5)(6) takes O(1) and step
(7) takes O(d?). Then step (8) takes O(d>) and step (9) takes
O(Nd). Updating xEtH) in step (10) takes O (V). Therefore,
the updating process from step (4) to (11) takes O(Nd? +
d*). Normalizing X*1) in step (12) takes O(Nd). Finally,
step (13) takes O(d*) and step(14)(15) takes O(Nd). Thus
the overall time complexity for T time steps is O(T((N +
s)d? + d*b)).

For space complexity, it takes O(Nd) to store U, =(*),
VI® and V" for each time step. In step (1), it takes O(Nd)
and O(d) to store and calculate X(*) and A(®) respectively. In
step (2), it takes O(s) to store and calculate AM,, and AMj,.
In step (3), it takes O(d?) to store and calculate H, and H,,.
From step (4) to (11), the space cost of coefficient matrix and
a; is O(d?). In step (13), it takes O(d?) to store and update
Fa(t'H) and Fb(t"H). The space cost can be reused in each
time step. Thus the overall space complexity for T time steps
is O(Nd + d? +s). O

In addition, the time complexity of any method to up-
date the embedding of all nodes in the network is at least
O(Nd + s), because it takes O(s) deal with the changed
edges, and the d-dimensional embedding vectors of each
node should be updated. In large-scale networks, we have
N >> d?, thus the time complexity of our algorithm is in
the same order with the theoretical lower bound.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and
efficiency of the DHPE method. In particular, we evaluate
the following tasks: (1) the effectiveness of preserving high-
order proximity for undirected network embedding; (2) the
effectiveness of our proposed model DHPE on dynamic
networks; (3) the efficiency of the proposed DHPE. We first
introduce the experiment setting before presenting details
of the experiments.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

5.1 Experiment Setting

5.1.1

e LINE [8]: This algorithm preserves the first-order
and second-order proximity between nodes. We
use LINE1 to represent LINE preserving first-order
proximity and LINE2 to represent LINE preserving
second-order proximity. For brevity, we exclude the
results of concatenating them (i.e. LINE1 + LINE2)
because it shows similar performances as the former
two.

o DeepWalk [9]: This algorithm learns embedding by
simulating uniform random walks. It assumes a pair
of nodes similar if they are close in the random
walks.

o node2vec [20]: This algorithm learns embedding by
generating potentially biased random walks. Com-
pared to DeepWalk, it has a more flexible strategy to
explore neighborhoods.

e GraRep [21]: This algorithm generates node repre-
sentations by explicitly computing successive po-
wers of the random walk transition matrix, and uses
the SVD to reduce their dimensionality.

o TRIP [25]: TRIP is an online algorithm to track the
eigen-functions of a dynamic graph. We use the SVD
method to get the embedding of static network, and
apply this algorithm to update embedding incremen-
tally.

Baseline Methods

In all experiments, we uniformly set the embedding di-
mension d to 100 as used in previous embedding methods.
The parameter analysis of 3 is given in [10], and following
their work, we set /5 as 0.8/r, where r is spectral radius of
adjacency matrix. For the baseline methods, we set the pa-
rameters by grid search. In the evaluation of link prediction
and multi-label classification, the process is repeated 5 times
and the average results are reported.

5.1.2 Evaluation Metrics

In the experiments, we adopt RMSE (Root Mean Square
Error), Precision@k and MAP (Mean Average Precision) [10]
as the evaluation metrics.

RMSE is used to evaluate the approximation error of the
proximity by our updating algorithm. The formula of RMSE
in our problem is:

IS —UU""|%

RMSE = 2

Precision@k is used to evaluate the performance of link
prediction, which measures the prediction precision of top
k edges. The formula of Precision@k is:

{(,5)I(i,) € By NEo}|
By |

PrecisionQk =

where E,, is the set of predicted top k edges, E, is the set of
observed edges and | - | represents the size of set.

Mean Average Precision(MAP) is used to evaluate the
performance of node recommendation, which measures the

6

rank accuracy of recommended node list. The formula of
MAP@k is:
-1 Precision@j(i) - 6;
APak(= Sim Precision®3(i)- 55)
Zj:l 6:(7)
Y v,ev APQK(i)
V]

MAPQk =

where Precision@j(i) is Precision@j for node v;, and
;(j) = 1 indicates that v; and v; have an edge.

5.2 Effectiveness of the Static Model

In [10], the authors demonstrate that the static model can
handle asymmetric transitivity well in directed networks.
However, the quality of such embedding method is not
verified on undirected networks, where asymmetric tran-
sitivity does not exist. To demonstrate the importance of
high-order proximities for undirected network embedding,
we evaluate the effectiveness of the static model by link
prediction experiment. In link prediction, we are given a
network with a certain fraction of edges removed, and then
we predict these missing edges. We generate datasets by
randomly separating the original network into training net-
work and testing network, where training network contains
80% edges and testing network contains the rest edges.
We train the embedding vectors on training network, and
evaluate the prediction performance on testing network.
This experiment is conducted on the following datasets:

o BlogCatalog [30]: This is a network of social rela-
tionships of the bloggers listed on the BlogCatalog
website. The network has 10, 312 nodes and 333, 983
edges.

« Catster': This network contains family links between
cats and cats, cats and dogs, as well as dogs and dogs
from the social websites catster.com and dogster.com.
The network has 623,766 nodes and 15,699, 276
edges.

« Youtubel?: This is an undirected network of You-
tube users and their connections. The network has
1,134,890 nodes and 2, 987,624 edges.

As the number of possible pairs of nodes N(N — 1) is
too large in Catster and Youtubel, we randomly sample
about 0.1% pairs of nodes for evaluation as done in [10].
Then, we rank them according to the inner product between
embedding vectors, and evaluate the prediction precision in
top k pairs of nodes.

Figure 1 shows the precision@k of link prediction with
different k. The static model, GSVD, outperforms the baseli-
nes significantly. Both GSVD and GraRep preserve the high-
order proximity between nodes, and they achieve better per-
formance in BlogCatalog dataset. But GraRep is not scalable
to large-scale networks, we exclude the results of GraRep
on Catster and Youtubel datasets. The experiment results
demonstrate the high-order proximity between nodes is
helpful for capturing the structure of network.

1. http:/ /konect.uni-koblenz.de/networks/petster-carnivore
2. http:/ /konect.uni-koblenz.de /networks/com-youtube

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

BlogCatalog Dataset

Catster/Dogster Dataset

0.7 1
—-GSVD
LINE1
0.6
—+—LINE2 0.8¢
05 -~ DeepWalk
< node2vec -
G GraRep ® 0.6
c U c
I}]
2 a2
§ 03 804
o o
0.2 y
0.2r
0.1

7
Youtube1 Dataset
0.12

—--GSVD --GSVD

LINE1 LINE1
-+ LINE2 0.1 —+LINE2
—+*-DeepWalk —+=—DeepWalk

node2vec 0.08 node2vec

Fig. 1: Link Prediction on static networks.

5.3 Effectiveness of the Dynamic Model

In this section, we evaluate the effectiveness of the proposed
dynamic model DHPE. We use TRIP and GSVD as baselines
to demonstrate the necessity of dynamic updating embed-
dings while preserving high-order proximities in dynamic
updating. For the ease of presentation, we also use "Others-
best” to denote the best results of other aforementioned net-
work embedding methods, i.e., DeepWalk, LINE-1, LINE-2,
Node2vec and GraRep. As they can not handle dynamic
networks, we only apply them to the static part of the
network, and use the learned embeddings for subsequent
tasks in the dynamic part. Meanwhile, we use GSVD-retain
to retrain the embedding vectors on the entire networks as
the upper bound for our method.

5.3.1 High-order Proximity Approximation

The goal of our algorithm is to preserve the high-order
proximity between nodes. The error of approximation can
be used to evaluate how well we preserve the high-order
proximity between nodes by our updating algorithm. As
the time complexity of computing the high-order proxi-
mity(Katz) is O(N?3), it can not be calculated on large-
scale datasets. Thus, we evaluate the approximation error
on some relatively small datasets:

e Synthetic Data: We generate the synthetic data by
the forest fire model [31]. The model can generate
networks with power law properties. The network
has 1000 nodes and 29887 edges

o Infectious®: This undirected network describes the
face-to-face behavior of people during the exhibition.
Nodes represent exhibition visitors and edges repre-
sent face-to-face contacts between the visitors. The
network has 410 nodes and 17, 298 edges.

For synthetic dataset, we add a random timestamp to each
edge. We separate the original network into training net-
work and growing network by timestamps. Meanwhile, we
ensure the training network is connected. The edges of
the growing network is divided into 10 time slices with
equal time interval. First, we use the static model to train
the embedding vectors on training network denoted as
GSVD-static. Then, we retrain the embedding vectors by
the static model at each time step denoted as GSVD-retrain.
Meanwhile, we update the embedding vectors by DHPE at

3. http:/ /konect.uni-koblenz.de /networks/sociopatterns-infectious

-4 Synthetic Dataset Infectious Dataset

10"
—=—GSVD-static
—=—DHPE

GSVD-retrain|

10

GSVD-static
——DHPE
GSVD-retrain|

RMSE
RMSE

0.5

—nr——b—o— o o o
o 3.

2 4 6 10) 2
Time Slice

4 6
Time Slice

Fig. 2: High-order Proximity Approximation

each time step. Here, we compare the embeddings by DHPE
with the embeddings by GSVD-static and the embeddings
by GSVD-retrain. We use RMSE to evaluate high-order
proximity approximation error of different methods.

Figure 2 shows the result of this experiment, and we
can see that the embedding by DHPE achieves much lower
RMSE than the embedding by GSVD-static. In addition,
in Synthetic dataset, DHPE gets comparable results with
GSVD-retrain, while having a much lower time complexity.
This shows that our algorithm can effectively capture the
change of high-order proximity.

5.3.2 Link Prediction

TABLE 1: Statistics of datasets used in 5.3.2. |V| denotes the
number of nodes , |Esiatic),|Egrow| and |Eiest| denote the
number of edges in the static network, growing network
and testing network respectively.

Math Internet | Youtube2

V] 13,586 32,077 1,021,043

|Estatic) 116,408 111,644 1,913,723
|Egrow] 41,522 58,882 590,561
|Etest| 96,886 137,388 835,202

In link prediction, the original network is divided into
three parts according to the timestamp. The first part is the
static network. The second part is the growing network, and
dynamic algorithms update the embeddings through this
part of the network. The final part is the testing network,
where we evaluate the prediction performance. We use static
methods such as GSVD and SVD to initialize the embedding
in the static network. The edges of the growing network
are divided into 10 time steps by timestamp. At each time
step, we update the embedding by dynamic methods such
as DHPE and TRIP. Finally, we use the embedding to predict

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

Math Dataset

Internet Dataset

0.12 0.2
—e—DHPE
GSVD .
01 —+TRIP 2T~
——-SVD 0.15f .*° N
 0.08 Others-best ‘
= ¢ - GSVD-retrain|

Precison@k

8
Youtube2 Dataset
0.1
——DHPE ——DHPE
GSVD GSVD
—+TRIP —+TRIP
——SVD —~—SVD

Others-best

. Others-best
*\ - *-GSVD-retrain

- ¢-GSVD-retrain

Fig. 3: Link Prediction on dynamic networks. Others-best represent GraRep in Math and Internet datasets and LINE1 in
Youtube? dataset, where GraRep and LINE1 achieve the best performance in all baselines for static networks, respectively.

TABLE 2: MAP of node recommendation on datasets. For each node, the recommended node list is ranked according to the
predicted proximity between nodes. For embedding algorithms, we calculate the predicted proximity by performing inner
product between embedding vectors. Others-best represent GraRep in Math and Internet datasets and LINE1 in Youtube2
dataset, where GraRep and LINE1 achieve the best performance in all baselines for static networks, respectively.

Method Math Internet Youtube2

MAP@10 | MAP@50 | MAP@100 | MAP@10 | MAP@50 | MAP@100 | MAP@10 | MAP@50 | MAP@100

DHPE 0.1748 0.1344 0.1126 0.1043 0.0514 0.0355 0.0840 0.0471 0.0333

GSVD 0.1402 0.1041 0.0877 0.0713 0.0360 0.0265 0.0729 0.0419 0.0290

TRIP 0.1424 0.0988 0.0815 0.0757 0.0317 0.0215 0.0698 0.0386 0.0287

SVD 0.1295 0.0934 0.0774 0.0670 0.0266 0.0182 0.0652 0.0353 0.0262

Others-best 0.1320 0.0997 0.0831 0.0695 0.0324 0.0221 0.0686 0.0378 0.0283

GSVD-retrain 0.1859 0.1432 0.1195 0.1170 0.0623 0.0414 0.0907 0.0518 0.0356

the edges in testing network. Three real-world networks are
used for experimental evaluation:

« Math*: This is a temporal network of interactions on
the stack exchange web site Math Overflow.

o Internet’: This is the network of connections between
autonomous systems of the Internet.

e Youtube2’: This is the social network of YouTube
users and their friendship connections.

The statistics of the three networks are summarized in Table
1.

As the number of possible pairs of nodes is too large
in Youtube2, we randomly sample about 0.5% pairs of
nodes for evaluation as used in [10]. Then, we rank them
according to the inner product between embedding vectors,
and evaluate the prediction precision in top k pairs of
nodes. Figure 3 shows the precision@k of link prediction
on different real-world dynamic networks. Our algorithm
consistently improves the link prediction accuracy on the
testing networks. For example, in Internet dataset, DHPE
achieves 40% improvement in precision@k, when k is equal
to 10%.

5.3.3 Node Recommendation

The setting of training procedure in this experiment is the
same as link prediction. We evaluate the performance of
algorithms from the node view. In orther words, we use

4. http:/ /snap.stanford.edu/data/sx-mathoverflow.html
5. http:/ /konect.uni-koblenz.de /networks/topology
6. http:/ /konect.uni-koblenz.de /networks/youtube-u-growth

embeddings to select the set of nodes that are most likely
to connect with a particular node. Specifically, we randomly
select 1000 nodes with incremental edges in testing network.
For each node v;, we derive the top 100 nodes with the hig-
hest proximity with v; as the candidates that v; will possible
add edge to. After that, we use MAP@10, MAP@50 and
MAP@100 to evaluate the quality of recommendation. We
summarize our results for node recommendation in Table
2. We can see that DHPE outperforms all the baselines. In
some datasets like Math and Internet, our method improves
MAP by approximately 30%.

5.3.4 Multi-label Classification

As we did not find a dataset with both label information
on nodes and timestamps on edges, we choose two static
datasets with labels that have been used in previous work
to conduct this experiment:

o Flickr [32]: This is a network of the contacts between
users of the photo sharing website. The network has
80,513 nodes, 5,899,882 edges and 195 different
labels.

e Youtube3 [33]: This is a social network between users
of the popular video sharing website. The network
has 1, 138,499 nodes, 2,990, 443 edges and 47 diffe-
rent labels.

For each network, we add a random timestamp to each
edge and sort the edges by timestamp. The multi-label
classification experiment settings are similar to [9], but the
original network is divided into two parts according to the

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

Flickr Dataset Flickr Dataset

0.22,
0.32[~-DHPE ~e-DHPE
GSVD 0.2] GSVD
0.3 -a-TRIP -4-TRIP
0.28] ~k-SVD 0.18[{ <= SVD a-
Others-best Others-best .
-*-GSVD-retrain| - I 0.16{|- x- GSVD-retrain|
Lt Y A
E 0.14 >

0.1)

0.02 0.04 0.06 0.08
Percentage of hidden labels

Youtube3 Dataset Youtube3 Dataset

-6-DHPE
GSVD
-4-TRIP
~k-SVD
Others-best
-x-GSVD-retrain| __.x""

-6-DHPE
GSVD
—4-TRIP
~*-SVD -
Others-best
-*- GSVD-retrain|

0.28
0.26
0.24
0.22

0.2]
0.18
0.16

L
L
s
LT

Macro F1

0.14]

0.12
041 0

0.02 0.04 0.06 0.08 .02 0.04 0.06 0.0
Percentage of hidden labels Percentage of hidden labels

Fig. 4: Multi-label classification results. Others-best represent node2vec in Flickr and Youtube3 datasets, where node2vec
achieve the best performance in all baselines for static networks.

(a) DHPE with 10% edges

(b) DHPE with 15% edges

(c) DHPE with 20% edges

Fig. 5: Visualization of network embedding.

timestamp. We use 50% of the edges as the static network
and 50% of the edges as the growing network. We use static
methods to initialize the embedding in the static network
and update the embedding by dynamic methods in the
growing network.

Then, we randomly sample a portion of the labeled
nodes to predict the labels of the rest nodes. For all met-
hods, we use a one-vs-rest logistic regression implemented
by LibLinear [34] for classification. We use the Micro-Iy
and Macro-F} scores to evaluate the results. We compare
performance while varying the percentages of hidden labels
from 1% to 10%. From the results shown in Figure 4, we can
see DHPE can achieve a better classification performance
than baselines even if the labelled data is limited. Such
an advantage is meaningful for real-world applications,
because the labelled data in real-world network is usually
scarce. From these experiments, we can conclude that high-
order proximity and incorporating dynamic changes are
both of paramount importance in network embedding, and
our method shows superior performance than baselines.

5.3.5 Visualization

Visualization is another important application for network
embedding. We randomly choose a subset of Youtube3,
and then we generate visualizations of the network on a
two-dimensional space. For the network, we add a random
timestamp to each edge and sort the edges by timestamp.
We use 10% of the edges as the static network and 10% of
the edges as the growing network. We use static methods
to initialize the embedding in the static network. The edges
of the growing network are divided into 2 time steps by
timestamp. At each timestep, we update the embedding
by DHPE method. Then, we use the network embedding
learned by DHPE as the input to the visualization tool t-SNE

[35]. For nodes with different labels, we use different colors
on the corresponded points. For simplicity, we randomly
select two labels as a showcase. From the visualization
figure shown in Figure 5, we can see DHPE capture the
change of network structure caused by the newly added
edges effectively.

5.3.6 Parameter Sensitivity

In this section, we investigate the parameter sensitivity.
More specifically, we evaluate how different numbers of
the embedding dimensions can affect the results of link
prediction and multi-label classification. Following the pre-
vious experiment settings, we only change the numbers of
the embedding dimensions to show how the dimensionality
affects the performance of DHPE.

We report Precision@k on the dataset of Internet and
Micro-F1 scores on the dataset of Flickr. The experiment
results are shown in Figure 6. We can see that initially
the performance raises when the number of dimension
increases. However, when the number of dimensions con-
tinuously increases, the performance tends to be stable. This
is because most of the useful information is already encoded
into the embeddings. Additional dimensions consume more
computing resources, but have less effect on performance.
Overall, it is important to determine the appropriate number
of dimensions for the latent space. When the number of
dimensions is not too small, DHPE is not very sensitive to
this parameter.

5.4 Efficiency of the Dynamic Model

In this section, we evaluate the efficiency of the algorithm
from two aspects. First, we compare DHPE to retraining
the static method to calculate the speedup ratio. Second, we

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE

Transactions on Knowledge and Data Engineering

Internet Dataset

Flickr Dataset

0.16,

0.14

°
e o
B

Precison@k
o o
> o
8 8

o
o
g

o
o
5]

c

10° 10* 10° 10°] 0.02 0.04 0.06 0.08 0.1
k Percentage of hidden labels

(a) The Precision@k wrt the di- (b) The Micro-F1 scores wrt the
mensionality dimensionality

Fig. 6: Results of parameter sensitivity.

Math dataset

Internet dataset

—e~DHPE
DHPE_slow|

250,

—o-DHPE
DHPE_slow|

o N
a 1=
3 3

Speedup Ratio
®
3
=)
8

Speedup Ratio

200 50

100 150 100 150
Embedding Dimensions d Embedding Dimensions d

Fig. 7: The speedup ratio of DHPE wrt dimensionality.

count the running time of DHPE on a real world large-scale
network.

5.4.1 Speedup Ratio

We compare the efficiency of DHPE and GSVD on different
datasets. At each time step, we count the time cost on the
updating by DHPE and the retraining by GSVD respectively.
Figure 7 shows the average speedup ratio with respect
to different embedding dimensions. DHPE_slow represents
the DPHE without the acceleration of Section 4, which
calculates the Fj, and F; by definition. We can see that the
acceleration effect is significant. The time complexity of our
algorithm is unrelated to the existing edges of the network.
When the network is larger, the advantage of our algorithm
is more obvious. In internet dataset, we see that DHPE can
achieve more than 100X speedup ratio when d is smaller
than 100. As the embedding dimension d increases, the
speedup ratio decreases. This is consistent with our analysis
of the time complexity.

5.4.2 Scalability

We count the actual running time of DHPE in Youtube2, the
largest network in our experiments. We run the experiment
in a machine with 4 processors Intel Xeon 2.6GHz with
256GB of RAM. Figure 8 shows the running time of DHPE
with respect to the number of new edges and the number
of nodes respectively. In Figure 8a, we set the number of
nodes to 1, 000, 000 and vary the number of new edges from
100,000 to 1,000, 000. In Figure 8b, we set the number of
new edges to 200,000 and vary the number of nodes from
200,000 to 2,000,000. When the embedding dimension d
is 200, our algorithm only spends less than 100 seconds to
update the embedding in the network of one million nodes.

10
Youtube? dataset Youtube? dataset
150, 150,
—o—-d=20 ——d=20
d=50 d=50
—&-d=100 —&—d=100|
——d=200 - d=200|

2
3

e

e
e

2
6

Time Cost (s)
Time Cost (s)

o
S
@
S

._‘___._4__..—&——&—-——-—“

10

4 6 .5 1 15
Number of new edges Y10° Number of nodes

x 10

(a) The running time wrt the (b) The running time wrt the
number of new edges number of nodes

Fig. 8: The running time of DHPE in large-scale network.

6 CONCLUSION

In this paper, we study the problem of dynamic network
embedding while preserving high-order proximity. We pro-
pose a scalable network embedding algorithm, called Dyn-
amic High-Order Proximity preserved Embedding (DHPE).
The algorithm preserves the high-order proximity between
nodes and updates the embedding of network effectively
and efficiently. With the acceleration of the algorithm, our
algorithm achieves linear time complexity with respect to
the number of nodes and number of changed edges in the
network. The empirical study demonstrates the superio-
rity of high-order proximities and our proposed algorithm,
DHPE. Our future direction is to develop a nonlinear model
to better capture the structure of dynamic networks.

REFERENCES

[1] D. Wang, P. Cui, and W. Zhu, “Structural deep network em-
bedding,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 1225-1234.

[2]]. Chen, Q. Zhang, and X. Huang, “Incorporate group information
to enhance network embedding,” in Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management.
ACM, 2016, pp. 1901-1904.

[3] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv preprint
arXiv:1603.08861, 2016.

[4] Z. Huang and N. Mamoulis, “Heterogeneous information net-
work embedding for meta path based proximity,” arXiv preprint
arXiv:1701.05291, 2017.

[5] S. Chen, S. Niu, L. Akoglu, J. Kovacevi¢, and C. Faloutsos, “Fast,
warped graph embedding: Unifying framework and one-click
algorithm,” arXiv preprint arXiv:1702.05764, 2017.

[6] X.Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” 2017.

[7] E Nie, W. Zhu, and X. Li, “Unsupervised large graph embedding.”
in AAAI 2017, pp. 2422-2428.

[8] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web. ACM, 2015, pp.
1067-1077.

[9] B.Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701-710.

[10] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric tran-
sitivity preserving graph embedding,” in Proc. of ACM SIGKDD,
2016, pp. 1105-1114.

[11] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 3943, 1953.

[12] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” science, vol. 290, no. 5500, pp. 2323—
2326, 2000.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2822283, IEEE
Transactions on Knowledge and Data Engineering

11

[13] J. B. Tenenbaum, V. De Silva, and]. C. Langford, “A global Dingyuan Zhu Biography text here.
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral

techniques for embedding and clustering,” in NIPS, vol. 14, no. 14, PLACE
2001, pp. 585-591. PHOTO
[15] S. Yan, D. Xu, B. Zhang, H.-]. Zhang, Q. Yang, and S. Lin, “Graph HERE

embedding and extensions: a general framework for dimensio-
nality reduction,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 1, pp. 40-51, 2007.

[16] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space
approaches to social network analysis,” Journal of the american
Statistical association, vol. 97, no. 460, pp. 1090-1098, 2002.

[17] P. D. Hoff, “Multiplicative latent factor models for description
and prediction of social networks,” Computational and Mathematical
Organization Theory, vol. 15, no. 4, pp. 261-272, 2009.

[18] M. S. Handcock, A. E. Raftery, and J. M. Tantrum, “Model-
based clustering for social networks,” Journal of the Royal Statistical
Society: Series A (Statistics in Society), vol. 170, no. 2, pp. 301-354,

Peng Cui Biography text here.

2007.

[19] S. Zhu, K. Yu, Y. Chi, and Y. Gong, “Combining content and PLACE
link for classification using matrix factorization,” in Proceedings PHOTO
of the 30th annual international ACM SIGIR conference on Research HERE

and development in information retrieval. ACM, 2007, pp. 487-494.

[20] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD Internati-
onal Conference on Knowledge Discovery and Data Mining. ACM,
2016, pp. 855-864.

[21] S.Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment. ACM, 2015, pp. 891-900.

[22] T. Chen and Y. Sun, “Task-guided and path-augmented hete- L)
rogeneous network embedding for author identification,” arXiv Ziwei Zhang Biography text here.
preprint arXiv:1612.02814, 2016.

[23] Y. Chen and C. Wang, “Hine: Heterogeneous information network

embedding,” in International Conference on Database Systems for PLACE
Advanced Applications. Springer, 2017, pp. 180-195. PHOTO

[24] X. Sun, J. Guo, X. Ding, and T. Liu, “A general framework for HERE
content-enhanced network representation learning,” arXiv preprint
arXiv:1610.02906, 2016.

[25] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic
graphs,” in Proceedings of the 2015 SIAM International Conference on
Data Mining. SIAM, 2015, pp. 559-567.

[26] C. C. Paige and M. A. Saunders, “Towards a generalized singular
value decomposition,” SIAM Journal on Numerical Analysis, vol. 18,
no. 3, pp. 398405, 1981.

[27] G. Strang, G. Strang, G. Strang, and G. Strang, Introduction to linear
algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.

[28] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, Jian Pei Biography text here.
2012, vol. 3.

[29] G. W. Stewart and].-G. Sun, “Matrix perturbation theory (compu-
ter science and scientific computing),” 1990.

[30] Z.Reza and L. Huan, “Social computing data repository,” 2009. PLAGE
[31] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: PHOTO
densification laws, shrinking diameters and possible explanati- HERE

ons,” in Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM, 2005, pp.
177-187.

[32] L. Tang and H. Liu, “Relational learning via latent social di-
mensions,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009, pp.
817-826.

[33] ——, “Scalable learning of collective behavior based on sparse
social dimensions,” in Proceedings of the 18th ACM conference on
Information and knowledge management. ACM, 2009, pp. 1107-1116. .

[34] R-E. Fan, K.-W. Chang, C.J. Hsieh, X.-R. Wang, and C.J. Lin, Wenwu Zhu Biography text here.
“Liblinear: A library for large linear classification,” Journal of
machine learning research, vol. 9, no. Aug, pp. 1871-1874, 2008.

[35] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” PLACE
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605, PHOTO
2008. HERE

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

