
Arbitrary-Order Proximity Preserved Network Embedding
Ziwei Zhang

∗

Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

Peng Cui

Tsinghua University

cuip@tsinghua.edu.cn

Xiao Wang

Tsinghua University

wangxiao007@mail.tsinghua.edu.cn

Jian Pei

JD.com and Simon Fraser University

jpei@cs.sfu.ca

Xuanrong Yao

Tsinghua University

yaoxr17@mails.tsinghua.edu.cn

Wenwu Zhu

Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Network embedding has received increasing research attention in

recent years. The existing methods show that the high-order proxi-

mity plays a key role in capturing the underlying structure of the

network. However, two fundamental problems in preserving the

high-order proximity remain unsolved. First, all the existing met-

hods can only preserve fixed-order proximities, despite that prox-

imities of different orders are often desired for distinct networks

and target applications. Second, given a certain order proximity,

the existing methods cannot guarantee accuracy and efficiency

simultaneously. To address these challenges, we propose AROPE

(arbitrary-order proximity preserved embedding), a novel network

embedding method based on SVD framework. We theoretically

prove the eigen-decomposition reweighting theorem, revealing the

intrinsic relationship between proximities of different orders. With

this theorem, we propose a scalable eigen-decomposition solution

to derive the embedding vectors and shift them between proximities

of arbitrary orders. Theoretical analysis is provided to guarantee

that i) our method has a low marginal cost in shifting the embed-

ding vectors across different orders, ii) given a certain order, our

method can get the global optimal solutions, and iii) the overall

time complexity of our method is linear with respect to network

size. Extensive experimental results on several large-scale networks

demonstrate that our proposed method greatly and consistently

outperforms the baselines in various tasks including network re-

construction, link prediction and node classification.

KEYWORDS
Network Embedding, Arbitrary-Order Proximity, Network Repre-

sentation Learning

ACM Reference Format:
Ziwei Zhang, Peng Cui, XiaoWang, Jian Pei, Xuanrong Yao, andWenwuZhu.

2018. Arbitrary-Order Proximity Preserved Network Embedding. In KDD
2018: 24th ACM SIGKDD International Conference on Knowledge Discovery &

∗
Tsinghua National Laboratory for Information Science and Technology(TNList)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD 2018, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219969

Data Mining, August 19–23, 2018, London, United Kingdom. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3219819.3219969

1 INTRODUCTION
Network embedding, which has attracted increasing research atten-

tion, represents nodes by low-dimensional vectors while preserving

the inherent properties and structures of the network. In this way,

feature-based machine learning algorithms can be easily applied

for network analysis. Prior works have demonstrated that, besides

the pairwise edges, the high-order proximities between nodes are

of tremendous importance in capturing the underlying structure of

the network [3, 8, 13, 21, 23] and thus can provide valuable infor-

mation for learning the embedding vectors. Therefore, a bunch of

methods have been proposed to preserve the high-order proximities

in network embedding.

Despite their success, two fundamental problems remain unsol-

ved. First, all the existing methods can only preserve fixed-order

proximities. However, embeddings with a certain order proximity

do not necessarily perform best on all networks and target appli-

cations [3, 24]. For example, in classification tasks, classes with

different granularities often require proximities of different orders,

i.e. coarser-grained classes require higher-order proximities and

finer-grained classes require lower-order proximities [24]. We also

empirically verify the effect of the orders, as shown in Figure 5. To

incorporate proximities of different orders, the existing methods

have to rerun multiple times and compute multiple embeddings for

each node separately. For example, DeepWalk [23] sets the order

by a hyper-parameter, i.e. the pre-defined window size, and has to

rerun the algorithm from scratch each time for a different hyper-

parameter. Considering a more general setting where proximities

of different orders need to be preserved with different weights, such

as combining atomic proximities to form a more delicate proximity

measure as in [14], the existing methods confront even more dif-

ficulties due to their immutable incorporating of the high-order

proximities.

Second, even given a certain order proximity, it is still an open is-

sue for the existing methods to guarantee accuracy and efficiency si-

multaneously. For example, a series of works [13, 23] adopt random

walks to explore the high-order proximities and use Stochastic Gra-

dient Descend (SGD) for optimization. Since the objective function

is not convex and the number of iterations for the optimization is

usually set small to ensure efficiency, these methods cannot gua-

rantee global optimal solutions [4]. On the other hand, network

embedding methods based on matrix factorization [3, 35] or deep

learning [34] are known to have efficiency issues. How to guarantee

https://doi.org/10.1145/3219819.3219969
https://doi.org/10.1145/3219819.3219969

accuracy and efficiency simultaneously in the case of preserving

arbitrary-order proximities is even more challenging.

In this paper, we propose AROPE
1
(arbitrary-order proximity pre-

served embedding), a novel network embedding method based on

SVD framework. We theoretically prove the eigen-decomposition

reweighting theorem, which reveals that the intrinsic relationship

between proximities of different orders is reweighting and reor-

dering the dimensions. With this theorem, we propose a scalable

solution to derive the embedding vectors. Meanwhile, we can shift

the embedding vectors between proximities of arbitrary orders, i.e.

efficiently getting embedding vectors of any proximity from some

base embedding vectors, even in the general setting where different

orders of proximities are arbitrarily weighted. Theoretical analysis

is provided to guarantee that i) our method has a low marginal

cost in shifting the embedding vectors across different orders and

weights, ii) given a certain order, our method can get the global op-

timal solutions, and iii) the overall time complexity of our method

is linear with respect to network size.

Extensive experiments on several large-scale networks with mil-

lions of nodes and edges are conducted. The experimental results

demonstrate that our proposed method greatly and consistently

outperforms the state-of-the-art network embedding methods in

several applications of network embedding, including network re-

construction, link prediction and node classification.

To summarize, the contributions of our paper are as follows:

• We propose AROPE, a novel network embedding method that

supports shifts across arbitrary orders with a low marginal cost.

• We prove the eigen-decomposition reweighting theorem to

reveal the intrinsic relationship between proximities of different

orders in SVD framework. Theoretical analysis shows that our

method can get the global optimal solutions while having a

linear time complexity.

• Extensive experimental results demonstrate the efficacy of our

method by improving the precision of network reconstruction

and link prediction by more than 100% on two large networks.

The rest of this paper is organized as follows. In Section 2, we briefly

review related works. We formulate our problem in Section 3. In

Section 4, we introduce our proposed method. Experimental results

are reported in Section 5. Finally, we summarize in Section 6.

2 RELATEDWORK
Network embedding has recently become a paradigm to represent

nodes by low-dimensional vectors, aiming to bridge the gap bet-

ween network analysis and machine learning techniques. Next, we

briefly review some representative network embedding methods,

and readers are referred to [8] for a comprehensive survey.

Early network embedding methods, also called graph embed-

ding, are studied as a dimension reduction problem [36]. However,

these methods focus on the pairwise similarity. How to preserve

the high-order proximities becomes an attracting research problem

very recently. DeepWalk [23] first proposes using truncated random

walks to explore the high-order proximities and utilizes the skip-

gram model [20] to derive the embedding vectors. LINE [30] takes

a similar idea but sets the walk length as one with an explicit ob-

jective function. Node2vec [13] is further proposed with potentially

1
The code is available at http://nrl.thumedialab.com/

biased random walks for more flexibility. As shown in [4, 25], these

random walk based methods are equivalent to factorizing high-

order proximity matrices. By using efficient optimization methods

such as Stochastic Gradient Descend (SGD) [30], these methods are

more scalable than some matrix factorization methods, but cannot

guarantee the global optimal solutions.

On the other hand, explicit matrix factorization methods are

also adopted for preserving the high-order proximities. GraRep [3]

directly applies SVD to high-order proximity matrices and achieves

good performance. Non-negative matrix factorization is applied in

[35] to preserve the high-order proximity as well as the commu-

nity structure of the network. However, both methods suffer from

scalability issues and cannot be applied to large-scale networks. To

address the efficiency problem, [4] introduces a unified framework

for preserving high-order proximities and proposes a sparsification

technique to speed up the SVD method. Another approximation

technique is introduced in matrix factorization in [38]. Despite their

remarkable improvements, these methods still cannot guarantee the

global optimal solutions. One exception to this dilemma is HOPE

[21], which uses generalized SVD to preserve high-order proximi-

ties in directed networks with a linear time complexity. However,

it requires a special form of the high-order proximities. Actually,

the objective function of HOPE is a special case of our method

by setting the order as infinity and weights to be exponentially

decaying (see Definition 3.1). Except that, HOPE cannot preserve

proximities of other orders or shift across different orders.

Deep learning method is also studied in preserving the high-

order proximities. SDNE [34] first considers the high non-linearity

in network embedding and preserves both the first and the second

order proximities using a deep auto-encoder. However, SDNE can

only preserve the first two order proximities. Besides, it also has

efficiency issues.

How to incorporate side information in network embedding is

also explored. For example, [5, 9] introduce metapaths into em-

bedding heterogenous information networks to handle node types.

Node attributes and node labels are incorporated into network em-

bedding in [17, 37] and [22, 32, 39] respectively. Dynamic network

embedding [19, 41, 42] further considers the evolving characteristic

of networks. DHNE [33] extends SDNE to preserve the indecom-

posability in hyper-networks. In this paper, we focus on the most

fundamental case that only the static network structure is available.

To summarize, how to guarantee efficiency and accuracy simul-

taneously in preserving the high-order proximities largely remains

open in the literature. In addition, the existing methods can only

preserve fixed-order proximities and cannot shift across orders.

3 PROBLEM FORMULATION
3.1 Notation
Suppose we have a network G with N nodes and M edges. We

use A to denote the adjacency matrix. A (i, :) and A (:, i) stand for

its ith row and column, respectively. A (i, j) is the weight of the
edge between nodes i and j. In this paper, we mainly consider

undirected networks, so A is symmetric and A (i, j) = A (j, i). A (i, j)
is 0 or 1 for unweighted networks, and any non-negative number for

weighted networks. AT
denotes the transpose of A. Throughout the

paper, we use bold uppercase characters to denote matrices and bold

lowercase characters to denote vectors, e.g. X and x respectively.

Functions are marked by curlicue, e.g. F (·).

3.2 Arbitrary-Order Proximity Preserved
Network Embedding

Definition 3.1 (High-Order Proximity). Given the adjacency ma-

trix A of an undirected network, a high-order proximity is defined

as a polynomial function F (·) of A:

S = F (A) = w1A +w2A2 + ... +wqAq , (1)

where q is the order andw1, ...,wq are the weights. Note that we

refer a proximity of order q as the weighted combination of all

the orders from the 1
st

to the qth , rather than the qth order alone.

We allow q = +∞ if the summation converges. We will assume

thatwi ≥ 0 for ∀ 1 ≤ i ≤ q, following the previous works. When

different high-order proximities are referred, we use subscripts to

distinguish, e.g. Fi (·).

The previous work has shown that many state-of-the-art net-

work embedding methods explicitly or implicitly preserve this high-

order proximity [4, 25, 38]. It is worth mentioning that some work

shows that an additional non-linear wrapping function is important

[4], while other work demonstrates that the extra function has a

limited effect [38]. We do not consider the wrapping function in

this paper and leave it as the future work.

The adjacency matrix A could be replaced by other variations,

such as the Laplacian matrix [1], provided that the substituting

matrix is sparse and symmetric. For simplicity, we focus on the

adjacency matrix in the rest of the paper, but similar ideas can be

straight-forwardly generalized. We also reuse the notation of F (·)

such that when the function is applied to a number, the matrix

product in Eq. (1) is replaced by the product of numbers.

To preserve the high-order proximity in a low-dimensional vec-

tor space, the widely adopted method is matrix factorization, which

minimizes the following objective function:

min

U∗,V∗

S − U∗V∗T
2
F
, (2)

where U∗,V∗ ∈ RN×d
are content/context embedding vectors and

d is the dimensionality of the space. Without loss of generality, we

use U∗
as the content embedding vectors.

From Ercart-Young theorem, the global optimal solution to Eq.

(2) can be obtained by truncated SVD [10]. Specifically, denote

[U,Σ,V] as the top-d SVD results of S, where U,V ∈ RN×d
and

each column corresponds to one left/right singular vector, and

Σ ∈ Rd×d is a diagonal matrix of singular values in descending

order. The embeddings can be obtained by multiplying Σ into U,V:

U∗ = U
√

Σ,V∗ = V
√

Σ. (3)

However, directly calculating S and performing SVD will be both

time and space consuming. Besides, since different networks and

target applications usually require proximities of different orders,

how to shift across different orders is also challenging. In the next

section, we show a scalable solution to preserving arbitrary-order

proximities that supports shifts across orders based on the above

formulations.

4 AROPE: THE PROPOSED METHOD
4.1 Problem Transformation
To solve the SVD problem in Eqs. (2)(3), we first transform it

into an eigen-decomposition problem. Denote the top-d eigen-

decomposition of S as [Λ,X], where Λ ∈ Rd×d is a diagonal matrix

of eigenvalues in descending order of the absolute value, X ∈ RN×d

and each column corresponds to an eigenvector. [Λ(i, i),X(:, i)] , 1 ≤

i ≤ d is also referred as an eigen-pair. Then, SVD and eigen-

decomposition are related by the following theorem.

Theorem 4.1. For any symmetric matrix S, ∀ 1 ≤ i ≤ d , we have:
U(:, i) = X(:, i)

Σ(i, i) = abs(Λ(i, i))

V(:, i) = X(:, i)siдn(Λ(i, i))
,and (4)

{X(:, i) = U(:, i)

Λ(i, i) = Σ(i, i)siдn (U(:, i) · V(:, i))
, (5)

where abs(x) = |x | stands for the absolute value function and siдn(·)
is the sign function, i.e. siдn(x) = 1 if x > 0, siдn(x) = 0 if x = 0 and
siдn(x) = −1 if x < 0.

The proof can be found in linear algebra textbooks such as [29].

Using the theorem, we can easily get the results of SVD from the

eigen-decomposition by Eq. (4) and vice versa by Eq. (5). Next, we

only need to focus on solving the eigen-decomposition of S.

4.2 Eigen-Decomposition Reweighting
To efficiently solve the eigen-decomposition of S, our key finding is
that by leveraging the form of arbitrary-order proximities defined

in Eq. (1), the eigen-decomposition results of different proximities

are highly correlated. Specifically, we have the following theorem:

Theorem 4.2 (Eigen-Decomposition Reweighting). If [λ, x]
is an eigen-pair of A, then [F (λ), x] is an eigen-pair of S = F (A).

Proof. According to the definition of an eigen-pair:

Ax = λx. (6)

Then, we can easily get:

A2x = Aλx = λAx = λ2x. (7)

By definition,

[
λ2, x

]
is an eigen-pair of A2

. By using the definition

of S = F (A) and repeating the above process, we have:

Sx = F (A)x =
(
w1λ +w2λ

2 + ... +wqλ
q
)

x = F (λ)x, (8)

which completes the proof. �

The theorem shows that, without performing the eigen decompo-

sition on S, we can get the eigen-decomposition results of S from the

eigen-decomposition results of A by replacing λ with F (λ). In fact,

the theorem reveals the intrinsic relationship between proximities

of different orders. If we regard each eigenvector as a “coordinate”

of the nodes in the network and each eigenvalue as a “weight” of

the coordinate, then, preserving proximities of different orders is

equivalent to reweighting the dimensions.

Another issue is that after the eigen-decomposition reweighting,

the order of the eigenvalues may change, i.e. the top-d eigen-

decomposition of S is not necessarily the reweighting of the top-d
eigen-decomposition of A.

To tackle that problem, we can prove that the top-d eigen de-

composition of any S is guaranteed to be the reweighting of the

top-l eigen-decomposition of A, where l = L(A,d) is a function of

the network and d . Specifically, denote λ′
1
, λ′

2
, ..., λ′d as the top-d

eigenvalues of S = F (A) in descending order of the absolute value.

From Theorem 4.2, we have:

∃ pi s .t . λ
′
i = F (λpi),∀1 ≤ i ≤ d, (9)

i.e. pi is the order of λ
′
i before the high-order transformation F (·).

As a result, we only need the top pi , 1 ≤ i ≤ d eigen-decomposition

of A to get λ′
1
, ..., λ′d for S. We can prove the following theorem:

Theorem 4.3. If F (·) satisfies Definition 3.1, then:

1 ≤ pi ≤ l ∀1 ≤ i ≤ d, (10)

where l satisfies that the top-l eigenvalues of A have d positive, i.e.

l = L(A,d) = min l ′ s .t .
l ′∑
j=1
I
(
λj > 0

)
= d, (11)

where |λ1 | ≥ |λ2 | ≥ ... ≥ |λl | are the top-l eigenvalues of A in
descending order of the absolute value and I(·) is 1 when the condition
is satisfied and 0 other wise.

Proof. We prove the theorem by showing that any eigenvalue

except the top-l cannot be larger in absolute value than the d po-

sitive eigenvalues after F (·). Assuming |λi | ≥
��λj �� and λi > 0, we

have:

|F (λi)| =
��w1λi + ... +wqλ

q
i

�� = w1 |λi | + ... +wq |λi |
q

≥ w1

��λj �� + ... +wq
��λj ��q ≥

���w1λj + ... +wqλ
q
j

��� = ��F (λj)
�� .

(12)

The equation is resulted from the fact that allwi ≥ 0.

Using Eq. (11), we know that

∃ 1 ≤ c1 < c2... < cd = l

s .t . λc1 ≥ λc2 ≥ ... ≥ λcd > 0,
(13)

i.e. ci , 1 ≤ i ≤ d are indexes for the positive eigenvalues.

For ∀j > l ,∀1 ≤ i ≤ d , we have:��λci �� ≥ ��λj �� and λci > 0. (14)

From Eq. (12),

��F (λci)
�� ≥ ��F (λj)

��
, which leads to the theorem. �

We also show that Theorem 4.3 is tight in the following corollary.

Corollary 4.4. For any A, pd = l is achievable in Eq. (10), i.e. the
top-l eigen-decomposition of A is a tight requirement for calculating
the top-d eigen-decomposition of S.

Proof. Consider q = +∞ for F (·) and let the weights be expo-

nentially decaying, i.e.wi = βi and β > 0 is a constant. To ensure

that the high-order proximity function converges, we assume that

β is smaller than the inverse of the spectral radius of A [29].

Then, for ∀ 1 ≤ i ≤ d , we have:

λ′i = F (λpi) = βλpi + β
2λ2pi + ... =

βλpi
1 − βλpi

, (15)

Algorithm 1 AROPE: ARbitrary-Order Proximity preserved Em-

bedding

Require: Adjacency Matrix A, Dimensionality d , Different High-
Order Proximity Functions F1(·), ...,Fr (·)

Ensure: Embedding vectors U∗
i ,V

∗
i for Fi (·), 1 ≤ i ≤ r

1: Calculate the top-l eigen-decomposition [Λ,X] of A
2: for i in 1:r do
3: Calculate the reweighted eigenvalues Λ′ = Fi (Λ)
4: Sort Λ′

in descending order of the absolute value and select

the top-d
5: Calculate the top-d SVD results using Eq. (4)

6: Return U∗
i ,V

∗
i using Eq. (3)

7: end for

where pi and λ
′
i are defined in Eq. (9). It is easy to see that F (λpi)

grows monotonously with λpi . As a result, we have:

pi = ci ,∀1 ≤ i ≤ d, (16)

where ci are indexes for the positive eigenvalues of A defined in

Eq. (13). Since cd = l , this completes the proof. �

The above theorems suggest that to get the top-d eigen de-

composition of any F (·), we need to calculate the top-l eigen-
decomposition of A. Then, we can reweight and reorder dimensions,

and use the top-d after reweighting to derive the embedding vectors.

As for the relationship between d and l , for the simplest case of

random networks, i.e. the Erdos Renyi model, we have an expected

relation of l ≈ 2d for sufficiently large networks due to the Wigner

Semicircle Law [11]. For random networks with a power-law dis-

tribution, the same relation can be induced under mild conditions

[7]. For real networks, the relationship depends on the individual

network structure, but we verify that l ≤ 2d is satisfied for all the

networks which we experiment on.

An important observation is that since the top-l eigen decompo-

sition of A is shared by arbitrary-order proximities, we can shift

between proximities of different orders with a low marginal cost

by pre-computing the eigen-decomposition.

4.3 The Framework and Complexity Analysis
We show our algorithm framework in Algorithm 1. Our pro-

posed method, AROPE, can get the global optimal solutions to

arbitrary-order proximities by utilizing the eigen-decomposition

reweighting theorem. In addition, our method can deal with the

general case that proximities of different orders are arbitrarily weig-

hted. A simplified version of our method is to assign equal weights

or exponentially decaying weights to different orders. One may also

concern about the numerical stabilities of our method, especially

when the eigenvalues are very similar. In practice, we find that out

method is quite stable, potentially due to the success of established

numerical methods in solving the eigen-decomposition problem.

From the algorithm, we can see that the time complexity of line

1 isO
(
T (Nl2 +Ml)

)
by using iterative approaches [16], where N is

the number of nodes, M is the number of edges and T is the number

of iterations. The time complexity of each loop from line 3 to line 6 is

O (l + Nd). So the total complexity isO
(
T (Nl2 +Ml) + r (l + Nd)

)
,

which exhibits two merits. First, the complexity is linear with re-

spect to the network size (M and N respectively), so our method is

scalable and can be applied to large-scale networks. Second, since

l ≥ d and usually T >> r , the first term dominates and it takes low

additional time to compute multiple arbitrary-order proximities, i.e.

our method supports shifts across orders with a low marginal cost.

4.4 Special Cases of the Proposed Method
Next, we show that our method incorporates many commonly used

high-order proximities as special cases.

4.4.1 Common Neighbors and Propagation. A simple and widely

studied proximity measure in network analysis is the common

neighbors [18], i.e. the structure of neighbors of neighbors for

nodes is reflected. Our method can preserve the common neighbors

if we set the order as q = 2 and weights to bew1 = 0,w2 = 1, i.e.

S = F (A) = A2. (17)

To generalize the common neighbors, some propagation based

proximities are proposed, which consider higher-order structures

of the network. Our method incorporates a commonly used propa-

gation based proximity in [14] by setting S as:

S = F (A) = w2A2 +w3A3, (18)

wherew2,w3 are weights of the propagation.

4.4.2 Katz Proximity. Another commonly used proximity mea-

sure is the Katz proximity [15], which is an ensemble of proximities

of different orders with exponentially decaying weights. Our met-

hod can preserve the Katz proximity defined as:

S = F (A) =

∞∑
i=1

βiAi , (19)

where β is a constant that controls how fast the weights decay. To

ensure that the proximity converges, β must be smaller than the

inverse of the spectral radius of A [29].

4.4.3 Eigenvector Centrality. Another special case of ourmethod

is to set the dimensionality as d = 1, i.e. we only analyze the effect

of the first dimension. We find that the first dimension is actually

highly related to the eigenvector centrality [2], a widely applied

approach to measure the importance of nodes in the network. We

specify this case in the following theorem.

Theorem 4.5. For any F (·), the first dimension of embedding
vectors of AROPE is proportional to the eigenvector centrality of nodes,
i.e. U∗(:, 1) ∝ ec, where ec is a vector of the eigenvector centrality.

Proof. By definition, the eigenvector centrality is the eigenvec-

tor of the adjacency matrix corresponding to the largest eigenvalue,

i.e. ec = X(:, 1). Then, we only need to prove that this eigenvector

is proportional to the first dimension of our embedding vectors.

Using Theorem 4.2 and Eqs. (3)(4), we have:

U∗(:, 1) = U(:, 1)
√��λ′

1

�� = X(:,p1)
√��F (λp1)

��. (20)

From [26], we know that λ1 ≥ dave > 0, where dave is the

average degree of the network. Then, from Theorem 4.3, we have

p1 = 1, which leads to the result. �

Table 1: The Statistics of Datasets

Dataset # Nodes # Edges Average Degree

BlogCatalog 10,312 667,966 64.8

Flickr 80,513 11,799,764 146.6

Youtube 1,138,499 5,980,886 5.3

Wiki 1,791,486 50,888,414 28.4

The theorem shows that the first dimension of our embedding

vectors contains all the information of the eigenvector centrality

regardless of what high-order proximity is used. In other words, we

can use our embedding vectors to measure the importance of nodes.

Interestingly, this is connected to the structural identity of nodes,

which is a recently emerging topic in network embedding [27].

Although we do not show such aim in designing our method, the

eigenvector centrality turns out to be a special case of our method.

5 EXPERIMENTS
5.1 Experimental Setting
To comprehensively evaluate our proposed method, we conduct

extensive experiments on the following four real networks:

• BlogCatalog
2
, Flickr

2
, Youtube

2
[31]: they are online social

networks where nodes represent users and edges represent

relationships between users, so the networks are undirected.

• Wiki
3
[40]: this is a network of Wikipedia hyperlinks. Each

node represents a page and each edge represents a hyperlink

between two pages. We treat the edges as undirected since we

only consider undirected networks in this paper.

All statistics of the datasets are summarized in Table 1. We compare

our method with the following state-of-the-art methods:

• DeepWalk [23]
4
uses truncated random walks and the skip-

gram model to learn embedding vectors. We use two settings of

parameters: one suggested by the paper and one recommended

in the implementation of the authors, and report the best results.

• LINE [30]
5
explicitly preserves the first two order proximities,

denoted as LINE1st and LINE
2nd respectively. For brevity, we

exclude the results of concatenating them because they show

no obvious improvement. We use the default settings for all

parameters except the total number of training samples, which

we conduct a line search for the optimal value.

• Node2vec [13]
6
generalizes DeepWalk by adopting potentially

biased random walks. We vary the bias parameters p,q from

{0.5, 1, 2} and use the default settings for other parameters.

• SDNE [34]
7
adopts a deep auto-encoder to preserve the first two

order proximities. We use the default neural network structure

and parameters in the implementation of the authors.

• NEU [38]
8
proposes enhancing other network embedding vec-

tors by approximating a higher-order proximity. We use the

2
http://socialcomputing.asu.edu/datasets

3
http://snap.stanford.edu/data/wiki-topcats.html

4
https://github.com/phanein/deepwalk

5
https://github.com/tangjianpku/LINE

6
https://github.com/aditya-grover/node2vec

7
https://github.com/suanrong/SDNE

8
https://github.com/thunlp/NEU

results of DeepWalk as their base embeddings and use other

parameters suggested by the paper.

We exclude some other network embedding methods, such as Gra-

Rep [3] and M-NMF [35], for their scalability issues, and exclude

HOPE [21] for being a special case of our method (see Section 2). We

also exclude the results of Node2vec and SDNE onWiki because the

former runs out of memory even with the 384GB memory provided,

and the latter fails to terminate in one week.

For our method, we present two variations:

• AROPE: we vary the order q from {1, 2, 3, 4} with a grid search

for the weights. Note that we can efficiently adjust these hyper-

parameters by shifting across different orders and weights.

• AROPE-F: we also vary the order q from {1, 2, 3, 4}, but fix the

weights aswi = 0.1i , i.e. a simplified version where we greatly

shrink the searching space for hyper-parameters and reduce

the effect of weights on different orders.

All hyper-parameters of our method and the baselines are tuned

using a small validation set, which we set as 10% in our experiments.

For all the methods, we uniformly set the dimensionality as d = 128

unless stated otherwise.

All our experiments are conducted in a single PC with 2 I7 pro-

cessors and 48GB memory, except for Node2vec, which we run in a

server with 384GB memory because of its intensive memory usage.

5.2 Preserving the High-Order Proximity
Since our objective function is to preserve high-order proximities,

we first test the effectiveness and efficiency of our method in this

task. As other network embedding methods do not explicitly mi-

nimize the objective function in Eq. (2), we compare our method

with the following two baselines:

• SVD. We directly calculate the high-order proximities and per-

form SVD. It has the optimal accuracy but is not scalable.

• SPE [28] is a scalable approximation to preserve the high-order

proximities by calculating partial SVD on a submatrix of rand-

omly chosen landmark nodes. We use a landmark size of 1600

as suggested by the paper.

For the high-order proximities, we vary the order q from 2 to 6 and

set the weights to bewi = 0.1i , i.e. the same as AROPE-F. Note that

this is simply an illustrating showcase for the task and we support

other orders and weights as well. To compare different methods,

we report the ratio of the objective function value in Eq. (2) to the

theoretical lower bound calculated by SVD, and the running time

of each method. We only use BlogCatalog in this task because SVD

is very time consuming. The average results of 5 runs are reported.

The results in Figure 1 show that AROPE gets the global optimal

solutions to all proximities as SVD. In comparison, SPE has much

worse performance and the error grows larger as the order beco-

mes higher. From the efficiency perspective, AROPE reports the

minimum running time and the improvement is especially signifi-

cant when the order becomes high, as AROPE reduces the running

time by orders of magnitude and the increase in running time of

AROPE is barely noticeable. These results demonstrate that AROPE

can achieve accuracy and efficiency simultaneously in preserving

arbitrary-order proximities.

1.00

1.25

1.50

1.75

2.00

2 3 4 5 6

Order of the Proximity

R
a
ti
o
 o

f
L
o
s
s
 t
o
 L

o
w

e
r

B
o
u
n
d

AROPE & SVD

SPE

5

15

45

135

2 3 4 5 6

Order of the Proximity

R
u
n
n
in

g
 T

im
e
 (

s
)

AROPE

SPE

SVD

Figure 1: Results of preserving the high-order proximities
on BlogCatalog. AROPE gets the global optimal solutions as
SVD while being much more efficient.

5.3 Network Reconstruction
One primal objective for network embedding is to reconstruct the

network [34]. Specifically, we train embedding vectors and rank

pairs of nodes according to their similarities, i.e. the inner product

of two embedding vectors. The highest ranking pairs of nodes are

used to reconstruct the network. For the evaluation metric, we use

precision defined as:

Precision@Np =
1

Np

Np∑
i=1

δi , (21)

where δi = 1 means the ith reconstructed pair is correct (i.e. the

edge exists in the network), δi = 0 otherwise and Np is the number

of evaluated pairs. For Youtube and Wiki, the number of possible

pairs of nodes
N (N−1)

2
is too large to evaluate, so we sample 1% for

evaluation, as in [21].

Figure 2 shows that our proposed methods, AROPE and AROPE-

F, consistently outperform the baselines when the number of re-

construction pairs varies from one hundred to one million. On all

networks, for the top ten thousand evaluated pairs, AROPE achieves

more than 90% precision. AROPE slightly outperforms AROPE-F

because of the flexibility in adjusting the weights, but AROPE-F still

greatly outperforms the baselines. The improvement over the baseli-

nes is more substantial on Youtube andWiki because reconstruction

usually becomes more challenging when the network grows larger

and the number of possible pairs grows quadratically. Node2vec, as

a generalization of DeepWalk, surprisingly has even worse perfor-

mance. SDNE performs well on BlogCatalog, the smallest network,

but has unsatisfactory results on the large-scale network Youtube.

All methods converge to roughly the same point when the number

of reconstruction pairs grows sufficiently large since nearly all of

the true edges in the evaluated pairs are correctly recovered.

The above results show that our method can better preserve the

network structure by using the SVD framework and preserving

arbitrary-order proximities, which lays the foundation for applying

our method to other applications of network embedding.

5.4 Link Prediction
Link prediction, aiming to predict which pairs of nodes are likely

to form edges, is a typical application of network embedding. In

our experiments, we randomly hide 30% of the edges for testing

and train embedding vectors on the rest of the network. Then, we

rank pairs of nodes in a similar way as network reconstruction

and evaluate the highest ranking pairs on the testing network. We

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

BlogCatalog

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs
P

re
c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

Flickr

0.00

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

Youtube

0.00

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Node Pairs

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

NEU

Wiki

Figure 2: Network reconstruction results. The experimental results show that our proposedmethod hasmuch higher precision,
suggesting that we can reconstruct the given network significantly better. The optimal order of AROPE and AROPE-F for
network reconstruction on these networks is 1, 2, 1, 2 (left to right) respectively.

also adopt precision defined in Eq. (21) as the measurement. The

average results of 5 runs are reported in Figure 3.

The results show that our proposed method outperforms the

baselines significantly and consistently. Similarly to the results of

network reconstruction, the improvement is more substantial on

Youtube and Wiki as we achieve more than 100% improvements

for the top one thousand predictions. The precision scores for all

the methods are lower on Youtube than other networks because

Youtube is much sparser and prediction is more challenging. But

we still achieve significantly better results in that case. The results

demonstrate that by better preserving arbitrary-order proximities,

we can greatly improve the link prediction performance, verifying

the generalization ability of our embedding vectors.

We also conduct experiments of node recommendation, which

shows similar patterns as link prediction. We exclude the results

here due to the space limit.

5.5 Node Structural Role Classification
Recently, how to preserve the structural role of nodes in network

embedding attracts some research attention [27], which has impor-

tant applications such as measuring node centrality or influence

maximization [6]. Since we show that the eigenvector centrality is

a special case of our method in Section 4.4.3, our method implicitly

preserves the structural role of nodes.

To validate that, we conduct experiments on two air-traffic net-

works
9
from Brazilian and European as in [27]. The networks con-

stitute 131 nodes and 2006 edges, and 399 nodes and 11986 edges

respectively, where nodes indicate airports and edges correspond

to commercial airlines. The nodes are assigned a ground-truth la-

bel ranging from 1 to 4 to indicate the level of activities of the

corresponding airports.

We randomly split the nodes into a training set and a testing set.

Then, we train a one-vs-all logistic regressionwith L2 regularization

[12] using the content embedding vectors on the training set, and

test on the testing set. We use accuracy, i.e. the percentage of nodes

whose labels are correctly classified, to evaluate the performance

since the label size is balanced. The benchmark accuracy of random

guessing is also added. For all embedding methods, we set the

9
https://github.com/leoribeiro/struc2vec

dimensionality as d = 16 due to the limited size of the network.

The average results of repeating the process 20 times are reported.

From Figure 4, we can see that our method consistently outper-

forms the baselines on both networks. The results demonstrate

that our method indeed captures the structural role of nodes by

using the SVD framework, which is an additional benefit besides

preserving the arbitrary-order proximities. Other network embed-

ding methods for preserving the proximities, to the contrary, are

less competent in this task. Here we exclude the results of compa-

ring with other structural-based methods because they cannot be

applied to proximity-based tasks (such as link prediction).

5.6 Parameter Analysis
5.6.1 The Order of the Proximity. In AROPE, one important

parameter is the order of the proximity q. Here, we analyze the
effect of q. Specifically, we vary q from {1, 2, 3, 4,+∞} with a grid

search for the best weights for each order. For brevity, we only

report three typical results: network reconstruction on Flickr, link

prediction on BlogCatalog and node structural role classification

on Brazilian Flight in Figure 5.

The results show that the high-order proximities (q > 1) outper-

form the pairwise proximity (q = 1) in most cases, demonstrating

the effectiveness of the high-order proximities in network embed-

ding. However, the optimal q varies greatly on different networks

and target applications. For example, q = 3 has the best results on

BlogCatalog for link prediction, and q = 4 shows a promising accu-

racy on Brazilian Flight for node classification. For network recon-

struction on Flickr, different measurements require different orders.

These results demonstrate that proximities of different orders are

critical to real applications and it is usually hard to predetermine

the order. For our method, since it provides the flexibility of shifts

across arbitrary orders with a low marginal cost, we can efficiently

adjust the order by using a small validation set.

5.6.2 The Number of High-order Proximities. In Section 4.3, we

proved that our method can calculate embedding vectors for multi-

ple arbitrary-order proximities with a low additional cost to support

shifts across orders. Nowwe verify this point by experiments. Speci-

fically, we record the running time of our method when the number

of proximities increases, i.e. shifts across orders.

0.00

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

BlogCatalog

0.00

0.25

0.50

0.75

1.00

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links
P

re
c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

Flickr

0.0

0.2

0.4

0.6

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2Vec

SDNE

NEU

Youtube

0.0

0.2

0.4

0.6

0.8

1e+02 1e+03 1e+04 1e+05 1e+06

Number of Predicted Links

P
re

c
is

io
n

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

NEU

Wiki

Figure 3: Link prediction results. The results show that our proposed method has significantly higher precision in link pre-
diction, showing the superior performance of our method in network inference tasks. The optimal order of AROPE and
AROPE-F for link prediction on these networks is 3, 4, 2, 3 (left to right) respectively.

Random
0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9

Percentage of Nodes Used for Training

A
c
c
u
ra

c
y

Brazilian Flights Network

Random

0.3

0.4

0.5

0.1 0.3 0.5 0.7 0.9

Percentage of Nodes Used for Training

A
c
c
u
ra

c
y

AROPE

AROPE−F

DeepWalk

LINE1

LINE2

Node2vec

SDNE

NEU

European Flights Network

Figure 4: Results of node structural role classification on two
flights networks. The results show that our method has hig-
her accuracies, demonstrating better performance in captu-
ring the structural role of nodes on these two networks.

0.96

0.97

0.98

0.99

1.00

1 2 3 4 + ∞
The Order of the Proximity

P
re

c
is

io
n

@
N

p Np=1e2
Np=1e3
Np=1e4

Reconstruction on Flickr

0.5

0.6

0.7

0.8

0.9

1 2 3 4 + ∞
The Order of the Proximity

P
re

c
is

io
n

@
N

p

Np=1e2
Np=1e3
Np=1e4

Link Prediction on BlogCatalog

0.40

0.45

0.50

0.55

0.60

1 2 3 4 + ∞
The Order of the Proximity

A
c
c
u

ra
c
y

10% Training
50% Training
90% Training

Node Classification on Brazilian Flights

Figure 5: Analyzing the task performance as a function of
the order of the proximity q. The results show that the high-
order proximities (q > 1) usually outperforms the pairwise
proximity (q = 1). However, the optimal q varies greatly on
different networks and applications, suggesting the impor-
tance of shifts across different orders.

The results in Figure 6 show that the running time increases

very slightly when the number of proximities increases, suggesting

that we can get embedding vectors for multiple arbitrary-order

proximities with a low marginal cost. In this way, we can easily

shift across different orders and weights instead of starting from

scratch each time as the baselines.

5.6.3 Scalability Analysis. Here we conduct experiments to ve-

rify the scalability of our method. We apply our method to synthetic

networks of different sizes generated by random graphs, i.e. the

Erdos Renyi model [11], and record the running time. The results

0

500

1000

1500

0 5 10 15 20

Number of High−order Proximities

R
u

n
n

in
g

 T
im

e
(s

)

Wiki

Youtube

Flickr

BlogCatalog

Figure 6: The running time vs. the number of high-order
proximities. The results show that the running time increa-
ses very slightly with respect to the number of proximities.

1500

2000

2500

2e+07 4e+07 6e+07 8e+07 1e+08

Number of Edges

R
u
n
n
in

g
 T

im
e
 (

s
) Number of Nodes = 1e5

2000

4000

6000

2e+05 4e+05 6e+05 8e+05 1e+06

Number of Nodes

R
u
n
n
in

g
 T

im
e
 (

s
) Number of Edges = 1e7

Figure 7: The scalability analysis of AROPE on synthetic net-
works. The results show that our method has a linear time
complexitywith respect to the number of nodes andnumber
of edges respectively. In addition, our method is extremely
efficient, which can be applied to real large-scale networks.

of fixing the number of nodes (as one hundred thousand) or fixing

the number of edges (as ten million) while varying the other are

plotted in Figure 7 respectively.

The figures show that the running time grows linearly with the

number of nodes and the number of edges respectively, verifying

the scalability of our method. It is worth noting that even for the

largest network with one million nodes and ten million edges,

AROPE spends less than two hours in a single PC, i.e. our method is

extremely efficient and can be applied to real large-scale networks.

6 CONCLUSION
In this paper, we study the problem of preserving arbitrary-order

proximities in network embedding. By proving and utilizing the

eigen-decomposition reweighting theorem, we extract the intrinsic

relationship between proximities of different orders and propose

AROPE, a scalable solution to derive the embedding vectors. The-

oretical analysis shows that i) our method supports shifts across

arbitrary orders with a low marginal cost, ii) given a certain order,

our method can get the global optimal solutions, and iii) the overall

time complexity of our method is linear with respect to the network

size. Extensive experimental results demonstrate the efficacy of our

method in several applications of network embedding. One future

direction is to generalize this framework to directed networks and

incorporate side information such node contents and node labels.

ACKNOWLEDGMENTS
This work was supported in part by National Program on Key Basic

Research Project (No. 2015CB352300), National Natural Science

Foundation of China (No. 61772304, No. 61521002, No. 61531006,

No. 61702296), National Natural Science Foundation of China Major

Project (No. U1611461), the research fund of Tsinghua-Tencent Joint

Laboratory for Internet Innovation Technology, and the Young Elite

Scientist Sponsorship Program by CAST. All opinions, findings,

conclusions and recommendations in this paper are those of the

authors and do not necessarily reflect the views of the funding

agencies.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral

techniques for embedding and clustering. In Advances in Neural Information
Processing Systems. 585–591.

[2] Phillip Bonacich. 2007. Some unique properties of eigenvector centrality. Social
Networks 29, 4 (2007), 555–564.

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-

sentations with global structural information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM.

[4] Siheng Chen, Sufeng Niu, Leman Akoglu, Jelena Kovačević, and Christos Falout-

sos. 2017. Fast, Warped Graph Embedding: Unifying Framework and One-Click

Algorithm. arXiv:1702.05764 (2017).
[5] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-

neous Network Embedding for Author Identification. In Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining. ACM, 295–304.

[6] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge Discovery and Data mining. ACM, 199–208.

[7] Fan Chung, Linyuan Lu, and Van Vu. 2003. Spectra of random graphs with given

expected degrees. Proceedings of the National Academy of Sciences (2003).
[8] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network

Embedding. arXiv preprint arXiv:1711.08752 (2017).
[9] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 135–144.

[10] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another

of lower rank. Psychometrika (1936).
[11] László Erdős, Antti Knowles, Horng-Tzer Yau, Jun Yin, et al. 2013. Spectral

statistics of Erdős–Rényi graphs I: local semicircle law. The Annals of Probability
41, 3B (2013), 2279–2375.

[12] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

2008. LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research 9, Aug (2008), 1871–1874.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[14] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.

2004. Propagation of trust and distrust. In Proceedings of the 13th international
conference on World Wide Web. ACM, 403–412.

[15] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[16] Richard B Lehoucq and Danny C Sorensen. 1996. Deflation techniques for an

implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. (1996).

[17] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.

Attributed Network Embedding for Learning in a Dynamic Environment. In Pro-
ceedings of the 26th ACM International Conference on Information and Knowledge
Management.

[18] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for

social networks. Journal of the Association for Information Science and Technology
58, 7 (2007), 1019–1031.

[19] Jianxin Ma, Peng Cui, and Wenwu Zhu. 2018. DepthLGP: Learning Embeddings

of Out-of-Sample Nodes in Dynamic Networks. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence.

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv:1301.3781 (2013).
[21] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asymme-

tric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.

[22] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-

party deep network representation. In Proceedings of the Twenty-Fifth Internatio-
nal Joint Conference on Artificial Intelligence. 1895–1901.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge Discovery and Data mining. ACM, 701–710.

[24] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t

Walk, Skip!: Online Learning of Multi-scale Network Embeddings. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2017. ACM, 258–265.

[25] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,

and node2vec. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining. ACM, 459–467.

[26] Juan G Restrepo, Edward Ott, and Brian R Hunt. 2007. Approximating the largest

eigenvalue of network adjacency matrices. Physical Review E 76, 5 (2007), 056119.

[27] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:

Learning Node Representations from Structural Identity. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 385–394.

[28] Han Hee Song, Tae Won Cho, Vacha Dave, Yin Zhang, and Lili Qiu. 2009. Scalable

proximity estimation and link prediction in online social networks. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement Conference. ACM.

[29] Gilbert Strang. 2006. Linear Algebra and Its Applications (4 ed.). Brooks Cole.
[30] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. 1067–1077.

[31] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
Discovery and Data mining. ACM, 817–826.

[32] Cunchao Tu,Weicheng Zhang, Zhiyuan Liu, andMaosong Sun. 2016. Max-Margin

DeepWalk: Discriminative Learning of Network Representation. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence.

[33] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. 2018. Structural Deep

Embedding for Hyper-Networks. Proceedings of the 32nd AAAI Conference on
Artificial Intelligence.

[34] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-

bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1225–1234.

[35] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.

Community Preserving Network Embedding. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence.

[36] S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang, and S. Lin. 2007. Graph embed-

ding and extensions: a general framework for dimensionality reduction. IEEE
Transactions on Pattern Analysis and Machine Intelligence 29, 1 (2007), 40.

[37] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.

Network Representation Learning with Rich Text Information. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence.

[38] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast Network

Embedding Enhancement via High Order Proximity Approximation. In Procee-
dings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.

[39] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-

Supervised Learning with Graph Embeddings. In International Conference on
Machine Learning. 40–48.

[40] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local Higher-

Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 555–564.

[41] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. TIMERS:

Error-Bounded SVD Restart on Dynamic Networks. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence.

[42] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. 2018. High-

order Proximity Preserved Embedding For Dynamic Networks. IEEE Transactions
on Knowledge and Data Engineering (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Notation
	3.2 Arbitrary-Order Proximity Preserved Network Embedding

	4 AROPE: the proposed method
	4.1 Problem Transformation
	4.2 Eigen-Decomposition Reweighting
	4.3 The Framework and Complexity Analysis
	4.4 Special Cases of the Proposed Method

	5 Experiments
	5.1 Experimental Setting
	5.2 Preserving the High-Order Proximity
	5.3 Network Reconstruction
	5.4 Link Prediction
	5.5 Node Structural Role Classification
	5.6 Parameter Analysis

	6 Conclusion
	References

