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Abstract

Shifts in the marginal distribution of covariates from training
to the test phase, named covariate-shifts, often lead to un-
stable prediction performance across agnostic testing data,
especially under model misspecification. Recent literature
on invariant learning attempts to learn an invariant predic-
tor from heterogeneous environments. However, the perfor-
mance of the learned predictor depends heavily on the avail-
ability and quality of provided environments. In this paper,
we propose a simple and effective non-parametric method for
generating heterogeneous environments via Random Sample
Weighting (RSW). Given the training dataset from a single
source environment, we randomly generate a set of covariate-
determining sample weights and use each weighted train-
ing distribution to simulate an environment. We theoretically
show that under appropriate conditions, such random sam-
ple weighting can produce sufficient heterogeneity to be ex-
ploited by common invariance constraints to find the invariant
variables for stable prediction under covariate shifts. Exten-
sive experiments on both simulated and real-world datasets
clearly validate the effectiveness of our method.

1 Introduction

Despite the great success of machine learning, it often
assumes the independent and identically distributed (IID)
training and test data, encouraging the models to minimize
the empirical training error. However, the IID assumption is
fragile in practice since distribution shifts often occur due
to various reasons such as sample selection bias. Such dis-
tribution shifts lead to poor performance of traditional algo-
rithms, especially when the test distribution is unknown. The
risk is more critical in high-stake scenarios such as finan-
cial analysis (Wong, Hryniowski, and Wang 2020; Xu et al.
2022a), medical diagnosis (Kukar 2003), and criminal jus-
tice (Rudin and Ustun 2018). To guarantee the good gener-
alization ability of a model on data drawn out-of-distribution
(OOD) (Koh et al. 2021), the OOD generalization problem
has been intensively studied in recent years.

Among types of distribution shifts, covariate-shift (Ben-
David et al. 2010) is the most common one, where the
marginal distribution of covariates P(x) changes from the
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training to the test phase, while the conditional distribu-
tion of the response variable P(y|z) remains unchanged. If
a model is correctly specified and P(y|z) can be learned
precisely, its performance will not be affected by covariate-
shifts. However, the model misspecification problem is usu-
ally inevitable in real applications. Therefore, here we focus
on the covariate-shift generalization problem, i.e., how to
improve the generalization ability of a model under model
misspecification and unknown covariate-shifts.

There are several strands of literature related to the tar-
get problem. Given multiple heterogeneous environments,
invariant learning methods and domain generalization meth-
ods are proposed to learn a domain-agnostic model (Ghifary
etal.2015; Li et al. 2017; Ganin et al. 2017) or invariant rep-
resentation (Muandet, Balduzzi, and Scholkopf 2013; Lee,
Kim, and Lee 2021; Krueger et al. 2021). However, their
performance depends heavily on the availability and quality
of heterogeneous environments (Ahuja et al. 2021), which
are difficult to guarantee in real applications. In contrast, sta-
ble learning algorithms (Shen et al. 2020; Kuang et al. 2020;
Xu et al. 2022b; Zhang et al. 2021) require only one environ-
ment. Enlightened by the ideas of causal inference, they tend
to identify the causal variables by learning sample weights to
make all covariates mutually independent and exploit the in-
variance property of causal variables for covariate-shift gen-
eralization. But the underlying assumptions of causal infer-
ence mean that their performance is largely affected by the
sample size and the inner heterogeneity of the training data
(Rosenbaum and Rubin 1983). Some recent studies stand in
the middle. HRM (Liu et al. 2021b) and EIIL (Creager, Ja-
cobsen, and Zemel 2021) put forward to generate heteroge-
neous environments adaptively from a mixture of data sup-
posed to come from multiple environments without environ-
ment labels, their environment partition may bring negative
effects unconsciously if the multi-environment hypothesis is
violated.

In this paper, we combine the merits of stable learning and
invariant learning. We suppose the observed variables X are
composed of an invariant component .S and a variant compo-
nent V, i.e., P(y|s) keeps unchanged while P(y|v) changes
under covariate-shifts. We found that by assigning a set of
random weights on samples as long as the weights do not
change P(y|z), the P(y|v) will be changed while P(y|s)
keeps unchanged. This means that such random weighting



is an adequate way to simulate environments for differen-
tiating S and V. We further extend this point by theoreti-
cal analysis that such random weighting can provide suffi-
cient heterogeneity to be utilized by some common invari-
ance constraints in finding the invariant variables, such as
variance penalization. Motivated by the theory, we propose
a novel Random Sample Weighting (RSW) method to gen-
erate covariate-determining random weights, and integrate it
into each optimization step of invariant learning methods.
The main contributions of this paper are as follows:

* We theoretically analyze the risk of covariate-shift gen-
eralization under model misspecification and the role of
random weighting, particularly how it affects estimation.

* Motivated by the theoretical findings, we further pro-
pose a simple non-parametric method that simulates a
large number of heterogeneous environments via random
covariate-determining sample weights for learning stable
prediction models with auxiliary invariance constraints.

* We carry out extensive experiments to clearly validate the
effectiveness of our method.

2 Preliminary
2.1 Problem Setup

Assumption 2.1 (Covariate Shift). The test distribution
Pt (z,y) differs from the training distribution P (z,y) in
the shift of covariate distribution only, i.e.,

P'(z,y) = P*()P" (y|x), M
where P (x) has the same support with P"(z).

Problem 2.1 (Covariate Shift Generalization). Given the
samples {(z;,y;)}Y; drawn from the training distribution
P (x,y), the goal of covariate shift generalization problem
is to learn a prediction model that performs stably in an ag-
nostic test distribution P¢(z) that satisfies Assumption 2.1.

Because the observed variables X € R” usually contain
the invariant and variant components, here we define the in-
variant variable set S in Definition 2.1.

Definition 2.1 (Invariant Variable Set). The subset S C X is
an invariant variable set iff S satisfies Equation (2) and none
of its proper subsets satisfy Equation (2), where V = X'\ S.
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In contrast, we call V' the variant variable set. Accord-
ing to Equation (1) and Equation (2), it is easy to state:
P (y|s) = P (y|x) is invariant across all the potential dis-
tributions.

Notation Throughout the paper, we use upper-cased let-
ters X,Y to denote random variables or vectors, lower-
cased letters z,y to denote their realizations/observations,
and bold capital letters X, Y to denote the matrices or vec-
tors containing all the observations of X, Y. All distributions
are assumed to be absolutely continuous with respect to the
Lebesgue measure unless stated otherwise.

2.2 Empirical Risk Minimization

Empirical Risk Minimization (ERM) minimizes the aver-
age empirical errors of training samples {z;,y;}%¥ . Given
aloss function in form of £(x, y;6) (e.g. (0T x —vy)? used in
least squares regression) where 6 denotes the parameter set,
ERM minimizes the following objective:

min Ep [L(X,Y:60)] ~ ZL zi,yi30).  (3)

2.3 Importance Sampling Weights

Importance Sampling Weight (Hassanpour and Greiner
2019) is defined as w(z,y) = P'*(z,y)/P' (z,y). Equa-
tion (4) illustrates that it can approximate the expected test
error using the weighted empirical errors of training data.

Epec[L(X,Y;0)] = /m

Z xwyz

L(z,y;0)P" (x,y)dxdy

L(x;,yi;0).

4)

2.4 Invariant Learning

Invariant Learning aims to capture an representation ®(X),
so that P(Y|®(X)) keeps invariant across all potential dis-
tributions. Notably, Invariant Risk Minimization (IRM) (Ar-
jovsky et al. 2019) proposes to minimize the following ob-
jective, given data collected from multiple training environ-
ments &,

min Z L(D(X)

e€&yr

Y 0)+A-DO,D,e), (5

where D(6, @, e) = ||§ — 05]|? is an invariance constraint
describing the d1stance of learnt parameter ¢ and the best
solution ®¢ in e-th environment. Note that

Z 2
> DO,2e) H 6; —eg = Var(63) (6)
e€&ir ‘ tr

which suggests that the optimal ®(X) leads to the mini-
mal variance of parameter 0§ across environments Fy,.. This
enlightens us a discriminative property of ®(X).

3 Algorithm
3.1 Theoretical Motivation

In this section, we present the theoretical results that moti-
vate the algorithm for covariate-shift generation via random
sample weighting proposed in Section 3.2. We consider the
problem of linear regression with model misspecification.
Specifically, denote the covariates by X = (5, V) and the
response variable by Y, where S is an invariant variable set
according to Definition 2.1. Without loss of generality, we
assume both X and Y are standardized with zero means and



Algorithm 1: Covariate-shift Generalization via Random
Sample Weighting (RSW)

Input: the training dataset {(z;,y;)}Y,, the number of
sample weighting E, and a predefined weighting function
type w(x; B) and distribution Pg of parameters B.
Initialize the parameter set 6 of stable prediction model.
repeat
Sample {B1, s 7BE} ~ PB.
Calculate £ = 1/ESY SN w(xs; B.) - LM &
i, 4i30) + A+ | Vo L(0) © M| + o - [|M]o.
Optimize § < 0 —n -7 L.
until convergence
return: the stable prediction model with parameters 6.

unit variances. For simplicity, throughout this section, we
consider the scalar case with S, V' € R being random vari-
ables, although most discussion can be readily extended to
the vector case. The true model is given by

Y = BsS + BV +9(S) + ¢,

where By = 0 according to Equation (2), g(-) is a non-
linear function representing the model misspecification, and
e ~ N(0,1) is the random error. Let P(x,y) denote the
distribution induced by the true model.

We use a linear model class which is misspecified due to
the existence of g(S). Let 8* = argmin, Ep[Y — b X]? be
the population ordinary least squares (OLS) solution. Turn-
ing to the sample case, we consider N IID training samples
{xi,y;}; from P. Then the emplrlcal OLS (ERM) solu-

tion is given by 3 = arg min ~ ZZ Ly — b7 ay)2.

We first identify the problem that under model misspecifi-
cation, the ERM solution tends to include the variant compo-
nents V/, leading to a variant model vulnerable to distribution
shifts. The following proposition illustrates the problem un-
der a simple case where covariates .S and V' have zero corre-
lation coefficient (for simplicity) but are correlated through
the misspecified term g(S) (corresponding to the spurious
correlation). Since B is consistent (i.e., converging in prob-
ability) to 8%, Proposition 3.1 implies that By 2 0 asymp-
totically with a high probability. The proof is given in Ap-
pendix.

Proposition 3.1. Assume E[SV] = 0 and E[g(S)V] # 0.
Let 3y, be the component of 3* corresponding to V. Then
By # 0.

Next, we investigate the role of random weighting, in par-
ticular how it affects the estimation, which motivates our al-
gorithm. Consider a class of random weighting function

Ws = {w(z, B) > 0: Ex.p, [w(X, B)|B] = 1,VB},

where B ~ Ppg denotes the source of randomness in the
weighting. Wp induces a class of covariate-shifted dis-
tributions P = {P'(z,y) = P'(z)P(ylz) : P'(z) =
w(z, B)P(x),w € Wg}. Note that each element of P is

a distribution P’ over (X,Y") that differs from the training
distribution P only in the marginal distribution of X, be-
cause our weighting only depends on x.

We make the following assumptions on the weighting
class Wg and training distribution P and discuss how they
reasonably suit the problem of covariate-shift with model
misspeficiation.

Assumption 3.1. For all P € P, the following
two conditions hold: (i) Ep/[XX '] is constant; (ii)
Var[Ep: (Sg(5))] < Var[Ep:(Vg(S))].

Remark. Assumption (i) requires the distribution of covari-
ates be expressive enough so that the random weighting will
not affect its second order moments (although higher or-
der moments can be generally affected). In Appendix, we
show the existence of a sample weighting function such that
the weighted distribution shares the same second-order mo-
ments with the original distribution under fairly general dis-
tributions of exponential families which have universal ap-
proximation capabilities (Sriperumbudur et al. 2017). As-
sumption (ii) indicates that the correlation between the in-
variant variable S and misspecified term ¢(S) has lower
variation than the correlation between the variant variable
V and ¢(S) across shifting covariate distributions P’. This
assumption can be motivated from the invariance property
of S and the unstable spurious correlation that varies with
covariate shifts caused by V. We provide more discussion
on the assumptions in Appendix and comment on the prac-
tical aspects at the end of Section 3.2 after we present the
algorithm.

Given a random weighting w(x, B) with B ~ Pp, let
Bp = argming & 2 [w(w;, B)(yi — b ;)?] be the so-
lution of weighted least squares. Let /3 be the probability
limit of 35 as N — oo conditional on B. By studying /3, we
approximately integrate out the randomness from the finite
sample while focus on the effect of random sample weight-
ing B on the estimation.

Theorem 3.2. Let BS and BV be the components of B cor-
responding to S and V' respectively. Under Assumption 3.1,
we have Var(fg) < Var(fy).

See Appendix for the proof. Theorem 3.2 shows that as we
conduct random sample weighting, 5 exhibits a lower vari-
ance than 3y, indicating that the estimation of Sg is more
stable and varies less than that of y,. This provides a pos-
sibility to distinguish between S and V' through the idea of
invariant learning and therefore motivates us to propose the
algorithm next.

3.2 Covariate-Shift Generalization via Random
Sample Weighting

Now, we present covariate-shift generalization via random
sample weighting (RSW), a simple non-parametric method
that can produce sufficient heterogeneity effectively. In-
splred by Theorem 3.2, through drawing random weight-
ing functions {w(z, B )}e y from a specific distribution
B, ~ Ppg, we have Var(ﬁs) < Var(ﬁv) across the dis-
tinct distributions induced by sample weights. That is to say



we can simulate heterogeneous environments via different
weighting functions such that the estimation of then parame-
ter associated with V' tends to exhibit a larger variance across
the simulated environments. On the other hand, Equation
(6) suggests that the invariance constraint ) . D(0, ®, )
would encourage the prediction model to rely on the vari-
ables with small variances of parameter estimation . There-
fore, we can adopt the distinguishable property of invariance
constraint to achieve stable prediction against covariate-shift
that utilizes the invariant variables from the heterogeneous
training environments produced by random sample weight-
ing.

To employ the invariance constraint in linear models, re-
ferring to Liu et al. (2021b), we take a soft binary mask
M = [mq,...,mg] (Yamada et al. 2020) as ®(X), where
m; = max{0, min{1, y; + €}} is a clipped Gaussian vari-
able parameterized by u; and e is drawn from N(0,02).
Then we use the gradient norm penalty || 74 £¢(0) ® M]||? to
measure the optimality of # at each simulated environment,
following IRM. As a result, after randomly sampling E
weighting functions parameterized by { By, ..., Bg} ~ Pg,
our goal is to minimize the following objective:

E
L=1/EY L+ X-D(0,M,e)(=] voL(0)©M|?)
e=1
N
L= w(ws; Be) - LIM © 2, y550) + - | M]g
=1

N

where ||M|o = 25:1 CDF(pq/0) and CDF is the stan-
dard Gaussian CDF. Also, we can replace the invariance
constraint in Equation (7) with || Var(s7¢£¢(0)) ® M||? pro-
posed by MIP (Koyama and Yamaguchi 2020). If the predic-
tion model is nonlinear, one can directly optimize the invari-
ant representation ®(X) through minimizing D(6, ®,e) =
| Zoj9=1.0 L°(0- ®)||* suggested by IRM, without using the
mask M.

However, in practice with a finite number of sample
weightings, it may happen that 3y, behaves more stably than

(s due to randomness, which may mislead the invariant con-
straint. To this end, we propose RSW that randomly sam-
ples E new weighting functions at each optimization step of
the prediction model with an auxiliary invariant constraint,
which eventually approximates the infinite sample weight-
ings as the algorithm proceeds.

We describe the algorithmic details in Algorithm 1. Since
the complexity of calculating sample weights is only Q(N x*
E), RSW simulates the heterogeneous environments for in-
variant learning without heavy costs. After the prediction
model has meet enough environments, the invariance term
in loss function will be guaranteed to have a positive effect.

Remark. Note that Assumption 3.1 that supports Theo-
rem 3.2 constrains on the data distribution and the choice
of sample weighting. However in the problem of covariate-
shift generalization, we are mainly concerned about whether
the learned prediction model discards the variant variables

Simulation 1: p = 10, |V,| = 2, Scale = 6

Method | r=2 | r=3
| Mean Std Worst | Mean Std Worst
ERM 0.5768 0.4420 1.1525 | 0.7122 0.5601 1.3393
ERM™xuP | 05736 0.4387 1.1459 | 0.7022 0.5503 1.3191
STG 0.5765 0.4417 1.1522 | 0.7126 0.5605 1.3416
DWR 0.5167 0.3303 0.9195 | 0.6365 0.4640 1.1602
SRDO 0.5943 0.4587 1.1931 | 0.7038 0.5518 1.3245
DRO 0.5063 0.3025 009163 | 0.6212 0.2693 0.9402
JTT 0.5632 0.4255 1.1026 | 0.6992 0.5472 1.3124
EIIL 0.4763 0.0838 0.6437 | 0.5149 0.0978 0.7831
HRM 0.5041 0.0790 0.6656 | 0.5492 0.1168 0.8038
K—means | 0.4906 0.2625 0.9701 | 0.4908 0.1992 0.8801
RSW! 0.4234  0.0749 0.5907 | 0.4671 0.0929 0.6809
RSWM | 04175 0.1010 0.6226 | 0.4653 0.0852 0.6512
Simulation 2: p = 10, |V,| = 2,7 =2
Method | Scale =T | Scale = 8
| Mean Std Worst | Mean Std Worst
ERM 0.7179 0.5993 1.5055 | 0.7745 0.6389 1.6146
ERM™xup | 07145 0.5959 1.5008 | 0.7744 0.6389 1.6143
STG 0.7169 0.5981 1.5053 | 0.7747 0.6391 1.6135
DWR 0.6852 0.5596 1.4109 | 0.6355 0.4449 1.2148
SRDO 0.7051 0.5849 1.4711 | 0.7698 0.6311 1.5993
DRO 0.5341 0.2660 0.8772 | 0.6499 0.1648 0.8996
JTT 0.7235 0.6048 1.5183 | 0.7750 0.6398 1.6178
EIIL 0.4182 0.1578 0.6362 | 0.5563 0.0585 0.6518
HRM 0.4767 0.2983 1.0574 | 0.5513 0.1136 0.7325
K—means | 0.4415 0.1957 0.7277 | 0.5249 0.0881 0.6696
RSW! 0.3849 0.0929 0.5187 | 0.5338 0.0717 0.6670
RSWM 0.3869 0.0536 0.5134 | 0.5391 0.0690 0.6582
Simulation 3: |V, |/|V| = 0.1,7 = 0.2, Scale = 6
Method ‘ p=20 ‘ p =30
| Mean Std Worst | Mean Std Worst
ERM 0.5459 0.3911 1.0452 | 0.5883 0.4913 1.2709
ERM™XUP | (05454 0.3909 1.0444 | 0.5890 0.4922 1.2722
STG 0.5463 03915 1.0457 | 0.5869 0.4901 1.2705
DWR 0.5910 0.4208 1.1330 | 0.5571 0.4591 1.196
SRDO 0.5467 03919 1.0461 | 0.5884 0.4914 1.2710
DRO 0.5537 0.3816 1.0323 | 0.5722 0.2693 1.0528
JTT 0.5491 0.3938 1.0510 | 0.5920 0.4945 1.2801
EIIL 0.5494 03936 1.0423 | 0.4147 0.1267 0.6365
HRM 0.5154 0.2721 09100 | 0.4303 0.1373 0.6645
K—means | 0.5155 0.1698 0.8707 | 0.4375 0.1347 0.6812
RSW! 0.4996 0.1721 0.8651 | 0.4158 0.1281 0.6255
RSWM 0.4978 0.1728 0.8680 | 0.4144 0.1290 0.6255

Table 1: Results of experiments in synthetic data. To evalu-
ate the performance of different benchmark models towards
covariate-shift generalization, we conduct experiments un-
der different settings, by varying the strengths of spurious
correlations, the strengths of nonlinear term and the dimen-
sion of covariates, in simulationl, simulation2 and simula-
tion3 respectively. We report the average (MEAN), STD and
the worst-case of MSE in 10 test environments with distinct
distributions. Compared to other baselines, RSW has the sig-
nificant advantages in most of the settings.



V' that carry unstable spurious correlations varying between
training and test distributions, which tend to have larger vari-
ance of parameter. Hence, the practitioners may not have to
elaborately design the weighting functions to meet the re-
quirements, but get promising results with usual substances.

4 Experiment

In this section, we evaluate the effectiveness of proposed
method RSW towards covariate-shift generalization, in com-
parison with the benchmark models. We carry out extensive
experiments on both synthetic data and real-world datasets
where the distribution shifts exist.

4.1 Baselines

We compare our proposed RSW with existing methods that
are relevant to the problem we study. The baselines include
ERM, ERM-mixup that pools data from different environ-
ments, STG (Yamada et al. 2020) (feature selection ap-
proach), stable learning methods (DWR (Kuang et al. 2020)
and SRDO (Shen et al. 2020)), DRO (Sinha, Namkoong, and
Duchi 2018) (Distributionary Robust Optimization), JTT
(Liu et al. 2021a) (Just Train Twice), invariant learning using
mixed data without domain labels (EIIL (Creager, Jacobsen,
and Zemel 2021) and HRM (Liu et al. 2021b)), and invariant
learning in created heterogeneous environments by K-means
(MacQueen et al. 1967) on covariates. For fair comparison,
all the methods are provided with training data from single
source. See Appendix for the details about the implementa-
tion of baselines and the choice for weighting functions of
RSW used in experiments.

4.2 Evaluation Metrics

For comprehensive evaluation of performance in the
covariate-shift scenarios, we take the following three met-
rics. For convenience, we assume the model’s accuracies of
T test environments are {acc;}~ ;. Then the three metrics
are defined by:

« Average Accuracy (Acc) = 3.5, acc,/T.
e Standard Deviation (STD) of Accuracy (Accyg) =
T - 1/2
[ﬁ 21— (ace, — Acc)ﬂ .

* Worst-Case Accuracy (ACCyorst) = minge[r) accy.

4.3 Synthetic Data

Data Generation Process We consider the data genera-
tion mechanism that is called the confounder structure in lit-
erature of causality, where the relationships between invari-
ant variables S, variant variables V and the outcome variable
Y satisfy: S - Y and S —> V.

Let X = {S1,...,5.,V1,...,V,,} be the observed co-
variates, where ps = p, = p/2 and p is the dimension of
covariates. Hence, we can generate the observational data X
with the help of an auxiliary quantity Z drawn from inde-
pendent Gaussian distributions as following:

iid
dres Zpy ~ N(0,1)
Sﬂ' =0.8x% Zyi + 0.2 % Z,i—i—l
V,;=08%S;+0.2%8S i1+ ¢;(~N(0,0.3%))

Z.,....Z

where i,j = 1,2,--- ,ps, S;, V ; represent the values of
S;, V; respectively, and we let j + 1 = (j + 1) mod p;.

To elicit model misspecification, we introduce a nonlinear
term in the form of multi-layer perceptron (MLP) into the
generation function of outcome variable Y,

Y = f(S) + N(0,0.3%)
= [Bs, Bu)” - [S, V] + mip(Si, S, S3;9) + N(0,0.3%)

-

3 57_]—7"'}’ 571 = 0, and
the function mip is a 3-Layer MLP (3x3x1) with parameters
sampled from U (—Scale, Scale). By adjusting the value of
Scale, we can change the strength of the nonlinear term, i.e.,
the degree of model misspecification for linear fitting.

To test the generalization ability of models, it needs to
generate a set of environments with distinct distributions of
covariates P(z) while keeping P(y|z) invariant. Hence, we
consider varying P(v|s) across different environments, so
that it brings about the spurious associations between V' and
Y. Specifically, we choose a subset of variant variables V;, C
V and perturb P(uvp|s) via biased sample selection, leaving
the others V' \ V}, still in the confounder structure. For each
sample (x;,y;), the probability of it being selected is P =

vicv 9(8i,vip, 1), where g(-) is a distance function and
v; p» denotes the bth component of v;. We apply two different
functions in our experiments,

where B, = {%,—%,17 L2

91(8i,ip,T) = \T|_5*|f(si)_8ign(r)'vi’b|

92(82','07;,17, 7’) = PDFN(sign(T)~f(s71), [7]2) (Ui,b)

where sign(r) = r/|r|. Intuitively, the value of |r| and
sign(r) control the strength and direction of spurious as-
sociations between V;, and Y. The larger value of |r| implies
the stronger correlations of V3, and Y in data using function
91(+), while it is converse if go(+) is used. And r > 0 means
positive correlations and vice versa. As a result, we can em-
ploy r to define different environments.

Experimental Settings

 Simulation 1 We use ¢;(-) for biased sample selec-
tion and set Scale = 6. First, we collect 200 test
samples from each of 10 environments where r &
{£3.5,+3,£2.5, £2, +£1.5} (totally 2000 test samples).
Then we optimize the models using the 1000 training
samples collected from a single environment where r =
2/3.

* Simulation 2 The data generation and collection is simi-
lar to simulation1, except that we fix the » = 2 in training
environment, and modify the Scale € {7,8} to vary the
strength of nonlinear term.
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Figure 1: Results of experiments in real-world datasets. We report the performance of algorithms in all the test environments
by boxplot. From the state of results’ dispersion, it is apparent to see the advantage of RSW, specially in term of the worst-case

performance.

 Simulation 3 We use g5(-) for biased sample selec-
tion and set Scale = 6. The 2000 test samples are
uniformly collected from 10 environments where r &€
{+£1,40.8,£0.4,4+0.2,+0.1}, and 1000 training sam-
ples are collected from a single environment where r =
0.2. We fix |V4|/V = 0.1 and change the dimension of
observed variables X in experiment.

4.4 Experimental Results
From the results in Table 1, we can observe that:

1. The ERM is easily affected by spurious associations, in
terms of its unstable performance (STD) and poor per-
formance in the worst case (Worst). The influence is
much more serious when increasing the strength of selec-
tion bias and model misspecification. Mixing up multi-
environments can bring a little benefit, but the mixture of
these environments is still biased.

2. The STG fails to pick up the true variables through the
feature selection approaches from shifted distributions.

3. Stable learning methods (DWR and SRDO) work if they
can achieve the weights that indeed make covariates in-
dependent. But in some scenarios where it is difficult to
calculate the weights from finite samples, e.g. the high
dimensional variables, they may bring some negative ef-
fects.

4. The methods (DRO and JTT) that focus on optimizing
the prediction of samples with larger empirical errors al-
leviate the gap of different sub-populations. But it de-
pends on the support of a distribution (such as DRO
suffers from over-pessimism problem encountering large
distribution set), resulting in their unstable performances
across different settings.

5. The methods (HRM and EIIL) raise the generalization
ability through the invariance constraint, but they still
fails in some cases. Although the invariant relationship
can help to identify the heterogeneity, it would introduce
the model misspecification of predicting the outcome
variable into the partition of environments, and mislead
the iterative learning process eventually.

6. The K-means can cluster the data into quite valuable en-
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Figure 2: Parameter analysis on the number of sample
weightings at each optimization step. With sufficient hetero-
geneity provided, the performance curve finally converges.

vironments sometimes, but not at other times, relying on
the heterogeneity of sub-populations inside training dis-
tribution, and the initial clustering centers.

7. Compared to other baselines, all the environments sim-
ulated by random sample weighting can guarantee to
have sufficient heterogeneity in expectation to encourage
a stable prediction model utilizing invariant correlations.
Hence, we achieve the best performance in most of the
cases.

4.5 Real-World Data

Due to the space limit, please see Appendix for the detailed
descriptions of real datasets used here.

House Price Prediction In this experiment, we use a real-
world regression dataset' (Kaggle) of house sales prices
from King County, USA. Specifically, we split the dataset
into 6 periods (each covers a time span of two decades) be-
tween 1900~2015 according to the built year of house. To

"https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
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Figure 3: Results of experiments in CS-Colored MNIST dataset. Compared to other baselines, RSW maximizes the use of
digital information in training phase (less misled by color), leading to the best performance in test data where R = 0.9.

test the stability, we train all the methods on the first pe-
riod ([1900, 1919]) and test if they can predict the transac-
tion price on the other periods respectively. From the results
(Figure 1(a)), we observe that: 1) for the high-dimensional
and sparse tabular data, some methods even perform worse
than ERM due to the violated assumption or difficulty in tun-
ing, while ours is not disturbed by that; 2) our method has a
more prominent advantage in the worst case, which verifies
its effectiveness.

People Income Prediction In this experiment, we use the
Adult dataset> (Kohavi 1996), of which the task is to pre-
dict whether the personal income exceeds 50K /yr based on
census data. We split the dataset into 10 environments ac-
cording to the combination of attributes race and sex. Like in
House Price Prediction, we train all the methods on the first
environment (W hite, Female) and test them on the other
environments respectively. The results (Figure 1(b)) show
the superiority of our method. Also, we conduct the hyper-
parameter analysis for the number of sample weighting at
each optimization step of prediction model. In Figure 2, it is
apparent that the performance of RSW gradually converges
as the number increases, which implies weighting samples
for finite times can already produce sufficient heterogeneity.

CS-Colored MNIST In this experiment, we use the CS-
Colored MNIST dataset (Ahuja et al. 2021) that simulates
the covariate-shift in image data. It assigns the digits to 2 cat-
egories, and colors the digits with either red or green in ratio
R and (1 — R) respectively according to the labels, result-
ing in the spurious correlations. Then label flipping happens
with a probability of C' to make classifier easily rely on color
variable. Here, we set R = 0.1 or R = 0.2 in training data

Zhttps://archive.ics.uci.edu/ml/datasets/adult

(R = 0.9 in test data), and vary C = 0.2 or C' = 0.25. A 3-
Layer MLP is taken as prediction model for image, which is
insufficient to capture the image patterns, leading to model
misspecification.

We report the test results of benchmark models having
competitive performances in Figure 3. The coloring ratio R
misleads the classifier to make prediction based on color in-
formation but not the original image, causing its poor per-
formance if the spurious association of color and label is
reverse. Through perturbing the variant relationships using
ceaseless random sample weights, with access to auxiliary
invariance constraint, the classifier is enforced to rely on the
color as little as possible when minimizing the empirical er-
rors (the drop in training accuracy), while obtaining the gen-
eralization ability to the test distribution (the improvement
in test accuracy).

5 Conclusion

In this paper, we study the covariate-shift generalization
problem under model misspecification. We theoretically
show that under appropriate conditions, random sample
weighting can produce sufficient heterogeneity in the sense
of leading to different variances in estimating the parame-
ters associated with invariant and variant covariates, which
can be exploited by common invariance constraints in find-
ing the invariant variables for stable prediction under co-
variate shifts. Motivated by this result, we propose the ran-
dom sample weighting (RSW) algorithm to simulate hetero-
geneous environments and encourage the prediction model
to get rid of unstable correlations via invariance constraints.
The extensive experimental results well support our claims
and demonstrate the advantages of our proposal.



Acknowledgements

This work was supported in part by National Key R&D Pro-
gram of China (No. 2018AAA0102004), National Natural
Science Foundation of China (No. U1936219, 62141607),
Beijing Academy of Artificial Intelligence (BAAI).

References

Ahuja, K.; Wang, J.; Dhurandhar, A.; Shanmugam, K.; and
Varshney, K. R. 2021. Empirical or Invariant Risk Min-
imization? A Sample Complexity Perspective. In 9th In-
ternational Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz, D.
2019. Invariant Risk Minimization. CoRR, abs/1907.02893.

Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.;
Pereira, F.; and Vaughan, J. W. 2010. A theory of learning
from different domains. Mach. Learn., 79(1-2): 151-175.

Creager, E.; Jacobsen, J.; and Zemel, R. S. 2021. Envi-
ronment Inference for Invariant Learning. In Meila, M.;
and Zhang, T., eds., Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, 2189-2200. PMLR.

Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. S.
2017. Domain-Adversarial Training of Neural Networks.
In Csurka, G., ed., Domain Adaptation in Computer Vi-
sion Applications, Advances in Computer Vision and Pattern
Recognition, 189-209. Springer.

Ghifary, M.; Kleijn, W. B.; Zhang, M.; and Balduzzi, D.
2015. Domain Generalization for Object Recognition with
Multi-task Autoencoders. In 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, 2551-2559. IEEE Computer Society.

Hassanpour, N.; and Greiner, R. 2019. CounterFactual Re-
gression with Importance Sampling Weights. In Kraus, S.,
ed., Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, 5880-5887. ijcai.org.

Koh, P. W.; Sagawa, S.; Marklund, H.; Xie, S. M.; Zhang,
M.; Balsubramani, A.; Hu, W.; Yasunaga, M.; Phillips, R. L.;
Gao, I.; Lee, T.; David, E.; Stavness, I.; Guo, W.; Earnshaw,
B.; Haque, I; Beery, S. M.; Leskovec, J.; Kundaje, A.; Pier-
son, E.; Levine, S.; Finn, C.; and Liang, P. 2021. WILDS: A
Benchmark of in-the-Wild Distribution Shifts. In Meila, M.;
and Zhang, T., eds., Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, 5637-5664. PMLR.

Kohavi, R. 1996. Scaling Up the Accuracy of Naive-Bayes
Classifiers: A Decision-Tree Hybrid. In Simoudis, E.; Han,
J.; and Fayyad, U. M., eds., Proceedings of the Second In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD-96), Portland, Oregon, USA, 202-207. AAAI
Press.

Koyama, M.; and Yamaguchi, S. 2020. Out-of-Distribution
Generalization with Maximal Invariant Predictor. CoRR,
abs/2008.01883.

Krueger, D.; Caballero, E.; Jacobsen, J.; Zhang, A.; Bi-
nas, J.; Zhang, D.; Priol, R. L.; and Courville, A. C. 2021.
Out-of-Distribution Generalization via Risk Extrapolation
(REx). In Meila, M.; and Zhang, T., eds., Proceedings of
the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, 5815-5826.
PMLR.

Kuang, K.; Xiong, R.; Cui, P.; Athey, S.; and Li, B. 2020.
Stable Prediction with Model Misspecification and Agnos-
tic Distribution Shift. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, 4485-4492. AAAI Press.

Kukar, M. 2003. Transductive reliability estimation for med-
ical diagnosis. Artif. Intell. Medicine, 29(1-2): 81-106.

Lee, W.; Kim, H.; and Lee, J. 2021. Compact class-
conditional domain invariant learning for multi-class do-
main adaptation. Pattern Recognit., 112: 107763.

Li, D.; Yang, Y.; Song, Y.; and Hospedales, T. M. 2017.
Deeper, Broader and Artier Domain Generalization. In I[EEE
International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, 5543-5551. IEEE Com-
puter Society.

Liu, E. Z.; Haghgoo, B.; Chen, A. S.; Raghunathan, A.;
Koh, P. W.; Sagawa, S.; Liang, P.; and Finn, C. 2021a. Just
Train Twice: Improving Group Robustness without Train-
ing Group Information. In Meila, M.; and Zhang, T., eds.,
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research,
6781-6792. PMLR.

Liu, J.; Hu, Z.; Cui, P; Li, B.; and Shen, Z. 2021b. Het-
erogeneous Risk Minimization. In Meila, M.; and Zhang,
T., eds., Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Re-
search, 6804—6814. PMLR.

MacQueen, J.; et al. 1967. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, 281-297. Oakland, CA, USA.

Muandet, K.; Balduzzi, D.; and Scholkopf, B. 2013. Domain
Generalization via Invariant Feature Representation. In Pro-
ceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
volume 28 of JMLR Workshop and Conference Proceedings,
10-18. JIMLR.org.

Rosenbaum, P. R.; and Rubin, D. B. 1983. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70: 41-55.



Rudin, C.; and Ustun, B. 2018. Optimized Scoring Systems:
Toward Trust in Machine Learning for Healthcare and Crim-
inal Justice. Interfaces, 48(5): 449-466.

Shen, Z.; Cui, P.; Zhang, T.; and Kuang, K. 2020. Stable
Learning via Sample Reweighting. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, 5692-5699.
AAAI Press.

Sinha, A.; Namkoong, H.; and Duchi, J. C. 2018. Certifying
Some Distributional Robustness with Principled Adversar-
ial Training. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Sriperumbudur, B.; Fukumizu, K.; Gretton, A.; Hyvirinen,
A.; and Kumar, R. 2017. Density estimation in infinite di-
mensional exponential families. Journal of Machine Learn-
ing Research, 18.

Wong, A.; Hryniowski, A.; and Wang, X. Y. 2020. Insights
into Fairness through Trust: Multi-scale Trust Quantification
for Financial Deep Learning. CoRR, abs/2011.01961.

Xu, R.; Zhang, X.; Cui, P.; Li, B.; Shen, Z.; and Xu, J. 2022a.
Regulatory Instruments for Fair Personalized Pricing. In
Laforest, F.; Troncy, R.; Simperl, E.; Agarwal, D.; Gionis,
A.; Herman, I.; and Médini, L., eds., WWW ’22: The ACM
Web Conference 2022, Virtual Event, Lyon, France, April 25
- 29, 2022, 4-15. ACM.

Xu, R.; Zhang, X.; Shen, Z.; Zhang, T.; and Cui, P. 2022b.
A Theoretical Analysis on Independence-driven Importance
Weighting for Covariate-shift Generalization. In Chaud-
huri, K.; Jegelka, S.; Song, L.; Szepesvari, C.; Niu, G.;
and Sabato, S., eds., International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine Learning
Research, 24803-24829. PMLR.

Yamada, Y.; Lindenbaum, O.; Negahban, S.; and Kluger, Y.
2020. Feature Selection using Stochastic Gates. In Pro-
ceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research,
10648-10659. PMLR.

Zhang, X.; Cui, P; Xu, R.; Zhou, L.; He, Y.; and Shen, Z.
2021. Deep Stable Learning for Out-of-Distribution Gen-
eralization. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021,
5372-5382. Computer Vision Foundation / IEEE.



