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ABSTRACT

Graph neural networks (GNNs) are emerging machine learning models on graphs.
One key property behind the expressiveness of existing GNNs is that the learned
node representations are permutation-equivariant. Though being a desirable prop-
erty for certain tasks, however, permutation-equivariance prevents GNNs from
being proximity-aware, i.e., preserving the walk-based proximities between pairs
of nodes, which is another critical property for graph analytical tasks. On
the other hand, some variants of GNNs are proposed to preserve node prox-
imities, but they fail to maintain permutation-equivariance. How to empower
GNNs to be proximity-aware while maintaining permutation-equivariance re-
mains an open problem. In this paper, we propose Stochastic Message Passing
(SMP), a general and simple GNN to maintain both proximity-awareness and
permutation-equivariance properties. Specifically, we augment the existing GNNs
with stochastic node representations learned to preserve node proximities. Though
seemingly simple, we prove that such a mechanism can enable GNNs to preserve
node proximities in theory while maintaining permutation-equivariance with cer-
tain parametrization. Extensive experimental results demonstrate the effectiveness
and efficiency of SMP for tasks including node classification and link prediction.

1 INTRODUCTION

Graph neural networks (GNNs), as generalizations of neural networks in analyzing graphs, have
attracted considerable research attention. GNNs have been widely applied to various applications
such as social recommendation (Ma et al., 2019), physical simulation (Kipf et al., 2018), and pro-
tein interaction prediction (Zitnik & Leskovec, 2017). One key property of most existing GNNs
is permutation-equivariance, i.e., if we randomly permutate the IDs of nodes while maintaining the
graph structure, the representations of nodes in GNNs should be permutated accordingly. Mathemat-
ically, permutation-equivariance reflects one basic symmetric group of graph structures. Although
it is a desirable property for tasks such as node or graph classification (Keriven & Peyré, 2019;
Maron et al., 2019b), permutation-equivariance also prevents GNNs from being proximity-aware,
i.e., permutation-equivariant GNNs cannot preserve walk-based proximities between nodes such as
the shortest distance or high-order proximities (see Theorem 1).

Pairwise proximities between nodes are crucial for graph analytical tasks such as link predic-
tion (Hu et al., 2020; You et al., 2019). To enable a proximity-aware GNN, Position-aware GNN
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(P-GNN) (You et al., 2019)1 proposes a sophisticated GNN architecture and shows better perfor-
mance for proximity-aware tasks. But P-GNN needs to explicitly calculate the shortest distance be-
tween nodes and its computational complexity is unaffordable for large graphs. Moreover, P-GNN
completely ignores the permutation-equivariance property. Therefore, it cannot produce satisfactory
results when permutation-equivariance is helpful.

In real-world scenarios, both proximity-awareness and permutation-equivariance are indispens-
able properties for GNNs. Firstly, different tasks may require different properties. In social
networks, for example, recommendation applications usually require the model to be proximity-
aware (Konstas et al., 2009) while permutation-equivariance is a basic assumption in centrality mea-
surements (Borgatti, 2005). Even for the same task, different datasets may have different require-
ments on these two properties. Taking link prediction as an example, we observe that permutation-
equivariant GNNs such as GCN (Kipf & Welling, 2017) or GAT (Velickovic et al., 2018) show better
results than P-GNN in coauthor graphs, but the opposite in biological graphs (please see Section 5.2
for details). Unfortunately, in the current GNN frameworks, these two properties are contradict-
ing, as we show in Theorem 1. Whether there exists a general GNN to be proximity-aware while
maintaining permutation-equivariance remains an open problem.

In this paper, we propose Stochastic Message Passing (SMP), a general and simple GNN to preserve
both proximity-awareness and permutation-equivariance properties. Specifically, we augment the
existing GNNs with stochastic node representations learned to preserve node proximities. Though
seemingly simple, we prove that our proposed SMP can enable GNNs to preserve walk-based
node proximities in theory (see Theorem 2 and Theorem 3). Meanwhile, SMP is equivalent to a
permutation-equivariant GNN with certain parametrization and thus is at least as powerful as those
GNNs in permutation-equivariant tasks (see Theorem 1). Therefore, SMP is general and flexible
in handling both proximity-aware and permutation-equivariant tasks, which is also demonstrated by
our extensive experimental results. Besides, owing to the stochastic nature and simple structure,
SMP is computationally efficient, with a running time roughly the same as those of the most simple
GNNs such as SGC (Wu et al., 2019) and is at least an order of magnitude faster than P-GNN on
large graphs. Ablation studies further show that a linear instantiation of SMP is expressive enough
as adding extra non-linearities does not lift the performance of SMP on the majority of datasets.

The contributions of this paper are summarized as follows:

• We propose SMP, a simple and general GNN to handle both proximity-aware and permutation-
equivariant graph analytical tasks.

• We prove that SMP has a theoretical guarantee in preserving walk-based proximities and is at
least as powerful as the existing GNNs in permutation-equivariant tasks.

• Extensive experimental results demonstrate the effectiveness and efficiency of SMP. We show
that a linear instantiation of SMP is expressive enough on the majority of datasets.

2 RELATED WORK

We briefly review GNN architectures and the permutation-equivariance property of GNNs.

The earliest GNNs adopts a recursive definition of node states (Scarselli et al., 2008; Gori et al.,
2005) or a contextual realization (Micheli, 2009). GGS-NNs (Li et al., 2016) replace the recur-
sive definition with recurrent neural networks (RNNs). Spectral GCNs (Bruna et al., 2014) de-
fined graph convolutions using graph signal processing (Shuman et al., 2013; Ortega et al., 2018)
with ChebNet (Defferrard et al., 2016) and GCN (Kipf & Welling, 2017) approximating the spec-
tral filters using a K-order Chebyshev polynomial and the first-order polynomial, respectively.
MPNNs (Gilmer et al., 2017), GraphSAGE (Hamilton et al., 2017), and MoNet (Monti et al., 2017)
are proposed as general frameworks by characterizing GNNs with a message-passing function
and an updating function. More advanced variants such as GAT (Velickovic et al., 2018), JK-
Nets (Xu et al., 2018b), GIN (Xu et al., 2018a), and GraphNets (Battaglia et al., 2018) follow these
frameworks.

1In (You et al., 2019), the authors consider the special case of shortest distance between nodes and name
such property as “position-aware”. In this paper, we consider a more general case of any walk-based proximity.
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Li et al. (Li et al., 2018), Xu et al. (Xu et al., 2018a), Morris et al. (Morris et al., 2019), and Maron et
al. (Maron et al., 2019a) show the connection between GNNs and the Weisfeiler-Lehman algo-
rithm (Shervashidze et al., 2011) of graph isomorphism tests, in which permutation-equivariance
holds a key constraint. Maron et al. (Maron et al., 2019b) and Keriven et al. (Keriven & Peyré,
2019) analyze the permutation-equivariance property of GNNs more theoretically. To date, most of
the existing GNNs are permutation-equivariant and thus are not proximity-aware. The only excep-
tion is P-GNN (You et al., 2019), which proposes to capture the positions of nodes using the relative
distance between the target node and some randomly chosen anchor nodes. However, P-GNN cannot
satisfy permutation-equivariance and is computationally expansive.

3 MESSAGE-PASSING GNNS

We consider a graph G = (V , E ,F) where V = {v1, ..., vN} is the set of N = |V| nodes, E ⊆ V×V
is the set of M = |E| edges, and F ∈ R

N×d0 is a matrix of d0 node features. The adjacency matrix
is denoted as A, where its ith row, jth column and an element denoted as Ai,:, A:,j , and Ai,j ,
respectively. In this paper, we assume the graph is unweighted and undirected. The neighborhood

of node vi is denoted as Ni and Ñi = Ni ∪ {vi}.

The existing GNNs usually follow a message-passing framework (Gilmer et al., 2017), where the lth

layer adopts a neighborhood aggregation function AGG(·) and an updating function UPDATE(·):

m
(l)
i = AGG({h(l)

j , ∀j ∈ Ñi}),h(l+1)
i = UPDATE([h

(l)
i ,m

(l)
i ]), (1)

where h
(l)
i ∈ R

dl is the representation of node vi in the lth layer, dl is the dimensionality, and m
(l)
i

are the messages. We also denote H(l) = [h
(l)
1 , ...,h

(l)
N ] and [·, ·] is the concatenation operation. The

node representations are initialized as node features H(0) = F. We denote a GNN following Eq. (1)
with L layers as a parameterized function as follows2:

H
(L) = FGNN(A,F;W), (2)

where H(L) are final node representations learned by the GNN and W denotes all the parameters.

One key property of the existing GNNs is permutation-equivariance.

Definition 1 (Permutation-equivariance). Consider a graph G = (V , E ,F) and any permutation
P : V → V so that G′ = (V , E ′,F′) has an adjacency matrix A

′ = PAP
T and a feature matrix

F
′ = PF, where P ∈ {0, 1}N×N

is the permutation matrix corresponding to P , i.e., Pi,j = 1 iff
P(vi) = vj . A GNN satisfies permutation-equivariance if the node representations are equivariant
with respect to P , i.e.,

PFGNN(A,F;W) = FGNN(PAP
T ,PF;W). (3)

It is known that GNNs following Eq. (1) are permutation-equivariant (Maron et al., 2019b).

Definition 2 (Automorphism). A graph G is said to have (non-trivial) automorphism if there exists
a non-identity permutation matrix P 6= IN so that A = PAP

T and F = PF. We denote the
corresponding automorphic node pairs as CG =

⋃

P6=IN
{(i, j)|Pi,j 6= 0, i 6= j}

Corollary 1. Using Definition 1 and 2, if a graph has automorphism, a permutation-equivariant
GNN will produce identical node representations for automorphic node pairs:

h
(L)
i = h

(L)
j , ∀(i, j) ∈ CG. (4)

Since the node representations are used for downstream tasks, the corollary shows that permutation-
equivariant GNNs cannot differentiate automorphic node pairs. A direct consequence of Corol-
lary 1 is that permutation-equivariant GNNs cannot preserve walk-based proximities between pairs
of nodes. The formal definitions are as follows.

2Since the final layer of GNNs is task-specific, e.g., a softmax layer for node classification or a readout layer
for graph classification, we only consider the GNN architecture to its last hidden layer.
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Definition 3 (Walk-based Proximities). For a given graph G = (V , E ,F), we use a matrix S ∈
R

N×N to denote walk-based proximities between pairs of nodes defined as:

Si,j = S ({vi  vj}) , (5)

where vi  vj denotes any walk from node vi to vj and S(·) is an arbitrary real-valued function.

Typical examples of walk-based proximities include the shortest distance (You et al., 2019), the
high-order proximities (a sum of walks weighted by their lengths) (Zhang et al., 2018), and random
walk probabilities (Klicpera et al., 2019).

Theorem 1. Existing permutation-equivariant GNNs cannot preserve any walk-based proximity.3

The formulation and proof of the theorem are given in Appendix A.1. Since walk-based proximities
are rather general and widely adopted in graph analytical tasks such as link prediction, the theorem
shows that the existing permutation-equivariant GNNs cannot handle these tasks well.

4 THE MODEL

4.1 A GNN FRAMEWORK USING STOCHASTIC MESSAGE PASSING

A major shortcoming of permutation-equivariant GNNs is that they cannot differentiate automorphic
nodes. To solve that problem, we need to introduce some mechanism as “symmetry breaking”, i.e.,
to enable GNNs to distinguish these nodes. We sample a stochastic matrix E ∈ R

N×d where each
element follows an i.i.d. normal distribution N (0, 1). The stochastic matrix can provide signals in
distinguishing the nodes because they are randomly sampled without being affected by the graph
automorphism. In fact, we can easily calculate that the Euclidean distance between two stochastic

signals divided by a constant
√
2 follows a chi distribution χd:

1√
2
|Ei,: −Ej,:| ∼ χd, ∀i, j. (6)

When d is reasonably large, e.g., d > 20, the probability of two signals being close is very low.

Then, inspired by the message-passing framework, we apply a GNN on the stochastic matrix:

Ẽ = FGNN (A,E;W) . (7)

We regard Ẽ as the stochastic representation of nodes. By using the stochastic matrix and message-

passing, Ẽ can be used to preserve node proximities (see Theorem 2 and Theorem 3). Then, we

concatenate Ẽ with the node representations from another GNN with node features as inputs:

H = Foutput([Ẽ,H(L)])

Ẽ = FGNN (A,E;W) ,H(L) = FGNN′(A,F;W′),
(8)

where Foutput(·) is an aggregation function such as a linear function or simply the identity mapping.
In a nutshell, our proposed method augments the existing GNNs with a stochastic representation
learned by message-passings to differentiate different nodes and preserve node proximities.

There is also a delicate choice worthy mentioning, i.e., whether the stochastic matrix E is fixed or
resampled in each epoch. By fixing E, the model can learn to memorize the stochastic representation
and distinguish different nodes, but with the cost of unable to handle nodes not seen during training.
On the other hand, by resampling E in each epoch, the model can have a better generalization ability
since the model cannot simply remember one specific stochastic matrix. However, since the node
representations are not fixed (but pairwise proximities are preserved; see Theorem 2), in this case,

Ẽ can only be used in pairwise tasks such as link prediction or pairwise node classification. In this
paper, we use a fixed E for transductive datasets and resample E for inductive datasets.

3Proposition 1 in (You et al., 2019) can be regarded as a special case of Theorem 1 using the shortest
distance proximity.
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4.2 A LINEAR INSTANTIATION

Based on the general framework shown in Eq. (8), we attempt to explore its minimum model instan-
tiation, i.e., a linear model. Specifically, inspired by Simplified Graph Convolution (SGC) (Wu et al.,
2019), we adopt a linear message-passing for both GNNs, i.e.,

H = Foutput([Ẽ,H(L)]) = Foutput(Ã
K [E,F]), (9)

where Ã = (D+ I)−
1
2 (A+ I)(D+ I)−

1
2 is the normalized graph adjacency matrix with self-loops

proposed in GCN (Kipf & Welling, 2017) and K is the number of propagation steps. We also set
Foutput(·) in Eq. (9) as a linear mapping or identity mapping.

Though seemingly simple, we show that such an SMP instantiation possesses a theoretical guarantee
in preserving the walk-based proximities.

Theorem 2. SMP in Eq. (9) with the message-passing matrix Ã and the number of propagation steps

K can preserve the walk-based proximity Ã
K(ÃK)T with high probability if the dimensionality of

the stochastic matrix d is sufficiently large, where the superscript T denotes matrix transpose. The
theorem is regardless of whether E are fixed or resampled.

The mathematical formulation and proof of the theorem are given in Appendix A.2. In addition, we
show that SMP is equivalent to a permutation-equivariant GNN with certain parametrization.

Remark 1. Suppose we adopt Foutput(·) as a linear function with the output dimensionality the
same as FGNN′ . Then, Eq. (8) is equivalent to the permutation-equivariant FGNN′(A,F;W′) if the

parameters in Foutput(·) are all-zeros for Ẽ and an identity matrix for H(L).

The result is straightforward from the definition. Then, we have the following corollary.

Corollary 2. For any task, Eq. (8) with the aforementioned linear Foutput(·) is at least as powerful as
the permutation-equivariantFGNN′(A,F;W′), i.e., the minimum training loss of using H in Eq. (8)

is equal to or smaller than using H
(L) = FGNN′(A,F;W′).

In other words, SMP will not hinder the performance4 even the tasks are permutation-equivariant
since the stochastic representation is concatenated with the node representations of the other GNN
followed by a linear mapping. In these cases, the linear SMP is equivalent to SGC (Wu et al., 2019).

Combining Theorem 2 and Corollary 2, the linear SMP instantiation in Eq. (9) is capable of handling
both proximity-aware and permutation-equivariant tasks.

4.3 NON-LINEAR EXTENSIONS

One may question whether a more sophisticated variant of Eq. (8) can further improve the expres-
siveness of SMP. There are three adjustable components in Eq. (8): two GNNs in propagating the
stochastic matrix and node features, respectively, and an output function. In theory, adopting non-
linear models as either component is able to enhance the expressiveness of SMP. Indeed, if we use

a sufficiently expressive GNN in learning Ẽ instead of linear propagations, we can prove a more
general version of Theorem 2 as follows.

Theorem 3. An SMP variant following Eq.(8) with FGNN (A,E;W) containing L layers can pre-
serve any length-L walk-based proximity (the length of a proximity is the maximum length of all its
walks) if the message-passing and updating functions in the GNN are sufficiently expressive.

The formulation and proof of the theorem are given in Appendix A.3. Results regarding the
model expressiveness in permutation-equivariant tasks have also been explored in the litera-
ture (Keriven & Peyré, 2019; Loukas, 2019; Xu et al., 2018a).

Although non-linear extensions of SMP can, in theory, increase the model expressiveness, they also
take a higher risk of over-fitting due to model complexity, not to mention that the computational cost
will also increase. In practice, we find in ablation studies that the linear SMP instantiation in Eq. (9)
works reasonably well on most of the datasets (please refer to Section 5.4 for further details).

4Similar to previous works such as (Hamilton et al., 2017; Xu et al., 2018a), we only consider the minimum
training loss because the optimization landscapes and generalization gaps are difficult to analyze analytically.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets We conduct experiments on the following ten datasets: two simulation datasets,
Grid and Communities You et al. (2019), a communication dataset Email You et al. (2019),
two coauthor networks, CS and Physics Shchur et al. (2018), two protein interaction networks,
PPI Hamilton et al. (2017) and PPA Hu et al. (2020). We also adopt three GNN benchmarks: Cora,
Citeseer, and PubMed Yang et al. (2016). We only report the results of these three benchmarks for
the node classification task and the results for other tasks are shown in Appendix B due to the page
limit. More details of the datasets are provided in Appendix C.1.

We summarize the statistics of datasets in Table 1. These datasets cover a wide spectrum of domains,
sizes, and with or without node features. Note that Email and PPI datasets contain more than one
graph and we conduct experiments in an inductive setting on these two datasets, i.e., the training,
validation, and testing are split with respect to different graphs.

Table 1: The statistics of the datasets. For datasets with more than one graph, #Nodes and #Edges
are summed over all the graphs and the experiments are conducted in an inductive setting.

Dataset #Graphs #Nodes #Edges #Features #Classes

Grid 1 400 760 - -
Communities 1 400 3,800 - 20

Email 7 1,005 25,571 - 42
CS 1 18,333 81,894 6,805 15

Physics 1 34,493 247,962 8,415 5
PPI 24 56,944 818,716 50 -
PPA 1 576,289 30,326,273 58 -
Cora 1 2,708 5,429 1,433 7

Citeseer 1 3,327 4,732 3,703 6
Pubmed 1 19,717 44,338 500 3

Baselines We adopt two sets of baselines. The first set is permutation-equivariant GNNs including
GCN Kipf & Welling (2017), GAT Velickovic et al. (2018), and SGC Wu et al. (2019), which are
widely adopted GNN architectures. The second set contains P-GNN You et al. (2019), the only
proximity-aware GNN to date. We use the P-GNN-F version.

In comparing with the baselines, we mainly evaluate two variants of SMP with different Foutput(·):
SMP-Identity, i.e., Foutput(·) as an identity mapping, and SMP-Linear, i.e., Foutput(·) as a linear
mapping. Note that both variants adopt linear message-passing functions as SGC.

For fair comparisons, we adopt the same architecture and hyper-parameters for all the methods
(please refer to Appendix C.2 for the details). For datasets without node features, we adopt a constant
vector as the node features. We experiment on two tasks: link prediction and node classification.
Additional experiments on pairwise node classification are provided in Appendix B.2. We repeat the
experiments 10 times for datasets except PPA and 3 times for PPA, and report the average results.

5.2 LINK PREDICTION

Table 3: The results of link prediction on the
PPA dataset. The best and the second-best re-
sult are in bold and underlined, respectively.

Model Hits@100

SGC 0.1187±0.0012
GCN 0.1867±0.0132
GraphSAGE 0.1655±0.0240

P-GNN Out of Memory

Node2vec 0.2226±0.0083
Matrix Factorization 0.3229±0.0094

SMP-Identity 0.2018±0.0148
SMP-Linear 0.3582±0.0070

Link prediction aims to predict missing links of a
graph. Specifically, we split the edges into 80%-
10%-10% and use them for training, validation,
and testing, respectively. Besides adopting those
real edges as positive samples, we obtain negative
samples by randomly sampling an equal number
of node pairs from all node pairs that do not have
edges. For all the methods, we set a simple classi-
fier: Sigmoid(HT

i Hj), i.e., use the inner product
to predict whether a node pair (vi, vj) forms a link,
and use AUC (area under the curve) as the evalua-
tion metric. One exception to the aforementioned
setting is that on the PPA dataset, we follow the
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Table 2: The results of link prediction tasks measured in AUC (%). The best results and the second-
best results for each dataset, respectively, are in bold and underlined.

Model Grid Communities Email CS Physics PPI

SGC 57.6±3.8 51.9±1.6 68.5±7.0 96.5±0.1 96.6±0.1 80.5±0.4
GCN 61.8±3.6 50.3±2.5 67.4±6.9 93.4±0.3 93.8±0.2 78.0±0.4
GAT 61.0±5.5 51.1±1.6 53.5±6.3 93.7±0.9 94.1±0.4 79.3±0.5

PGNN 73.4±6.0 97.8±0.6 70.9±6.4 82.2±0.5 Out of memory 80.8±0.4

SMP-Identity 55.1±4.8 98.0±0.7 72.9±5.1 96.5±0.1 96.5±0.1 81.0±0.2
SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3

splits and evaluation metric (i.e., Hits@100) pro-
vided by the dataset Hu et al. (2020).

The results except PPA are shown in Table 2. We
make the following observations.

• Our proposed SMP achieves the best results on five out of the six datasets and is highly compet-
itive (the second-best result) on the other (Physics). The results demonstrate the effectiveness of
our proposed method on link prediction tasks. We attribute the strong performance of SMP to its
capability of maintaining both proximity-aware and permutation-equivariance properties.

• On Grid, Communities, Email, and PPI, both SMP and P-GNN outperform the permutation-
equivariant GNNs, proving the importance of preserving node proximities. Although SMP is
simpler and more computationally efficient than P-GNN, SMP reports even better results.

• When node features are available (CS, Physics, and PPI), SGC can outperform GCN and GAT.
The results re-validate the experiments in SGC Wu et al. (2019) that non-linearity in GNNs is not
necessarily indispensable. A plausible reason is that the additional model complexity brought by
non-linear operators makes the models tend to overfit. On those datasets, SMP retains comparable
performance on two coauthor graphs and shows better performance on PPI, possibly because
node features on protein graphs are less informative than node features on coauthor graphs for
predicting links, and thus preserving graph structure is more beneficial on PPI.

• As Email and PPI are conducted in an inductive setting, i.e., using different graphs for train-
ing/validation/testing, the results show that SMP can handle inductive tasks as well.

The results on PPA are shown in Table 3. SMP again outperforms all the baselines, demonstrating
that it can handle large-scale graphs with millions of nodes and edges. PPA is part of a recently
released benchmark Hu et al. (2020). To the best of knowledge, SMP achieves the state-of-the-art
on this dataset.

5.3 NODE CLASSIFICATION

Next, we conduct experiments of node classification, i.e., predicting the labels of nodes. Since
we need ground-truths in the evaluation, we only adopt datasets with node labels. Specifically,
for CS and Physics, following Shchur et al. (2018), we adopt 20/30 labeled nodes per class for
training/validation and the rest for testing. For Communities, we adjust the number as 5/5/10 labeled
nodes per class for training/validation/testing. For Cora, Citeseer, and Pubmed, we use the default
splits that came with the datasets. We do not adopt Email because some graphs in the dataset are too
small to show stable results and exclude PPI as it is a multi-label dataset.

We use a softmax layer on the learned node representations as the classifier and adopt accuracy,
i.e., how many percentages of nodes are correctly classified, as the evaluation criteria. We omit the
results of SMP-Identity for this task since the node representations in SMP-Identity have a fixed
dimensionality that does not match the number of classes.

The results are shown in Table 4. From the table, we observe that SMP reports nearly perfect results
on Communities. Since the node labels are generated by graph structures on Communities and there
are no node features, the model needs to be proximity-aware to handle it well. But P-GNN also fails

7
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Table 4: The results of node classification tasks measured by accuracy (%). The best results and the
second-best results for each dataset, respectively, are in bold and underlined.

Model Communities CS Physics Cora Citeseer Pubmed

SGC 7.1±2.1 67.2±12.8 92.3±1.6 76.9±0.2 63.6±0.0 74.2±0.1
GCN 7.5±1.2 91.1±0.7 93.1±0.8 81.4±0.5 71.3±0.5 79.3±0.4
GAT 5.0±0.0 90.5±0.5 93.1±0.4 82.9±0.5 71.2±0.6 77.9±0.5

PGNN 5.2±0.5 77.6±7.6 Out of memory 59.2±1.5 55.7±0.9 Out of memory

SMP-Linear 99.9±0.3 91.5±0.8 93.1±0.8 80.9±0.8 68.2±1.0 76.5±0.8

because it selects anchor nodes randomly and thus can only capture the proximities between nodes
and cannot learn a classifier to separate nodes into different communities.

On the other five graphs, SMP reports highly competitive performance. These graphs are commonly-
used benchmarks for GNNs. P-GNN, which completely ignores permutation-equivariance, performs
poorly as expected. In contrast, SMP can manage to recover the permutation-equivariant GNNs
and avoid being misled, as proven in Theorem 1. In fact, SMP even shows better results than its
counterpart, SGC, indicating that preserving proximities is also helpful for these datasets.

Following P-GNN You et al. (2019), we also conduct experiments on pairwise node classification.
We observe similar results as link prediction and provide the results in Appendix B.2.

5.4 ABLATION STUDIES

We conduct ablation studies by comparing different SMP variants, including SMP-Identity, SMP-
Linear, and the additional three variants as follows:

• SMP-MLP: we set Foutput(·) as a fully-connected network with 1 hidden layer.

• SMP-Linear-GCNfeat: we set FGNN′(A,F;W′) in Eq. (8) to be a GCN Kipf & Welling (2017),
i.e., induce non-linearity in message passing for features. Foutput(·) is linear.

• SMP-Linear-GCNboth: we set both FGNN (A,E;W) and FGNN′(A,F;W′) to be a
GCN Kipf & Welling (2017), i.e., induce non-linearity in message passing for both features
and stochastic representations. Foutput(·) is linear.

We show the results for link prediction tasks in Table 5. The results for node classification and
pairwise node classification, which imply similar conclusions, are provided in Table 9 and Table 10
in Appendix B.3. We make the following observations.

• In general, SMP-Linear shows good-enough performance, achieving the best or second-best re-
sults on six datasets and highly competitive on the other (Communities). SMP-Identity, which
does not have parameters in the output function, performs slightly worse. The results demon-
strate the importance of adopting a linear layer in the output function, which is consistent with
Theorem 1. SMP-MLP does not lift the performance in general, showing that adding extra com-
plexities in Foutput(·) brings no gain in those datasets.

• SMP-Linear-GCNfeat reports the best results on Communities, PPI, and PPA, indicating that
adding extra non-linearities in propagating node features are helpful for some graphs.

• SMP-Linear-GCNboth reports the best results on Gird with a considerable margin. Recall that
Grid has no node features. The results indicate that inducing non-linearities can help the stochas-
tic representations capture more proximities, which is more helpful on featureless graphs.

5.5 EFFICIENCY COMPARISON

To compare the efficiency of different methods quantitatively, we report the running time of differ-
ent methods in Table 6. The results are averaged over 3,000 epochs on a NVIDIA TESLA M40.
The results show that SMP is computationally efficient, i.e., only marginally slower than SGC and
comparable to GCN. P-GNN is at least an order of magnitude slower except for the extremely small
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Table 5: The ablation study of different SMP variants for the link prediction task. Datasets except
PPA are measured by AUC (%) and PPA is measured by Hits@100. The best results and the second-
best results for each dataset are in bold and underlined, respectively.

Model Grid Communities Email CS Physics PPI PPA

SMP-Identity 55.1±4.8 98.0±0.7 72.9±5.1 96.5±0.1 96.5±0.1 81.0±0.2 0.2018±0.0148

SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3 0.3582±0.0070

SMP-MLP 72.1±4.3 97.8±0.6 62.7±8.1 88.9±0.8 89.2±0.4 80.1±0.3 0.2035±0.0038

SMP-Linear-GCNfeat 72.8±4.2 98.0±0.4 74.2±3.9 92.9±0.6 94.3±0.2 82.3±1.0 0.4090±0.0087

SMP-Linear-GCNboth 80.5±3.9 97.3±0.7 73.4±5.5 89.8±2.0 91.7±0.2 79.7±0.3 0.2125±0.0232

graphs such as Grid, Communities or Email, which have no more than a thousand nodes, not to
mention that the expansive memory cost makes P-GNN unable to work on large-scale graphs.

Table 6: The average running time (in milliseconds) for each epoch (including both training and
testing), on link prediction task.

Model Grid Communities Email CS Physics PPI

SGC 25 28 58 210 651 704
GCN 25 35 75 214 612 784
GAT 36 43 140 258 801 919

PGNN 81 84 206 19,340 Out of Memory 6,521

SMP-Identity 26 37 96 284 751 840
SMP-Linear 28 26 84 212 616 832
SMP-MLP 23 28 83 237 614 831
SMP-Linear-GCNfeat 23 29 90 231 636 855
SMP-Linear-GCNboth 34 40 95 228 626 895

6 CONCLUSION

In this paper, we propose SMP, a general and simple GNN to maintain both proximity-awareness
and permutation-equivariance properties. We propose to augment the existing GNNs with stochastic
node representations learned to preserve node proximities. We prove that SMP can enable GNN to
preserve node proximities in theory and is equivalent to a permutation-equivariant GNN with certain
parametrization. Experimental results demonstrate the effectiveness and efficiency of SMP. Ablation
studies show that a linear SMP instantiation works reasonably well on most of the datasets.

BROADER IMPACT

GNNs have been a trending topic in the machine learning community for the past few years. Possible
application scenarios of GNNs include social networks, biological networks, academic networks,
information networks, etc. We expect our proposed SMP to find general applicability in all these
scenarios, but the exact model performance may depend on the specific tasks and datasets. One
advantage of SMP is its simple structure and superior efficiency, which makes it more suitable for
large-scale graphs. Since SMP shares a similar backbone as other GNNs and we do not explicitly
utilize any semantic information, we do not foresee that SMP will produce more biased or offensive
content than the existing GNNs.
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A THEOREMS AND PROOFS

A.1 THEOREM 1

Here we formulate and prove Theorem 1. First, we give a definition for preserving walk-based
proximities.

Definition 4. For a given walk-based proximity, a GNN is said to be able to preserve the proximity
if, for any graph G = (V , E ,F), there exist parameters WG and a decoder function Fde(·) so that
∀ǫ > 0:

∣

∣

∣
Si,j −Fde

(

H
(L)
i,: ,H

(L)
j,:

)∣

∣

∣
< ǫ, (10)

where

H
(L) = FGNN(A,F;WG). (11)

Note that we do not constrain the GNN architecture as long as it follows the message-passing frame-
work in Eq. (1), and the decoder function is also arbitrary. In fact, both the GNN and the decoder
function can be arbitrarily deep and with sufficient hidden units. Next, we rephrase Theorem 1 using
the above formulation.

Theorem 1. For any walk-based proximity function S(·), a permutation-equivariant GNN cannot
preserve S(·), except the trivial solution that all node pairs have the same proximity, i.e., Si,j =
c, ∀i, j, where c is a constant.

Proof. We prove the theorem by contradiction. Assume there exists a non-trivial S(·) which a
permutation-equivariant GNN can preserve. Consider any graph G = (V , E ,F) and denote N =
|V|. We can create G′ = (V ′, E ′,F′) with |V ′| = 2N so that:

E ′
i,j =







Ei,j if i ≤ N, j ≤ N

Ei−N,j−N if i > N, j > N

0 else

, F
′
i,: =

{

Fi,: if i ≤ N

Fi−N,: if i > N
. (12)

Basically, we generate two “copies” of the original graph, one indexing from 1 to N , and the other
indexing from N +1 to 2N . By assumption, there exists a permutation-equivariant GNN which can

preserve S(·) in G′ and we denote the node representation as H
′(L) = FGNN(A

′,F′;WG′). It is
easy to see that node v′i and v′i+N in G′ form an automorphic node pair. Using Corollary 1, their
representations will be identical in any permutation-equivariant GNN, i.e.,

H
′(L)
i,: = H

′(L)
i+N,:, ∀i ≤ N. (13)

Also, note that there exists no walk from the two copies, i.e.
{

v′i  v′j
}

=
{

v′j  v′i
}

= ∅, ∀i ≤
N, j > N . As a result, for ∀i ≤ N, j ≤ N, ∀ǫ > 0, we have:

|Si,j − S(∅)| ≤
∣

∣

∣
Si,j −Fde

(

H
′(L)
i,: ,H

′(L)
j,:

)
∣

∣

∣
+
∣

∣

∣
S(∅)−Fde

(

H
′(L)
i,: ,H

′(L)
j,:

)
∣

∣

∣

=
∣

∣

∣
Si,j −Fde

(

H
′(L)
i,: ,H

′(L)
j,:

)∣

∣

∣
+
∣

∣

∣
Si,j+N −Fde

(

H
′(L)
i,: ,H

′(L)
j+N,:

)∣

∣

∣
< 2ǫ.

(14)

We can prove the same for ∀i > N, j > N . The equation naturally holds if i ≤ N, j > N or
i > N, j ≤ N since

{

v′i  v′j
}

= ∅. Combining the results, we have ∀ǫ > 0, ∀i, j, |Si,j − S(∅)| <
2ǫ. Since ǫ can be arbitrarily small, the equation shows that all node pairs have the same proximity
c = S(∅), which leads to a contraction and finishes our proof.

Notice that in our proof, G′ can be constructed for any graph, so rather than designing one specific
counter-example, we have shown that there always exists an infinite number of counter-examples by
constructing an automorphism in the graph.

A.2 THEOREM 2

Here we formulate and prove Theorem 2. Note that some notations and definitions are introduced in
Appendix A.1.

12
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Theorem 2. For the walk-based proximity S = Ã
K(ÃK)T , SMP can preserve the proximity with

high probability if the dimensionality of the stochastic matrix is sufficiently large, i.e., ∀ǫ > 0, ∀δ >
0, there ∃d0 so that any d > d0:

P (|Si,j −Fde (Hi,:,Hj,:)| < ǫ) > 1− δ, (15)

where H is the node representation of SMP in Eq. (9). The results hold for any stochastic matrix
and thus is regardless of whether it is fixed or resampled.

Proof. Our proof is mostly based on the standard random projection theory. Firstly, since we have
proven in Theorem 1 that the permutation-equivariant representations cannot preserve any walk-

based proximity, here we prove that we can preserve the proximity only using Ẽ, which can be

easily achieved by ignoring H
(L) in Foutput([Ẽ,H(L)]), e.g., if we set Foutput as a linear function, the

model can learn to set the corresponding weights for H(L) as all-zeros.

We set the decoder function as a normalized inner product:

Fde (Hi,:,Hj,:) =
1

d
Hi,:H

T
j,:. (16)

Then, denoting ai = Ã
K
i,: and recalling Ẽ = Ã

K
E, we have:

|Si,j −Fde (Hi,:,Hj,:)| = |aiaTj − 1

d
Ẽi,:Ẽ

T
j,:| = |aiaTj − ai

1

d
EE

T
a
T
j |. (17)

Since E is a Gaussian random matrix, from the Johnson-Lindenstrauss lemma (Vempala, 2005) (in
the inner product preservation forum, e.g., see Corollary 2.1 and its proof in (Sham & Greg, 2020)),
∀0 < ǫ′ < 1

2 , we have:

P

(

|aiaTj − ai
1

d
EE

T
a
T
j | ≤

ǫ′

2
(‖ai‖+ ‖aj‖)

)

> 1− 4e−
(ǫ′2−ǫ

′3)d
4 . (18)

By setting ǫ′ = ǫ
maxi‖ai‖

, we have ǫ > ǫ′

2 (‖ai‖+ ‖aj‖) and:

P (|Si,j −Fde (Hi,:,Hj,:)| < ǫ) > 1− 4e−
( ǫ

maxi‖ai‖
2
−

ǫ

maxi‖ai‖
3)d

4 , (19)

which leads to the theorem by solving and setting d0 as follows:

4e−
( ǫ

maxi‖ai‖
2
−

ǫ

maxi‖ai‖
3)d0

4 = δ ⇒ d0 =
4 log 4

δ
(maxi ‖ai‖)3

ǫ2maxi ‖ai‖ − ǫ3
. (20)

A.3 THEOREM 3

Here we formulate and prove Theorem 3. Note that some notations and definitions are introduced in
Appendix A.1.

Theorem 3. For any length-L walk-based proximity, i.e.,

Si,j = S ({vi  vj}) = S ({vi  vj |len(vi  vj) ≤ L}) ,
where len(·) is the length of a walk, there exists an SMP variant in Eq. (8) with FGNN (A,E;W)
containing L layers (including the input layer) to preserve that proximity if the following conditions
hold: (1) The stochastic matrix E contains a unique signal for different nodes, i.e. Ei,: 6= Ej,:, ∀i 6=
j. (2) The message-passing and updating functions in learning Ẽ are bijective. (3) The decoder
function Fde(·) also takes E as inputs and is universal approximation.

Proof. Similar as Theorem 2, we only utilize Ẽ during our proof. We use e
(l)
i , 0 ≤ l < L to denote

the node representations in FGNN (A,E;W), i.e., e
(0)
i = Ei,: and e

(L−1)
i = Ẽi,:. Our proof strategy

is to show that the stochastic node representations can remember all the information about the walks.
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Firstly, as the message-passing and updating function are bijective by assumption, we can recover
from the node presentations in each layer all their neighborhood representations in the previous

layer. Specifically, there exist F (l)(·), 1 ≤ l < L such that:

F (l)
(

e
(l)
i

)

=
[

e
(l−1)
i ,

{

e
(l−1)
j , j ∈ Ni

}]

5. (21)

For notation conveniences, we split the function into two parts, one for the node itself and the other
for its neighbors:

F (l)
self

(

e
(l)
i

)

= e
(l−1)
i ,

F (l)
neighbor

(

e
(l)
i

)

=
{

e
(l−1)
j , j ∈ Ni

}

.
(22)

For the first function, if we successively apply such functions from the lth to the input layer, we can
recover the input features of the GNN, i.e., E. Since the stochastic matrix E contains a unique signal

for different nodes, we can decode the node ID from e
(0)
i , i.e., there exists F (0)

self

(

e
(0)
i ;E

)

= i. For

brevity, we denote applying such l + 1 functions to get the node ID as

F (0:l)
self

(

e
(l)
i

)

= F (0)
self

(

F (1)
self

(

...
(

F (l)
self

(

e
(l)
i

)))

;E
)

= i. (23)

For the second function, we can apply F (l−1)
neighbor to the decoded vector set so that we can recover their

neighborhood representations in the (l − 2)th layer, etc.

Next, we show that for e
(l−1)
j , there exists a length-l walk vi  vj = (va1 , va2 , ..., val

), where

va1 = vi, val
= vj if and only if F (0:l−1)

self

(

e
(l−1)
j

)

= al = j and there exists e(l−2), ..., e(0) such

that:

e
(l−2) ∈ F (l−1)

neighbor

(

e
(l−1)
j

)

,F (0:l−2)
self

(

e
(l−2)

)

= al−1,

e
(l−3) ∈ F (l−2)

neighbor

(

e
(l−2)

)

,F (0:l−3)
self

(

e
(l−3)

)

= al−2,

...

e
(0) ∈ F (1)

neighbor

(

e
(1)

)

,F (0:0)
self

(

e
(0)

)

= a1 = i.

(24)

This result is easily verified as:

(va1 , va2 , ..., val
) is a walk ⇔ ai ∈ Nai+1 , ∀1 ≤ i < l

⇔ ∃e(i−1) ∈ F (i)
neighbor

(

e
(i)
)

,F (0:i−1)
self

(

e
(i−1)

)

= ai, ∀1 ≤ i < l.

(25)

Note that all the information is encoded in Ẽ, i.e., we can decode {vi  vj |len(vi  vj) ≤ L} from

e
(L−1)
j by successively applying F (l)

self (·) ,F
(l)
neighbor (·). We can also apply F (0:L−1)

self to e
(L−1)
i to get

the start node ID i. Putting it together, we have:

F
(

e
(L−1)
j , e

(L−1)
i

)

= {vi  vj |len(vi  vj) ≤ L} , (26)

where F(·) is composed of F (l)
self (·) , 0 ≤ l < L and F (l)

neighbor (·) , 1 ≤ l < L. Applying the proximity

function S(·), we have:

S
(

F
(

e
(L−1)
j , e

(L−1)
i

))

= Si,j . (27)

We finish the proof by setting the real decoder function Fde(·) to arbitrarily approximate this desired
function S (F (·, ·)) under the universal approximation assumption.

5To let F(l)(·) output a set with arbitrary lengths, we can adopt sequence-based models such an LSTM.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL LINK PREDICTION RESULTS

We further report the results of link prediction on three GNN benchmarks: Cora, Citeseer, and
Pubmed. The results are shown in Table 7. The results show similar trends as other datasets pre-
sented in Section 5.2.

Table 7: The results of the link prediction task measured in AUC (%). The best results and the
second-best results for each dataset, respectively, are in bold and underlined.

Model Cora CiteSeer PubMed

SGC 93.6±0.6 94.7±0.8 95.8±0.2
GCN 90.6±1.0 78.2±1.7 92.4±0.9
GAT 88.5±1.2 87.8±1.0 89.2±0.8

PGNN 75.4±2.3 70.6±1.1 Out of memory

SMP-Identity 93.0±0.6 92.9±0.5 94.5±0.3
SMP-Linear 92.7±0.7 92.6±1.0 95.4±0.2
SMP-MLP 82.8±0.9 80.7±1.1 88.0±0.6
SMP-Linear-GCNfeat 86.7±1.4 81.1±1.4 90.5±0.6
SMP-Linear-GCNboth 80.1±2.5 80.0±2.0 81.1±2.0

B.2 PAIRWISE NODE CLASSIFICATION

Besides standard node classification experiments reported in Section 5.3, we follow You et al. (2019)
and further experiment on pairwise node classification, i.e., predicting whether two nodes have the
same label. Compared with standard node classification, pairwise node classification focuses more
on the relations between nodes and thus requires the model to be proximity-aware to perform well.

Similar to link prediction, we split the positive samples (i.e., node pairs with the same label) into an
80%-10%-10% training-validation-testing set with an equal number of randomly sampled negative
pairs. For large graphs, since the possible positive samples are intractable (i.e. O(N2)), we use
a random subset. Since we also need node labels as the ground-truth, we only conduct pairwise
node classification on datasets when node labels are available. We also exclude the results of PPI
since the dataset is multi-label and cannot be used in a pairwise setting You et al. (2019). Similar to
Section 5.2, we adopt a simple inner product classifier and use AUC as the evaluation metric.

The results are shown in Table 8. We observe consistent results as link prediction in Section 5.2, i.e.,
SMP reports the best results on four datasets and the second-best results on the other three datasets.
These results again verify that SMP can effectively preserve and utilize node proximities when
needed while retaining comparable performance when the tasks are more permutation-equivariant
like, e.g., on CS and Physics.

Table 8: The results of pairwise node classification tasks measured in AUC (%). The best results
and the second-best results for each dataset, respectively, are in bold and underlined.

Model Communities Email CS Physics Cora Citeseer Pubmed

SGC 67.4±2.4 56.3±5.4 99.8±0.0 99.6±0.0 99.2±0.3 95.5±0.7 92.3±0.3

GCN 64.9±2.3 55.0±5.7 96.8±0.7 99.7±0.1 97.7±0.6 92.9±1.2 94.8±0.4

GAT 52.5±1.3 47.7±2.7 95.2±0.6 96.3±0.2 91.6±0.7 73.6±2.7 87.1±0.2

PGNN 98.6±0.5 63.3±5.5 90.0±0.5 Out of memory 85.5±1.2 49.8±1.8 Out of memory

SMP-Identity 98.8±0.5 56.9±4.1 99.7±0.0 99.6±0.0 99.2±0.2 95.2±1.1 91.9±0.3

SMP-Linear 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 99.3±0.3 95.3±0.4 93.4±0.2

B.3 ADDITIONAL ABLATION STUDIES

We report the ablation study results for the node classification task and pairwise node classifica-
tion task in Table 9 and Table 10, respectively. The results again show that SMP-Linear generally
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achieves good-enough results on the majority of the datasets and adding non-linearities does not
necessarily lift the performance of SMP.

Table 9: The ablation study of different SMP variants for the node classification task. The best
results and the second-best results are in bold and underlined, respectively.

Model Communities CS Physics Cora Citeseer Pubmed

SMP-Linear 99.9±0.3 91.5±0.8 93.1±0.8 80.9±0.8 68.2±1.0 76.5±0.8
SMP-MLP 100.0±0.2 90.1±0.5 92.3±0.8 79.3±0.8 67.0±1.5 76.8±0.9
SMP-Linear-GCNfeat 100.0±0.0 89.8±0.7 92.9±0.8 78.9±1.2 67.8±0.6 77.3±0.6
SMP-Linear-GCNboth 100.0±0.2 77.4±4.2 87.1±3.5 69.2±2.5 49.8±3.1 68.1±4.1

Table 10: The ablation study of different SMP variants for the pairwise node classification task. The
best results and the second-best results are in bold and underlined, respectively.

Model Communities Email CS Physics Cora Citeseer Pubmed

SMP-Identity 98.8±0.5 56.9±4.1 99.7±0.0 99.6±0.0 99.2±0.2 95.2±1.1 91.9±0.3

SMP-Linear 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 99.3±0.3 95.3±0.4 93.4±0.2

SMP-MLP 98.7±0.3 65.4±6.3 94.3±0.6 97.6±0.4 90.3±3.0 67.7±13.7 93.4±0.4

SMP-Linear-GCNfeat 99.0±0.4 60.2±9.3 95.6±0.7 98.3±0.7 96.1±0.7 88.8±1.6 94.8±0.2

SMP-Linear-GCNboth 98.8±0.4 61.6±6.0 95.2±0.7 97.8±0.8 94.3±1.9 83.5±3.9 94.1±0.7

B.4 COMPARISON WITH USING IDS

We further compare SMP with augmenting GNNs using a one-hot encoding of node IDs, i.e., the
identity matrix. Intuitively, since the IDs of nodes are unique, such a method does not suffer from the
automorphism problem and should also enable GNNs to preserve node proximities. However, theo-
retically speaking, using such a one-hot encoding has two major problems. Firstly, the dimensional-
ity of the identity matrix is N ×N , and thus the number of parameters in the first message-passing
layer is also on the order of O(N). Therefore, the method will inevitably be computationally expan-
sive and may not be scalable to large-scale graphs. The large number of parameters will also more
likely lead to the overfitting problem. Secondly, the node IDs are not transferable across different
graphs, i.e., the node v1 in one graph and the node v1 in another graph do not necessarily share a
similar meaning. But as the parameters in the message-passings depend on the node IDs (since they
are input features), such a mechanism cannot handle inductive tasks well.

We also empirically compare such a method with SMP and report the results in Table 11. The
results show that SMP-Linear outperforms GCNonehot in most cases, not to mention that GCNonehot

fails to handle Physics, which is only a medium-scale graph, due to the heavy memory usage. One
surprising result is that GCNonehot outperforms SMP-Linear on Grid, the simulated graph where
nodes are placed on a 20 × 20 grid. A plausible reason is that since the edges in Grid follow a
specific rule, using a one-hot encoding gives GCNonehot enough flexibility to learn and remember the
rules, and the model does not overfit because the graph has a rather small scale.

C EXPERIMENTAL DETAILS FOR REPRODUCIBILITY

C.1 DATASETS

• Grid You et al. (2019): A simulated 2D grid graph with size 20× 20 and no node feature.

• Communities You et al. (2019): A simulated caveman graph Watts (1999) composed of 20
communities with each community containing 20 nodes. The graph is perturbed by rewiring 1%
edges randomly. It has no node feature and the label of each node indicates which community
the node belongs to.

• Email6 You et al. (2019): Seven real-world email communication graphs. Each graph has six
communities and each node has an integer label indicating the community the node belongs to.

6
https://github.com/JiaxuanYou/P-GNN/tree/master/data
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Table 11: The results of comparing SMP with using one-hot IDs in GCNs. OOM represents out of
memory. — represents the task is unavailable.

Task Model Grid Communities Email CS Physics PPI Cora Citeseer Pubmed

Link GCNonehot 91.5±2.1 98.3±0.7 71.2±3.5 93.1±1.3 OOM 78.6±0.3 86.8±1.5 81.7±1.1 89.4±0.5

Prediction SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3 92.7±0.7 92.6±1.0 95.4±0.2

Pairwise Node GCNonehot — 98.9±0.5 67.3±5.6 97.6±0.2 OOM — 98.2±0.3 94.4±1.2 98.9±0.1

Classification SMP-Linear — 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 — 99.3±0.3 95.3±0.4 93.4±0.2

Node GCNonehot — 99.6±1.0 — 86.9±1.5 OOM — 77.6±1.1 57.7±5.8 74.9±0.6

Classification SMP-Linear — 99.9±0.3 — 91.5±0.8 93.1±0.8 — 80.9±0.8 68.2±1.0 76.5±0.8

• Coauthor Networks7 Shchur et al. (2018): Two networks from Microsoft academic graph in
CS and Physics with their nodes representing authors and edges representing co-authorships
between authors. The node features are embeddings of the paper keywords of the authors.

• PPI6 Hamilton et al. (2017): 24 protein-protein interaction networks. Each node has a 50-
dimensional feature vector.

• PPA8 Hu et al. (2020): A network representing biological associations between proteins from
58 different species. The node features are one-hot vectors of the species that the proteins are
taken from.

• Cora, Citeseer, Pubmed9 Yang et al. (2016): Three citation graphs where nodes correspond to
papers and edges correspond to citations between papers. The node features are bag-of-words
and the node labels are the ground truth topics of the papers.

C.2 HYPER-PARAMETERS

We use the following hyper-parameters:

• All datasets except PPA: we uniformly set the number of layers for all the methods as 2, i.e., 2

message-passing steps, and set the dimensionality of hidden layers as 32, i.e., H(l) ∈ R
N×32,

for all 1 ≤ l ≤ L (for GAT, we use 4 heads with the dimensionality of each head as 8). We use
the Adam optimizer with an initial learning rate of 0.01 and decay the learning rate by 0.1 every
200 epochs. The weight decay is 5e-4. We train the model for 1,000 epochs and evaluate the
model every 5 epochs. We adopt an early-stopping strategy by reporting the testing performance
at the epoch which achieves the best validation performance. For SMP, the dimensionality of the
stochastic matrix is d = 32. For P-GNN, we use the P-GNN-F version, which uses truncated
2-hop shortest path distance instead of the exact shortest distance.

• PPA: as suggested in the original paper Hu et al. (2020), we set the number of GNN layers as 3
with each layer containing 256 hidden units and add a three-layer MLP after taking the Hadamard
product between pair-wise node embeddings as the predictor, i.e., MLP(Hi ⊙Hj). We use the
Adam optimizer with an initial learning rate of 0.01. We set the number of epochs for training
as 40, evaluate the results on validation sets every epoch, and report the testing results using
the model with the best validation performance. We also found that the dataset had issues with
exploding gradients and adopt a gradient clipping strategy by limiting the maximum p2-norm of
gradients as 1.0. The dimensionality of the stochastic matrix in SMP is d = 64.

C.3 HARDWARE AND SOFTWARE CONFIGURATIONS

All experiments are conducted on a server with the following configurations.

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

• GPU: NVIDIA TESLA M40 with 12 GB of memory

• Software: Python 3.6.8, PyTorch 1.4.0, PyTorch Geometric 1.4.3, NumPy 1.18.1, Cuda 10.1

7
https://github.com/shchur/gnn-benchmark/tree/master/data/npz/

8
https://snap.stanford.edu/ogb/data/linkproppred/ppassoc.zip

9
https://github.com/kimiyoung/planetoid/tree/master/data
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