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Abstract—Which seems more suspicious: 5,000 tweets from
200 users on 5 IP addresses, or 10,000 tweets from 500 users on
500 IP addresses but all with the same trending topic and all in
10 minutes? The literature has many methods that try to find
dense blocks in matrices, and, recently, tensors, but no method
gives a principled way to score the suspiciouness of dense blocks
with different numbers of modes and rank them to draw human
attention accordingly. Dense blocks are worth inspecting, typically
indicating fraud, emerging trends, or some other noteworthy
deviation from the usual. Our main contribution is that we show
how to unify these methods and how to give a principled answer to
questions like the above. Specifically, (a) we give a list of axioms
that any metric of suspicousness should satisfy; (b) we propose an
intuitive, principled metric that satisfies the axioms, and is fast to
compute; (c) we propose CROSSSPOT, an algorithm to spot dense
regions, and sort them in importance (‘“suspiciousness’) order.
Finally, we apply CROSSSPOT to real data, where it improves
the F1 score over previous techniques by 68% and finds retweet-
boosting in a real social dataset spanning 0.3 billion posts.

I. INTRODUCTION

Imagine your job at Twitter is to detect when fraudsters
are trying to manipulate the most popular tweets for a given
trending topic. Given time pressure, which is more worthy of
your investigation: 2,000 Twitter users, all retweeting the same
20 tweets, 4 to 6 times each; or 225 Twitter users, retweeting
the same 1 tweet, 10 to 15 times each? Now, what if the latter
batch of activity happened within 3 hours, while the former
spanned 10 hours? What if all 225 users of the latter group
used the same 2 IP addresses?

Figure [T] shows an example of these patterns from Tencent
Weibo, one of the largest microblogging platforms in China;
our method CROSSSPOT detected a block of 225 users, using
2 1P addresses (“blue circle” and “red cross”), retweeting the
same tweet 27K times, within 200 minutes. Further, manual
inspection shows that several of these users get activated every
5 minutes. This type of lockstep behavior is suspicious (say,
due to automated scripts), and it leads to dense blocks, as
in Figure [T} These blocks may span several modes (user-id,
timestamp, hashtag, etc.). Although our main motivation is
fraud detection in a Twitter-like setting, our proposed approach
is suitable for numerous other settings, like distributed-denial-
of-service (DDoS) attacks, link fraud, click fraud, even health-
insurance fraud, as we discuss next.
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Fig. 1. Density in multiple modes is suspicious. Left: A dense block of 225
users on Tencent Weibo (Chinese Twitter) retweeting one tweet 27,313 times
from 2 IP addresses over 200 minutes. Right: magnification of a subset of this
block. ® and # indicate the two IP addresses used. Notice how synchronized
the behavior is, across several modes (IP-address, user-id, timestamp).

Thus, the core question we ask in this paper is: what is
the right way to compare the severity/suspiciousness/surprise
of two dense blocks, that span 2 or more modes? Informally,
the problem is:

Informal Problem 1 (Suspiciousness score) Given a K-
mode dataset (tensor) X, with counts of events (that are
non-negative integer values), and two subtensors Y1 and Y,
which is more suspicious and worthy of further investigation?

Why multimodal data (tensor): Graphs and social networks
have attracted huge interest - and they are perfectly modeled as
K=2 mode datasets, that is, matrices. With X' =2 modes we can
model Twitter’s “who-follows-whom” network [[1][2l], Face-
book’s “who-friends-whom” and ‘“who-Likes-what” graphs
[3], eBay’s “who-buys-from-whom” graph [4], financial ac-
tivities of “who-trades-what-stocks”, and scientific relations
of “who-cites-whom.” Several high-impact datasets make use
of higher mode relations. With K'=3 modes, we can consider
how all of the above graphs change over time or what words
are used in product reviews on eBay or Amazon. With K=4
modes, we can analyze network traces for intrusion detection
and distributed denial of service (DDoS) attacks by looking
for patterns in the source IP, destination IP, destination port,
and timestamp [3].

Why are dense regions worth inspecting: Dense regions
are surprising in all of the examples above. Past work has
repeatedly found that dense regions in these tensors correspond
to suspicious, lockstep behavior: Purchased Page Likes on
Facebook result in a few users “Liking” the same ‘“Pages”
always at the same time (when the order for the Page Likes
is placed) [3]]. Zombie followers, botnets who are set up to



build social links, will inflate the number of followers to
make their customers seem more popular than they actually
are [1][6]. This high-density outcome has a reason: Spammers
have constrained resources (users, IP addresses, time, etc.)
and they want to add as many edges to the graph/tensor as
possible, to maximize their profit while minimizing their costs.
Intuitively, the more synchronized the data is, in higher number
of modes, the more worthy it is of further inspection.

Our new perspective: There are numerous papers on find-
ing dense subgraphs, blocks and communities, including ma-
trix algebra methods (SVD [7]], tensor decompositions like
PARAFAC and HOSVD [8], and PageRank/TrustRank [4][9];
several more papers apply such methods for anomaly and fraud
detection [S5]. These methods do effectively find suspicious
behavior, nearly always related to dense subgraphs. However,
none of them answers the problem of interest (Problem [I).
The features that set this work apart are the following (also
presented in Table [[):

e Block score: How would you label an individual Like
on Facebook or follower on Twitter? These actions are
impossible to evaluate in isolation but can be understood
in the aggregate. Therefore, we focus on finding and
measuring the suspiciousness of blocks of data. Other
methods either return no score (like SVD/eigenspokes,
and PARAFAC/Tucker tensor decomposition) or they re-
turn a score for each node (like PageRank, TrustRank, and
belief propagation), but not for the whole group. These
prior methods are harder to interpret and are more easily
deceived through adversarial noise.

e Cross modes: We look for suspicious density in all K
modes, as well as any subset of the modes. In contrast,
SVD and dense subgraph mining methods work only for
K=2 modes; (sparse) PARAFAC, HOSVD and related
tensor analysis return blocks in all modes.

In this paper, we offer the following contributions:

1) Metric criteria: We propose a set of basic axioms that
a good metric must meet to detect dense subregions in
sparse multimodal data (e.g. if two blocks are the same
size, the denser one is more surprising). We demonstrate
that while simple, meeting all of the criteria is non-trivial.

2) Novel metric: We introduce a novel suspiciousness met-
ric to evaluate how suspicious a subvector, a submatrix or
a subtensor is in multimodal data. Our metric is derived
from basic probability and meets the specified criteria.

3) The CROSSSPOT algorithm: We design a scalable
search algorithm to find suspicious regions of a tensor.

4) Validation: Extensive experiments have demonstrated
the effectiveness in detecting tweet promotion through
retweets. We find that directly optimizing our metric
significantly improves the results over just applying
computationally-convenient methods like the SVD.

II. RELATED WORK

In this section, we review related fields including sus-
picious behavior detection and decomposition methods. We
compare our work with baseline methods in Table |I} and point
out the uniqueness of ours.

Suspicious behavior detection: A variety of research has
found fraudulent behavior through mining multimodal rela-

TABLE 1. COMPARISON OF STATE-OF-THE-ART METRICS/METHODS.
Axioms
S|7 8|2 2
= |3 | £
8 El
g =
S @]
cores
Method Blocks | 1 | 2 | 3| 4] 5
SUSPICIOUSNESS v v v v v v
4 Mass v v X X X v
k= Density v v X v X X
= Average Degree [10] v v X X X N/A
Singular Value [L1] v v v v X X
CROSSSPOT v v v v v v
@ Subgraph [L1] v v ' v X | N/A
2 CopyCatch [3] 7 V|V [V | X | NA
B! TrustRank [9] X N/A
= BP [] X N/A

tional data. These patterns of fraud have been found to show up
in eBay reviews [4], opinion spam [12], false accounts [1][2],
among many others. Many methods have focused on labeling
individual users, such as by using belief propagation (BP)
[4] or TrustRank scores [9]. These methods label suspicious
nodes/users, but do not return suspicious grouping behaviors
themselves. Later works found that adding additional modes of
information aided in detecting suspicious behavior. CopyCatch
[3]] found that suspicious patterns of Page Likes on Facebook
correlated in time were good indicators of fraud. Many of
the above methods return labels or scores for individual users
or IP addresses but not blocks. Even a human evaluation of
the results is difficult. Finally, because they are operating on
independent formulations, it is impossible to compare their
effectiveness and measure progress in the field as a whole.
However, none of them gives a “surprise” scoring function for
a dense sub-tensor. Rather, in this paper we study and quantify
this pattern in a principled manner.

SVD-based methods: Decomposition methods have been
widely used in subspace clustering [13], community detection
[L1], and pattern discovery [8]. Implicitly, the SVD focuses
on dense regions of a matrix. Chen et al. extracted dense
subgraphs using a spectral cluster framework [11]]. For mul-
timodal data, tensor decompositions have been applied in
many applications [8].High-order singular value represented
the importance of the cluster [13]. However, later we show
that the SVD has limitations to evaluate cross-mode blocks.

III. PROPOSED METRIC CRITERIA

We now give a precise definition of the problem. We
consider the mass of a subtensor to be the sum of entries
in that subtensor, and the density to be the mass divided by
the volume of the subtensor. A full list of our notation can be
found in Table [

Formal Problem 1 (Suspiciousness score) Given a K-mode
tensor X with non-negative entries, of size N = [N;]K |
and with mass C (describing C events by summing entries
of the tensor), define a score function f(n,c,N,C) for how
suspicious a subtensor ) of size n = [nk]i{:l with mass c.

We consider an alternative parameterization using density.
Here p is the density of ) and p is the density of X:

K K
f(o,p,N,p) = f (n,p [IreNp]] Nk.)
k=1 k=1



TABLE II. THE NOTATION USED THROUGHOUT THIS PAPER.

[ Symbol ] Definition

Number of modes in our dataset
K -mode tensor dataset
Subtensor within X’
K -length vector for the size of each mode of X
The mass of X' (summing the entries of X')
K -length vector for the size of each mode of Y
The mass of )
The density, C'/ [[,, Nx of X
The density, ¢/ [ [, nx, of Y
Suspiciousness metric, parameterized by the masses

<=2 a5 |QZ< x| =

Suspiciousness metric, parameterized by the densities
Directed KL-divergence of Poisson(p) & Poisson(p)
p—p+plogt

Dk (pllp)

In the rare case that the number of modes being considered is
unclear, we will refer to the functions by fx and fx.

Note that we restrict f to only focus on blocks for which
p > p, that is the density inside the block is greater than the
density in the general tensor. While extremely sparse regions
are also unusual, they are not the focus of this work.

A. Axioms

We now list five basic axioms that any suspiciousness
metric f must meet.

Axiom 1 Density If there are two blocks of the same size in
the same number of modes, the block of bigger mass is more
suspicious than the block of less mass. Formally,

c1 >cy <= f(n,e1,N,C) > f(n,ce,N,C)

Axiom 2 Size If there are two blocks of the same density in
the same number of modes, the bigger block is more suspicious
than smaller block. Formally,

n;>nf Ang>nj Yk = f (n,p,N,p)>f (0, p,N,p)

Axiom 3 Concentration If there are two blocks of the same
mass in the same number of modes, the smaller block is more
suspicious than bigger block. Formally,

n;<njy Ang<ny Vk = f(n,¢,N,C)> f(n',¢,N,C)

Axiom 4 Contrast If two identical blocks lie in two tensors
each of the same size but one is sparser, then the block in the
sparser tensor is more suspicious. Formally,

P11 <p2 — f(napaNapl) > f(n’p7N7p2)

Axiom 5 Multimodal A block which contains all possible
values within a mode is just as suspicious as if that mode was
collapsed F_] into the remaining modes. Formally,

fr—1(Inklizt e, INKliz1, ©) = fie ([nelimts Nio)s e [INk]E,, C)

Lemma 1 Cross-mode comparisons Learning of a new mode
about our data can only make blocks in that data more
suspicious. Formally,

fol([nk]fz_L C, [Nk‘}kK:_ia C) S fK([nk]kK:U c, [Nk}klle C)

Proof:

Fre—1 ()it e [INe R, ©) = Fre ([ i 21 N, e, [N, O)
< fx (([nelfZlmi) e, [INKJE L ©)

Collapsing a tensor X on mode K sums the values of X’ across all indices
in mode K [14], e.g. collapsing a tensor to a matrix: X; ; = >, X; j k-

Above we find that the first equality is given by Axiom 5 and
the second by Axiom 3. ]

B. Shortcomings of Competitors

While these axioms are simple and intuitive, they are non-
trivial to meet. As shown in Table [I} simple metrics fail a
number of the axioms.

Mass: One possible metric is the mass f(n,¢,N,C) = ec.
This does not change if the same mass is concentrated in a
smaller region, and hence fails Axiom 3 (Concentration); it
does not consider the background density p, and so fails Axiom
4 (Contrast) as well.

Density: Another possible metric is the density of the block
f(n,p,N,p) = p. However, this does not consider the size
of the dense block, and hence fails Axiom 2 (Size). It also
does not consider the background density, and fails Axiom
4 (Contrast). Since density in general decreases with more

modes, Axiom 5 (Multimodal) is also broken.

Average degree: Much of the research on finding dense
subgraphs focuses on the average degree of the subgraph [15],
[16], f(n,¢,N,C) = ¢/n;i. This metric breaks both Axioms
2 and 3 by not considering ne and breaks Axiom 4 by not
considering C' and N. Additionally it is unclear how we would
define the average degree for K > 2, making it unsuitable for
multi-modal data.

SVD: The SVD of a matrix A is a factorization of the form
A = UXV'. The singular values of A correspond to 3, .,
and U,V are the singular vectors. The top singular values
and vectors indicate big, dense blocks/clusters in the multi-
mode data and have been used to find suspicious behavior
[13]. As shown in [2], an independent block of size n1 X ng
with mass c has a singular value o corresponding to that block
of o0 = njm = /pc. Given the SVD prioritizes the parts of
the data with higher singular values, we can view this as a
competing metric of suspiciousness. While this metric now
meets Axioms 1 through 3, it has a challenge generalizing.
First, it is clear that this metric ignores the density of the
background data. As a result, Axiom 4 is broken. Second,
HOSVD does not have the same provable guarantees as SVD
and thus does not necessarily find the largest, densest blocks.
Even if we consider density in higher modes, what we find is
that with each additional mode added, the volume of a block
becomes greater and thus the density lower. This breaks Axiom
5 and would make an algorithm collapse all data down to one
mode rather than consider the correlation across all K modes.

From this, we see that methods building on average degree
and SVD meet the requirements for many cases, but break
down on certain corner cases, limiting their path toward a
general approach to finding surprising behavior.

IV. PROPOSED SUSPICIOUSNESS METRIC

Our metric is based on a model of the data in which
the C events are randomly distributed across the tensor data
X. For binary data this corresponds to a multi-mode Erdos-
Rényi model, where the value in each cell follows a binomial
distribution. Because each cell in the tensor can contain more
than one occurrence, we instead use a Poisson distribution,
resulting in the Erdds-Rényi-Poisson model:



Definition 1 Erdos-Rényi-Poisson (ERP) model A tensor X
generated by the ERP model, has each value in the tensor
sampled from a Poisson distribution parameterized by p.

In general, we set p to be the density of the overall tensor.
Using this model we define our metric:

Definition 2 The suspiciousness metric The suspiciousness
score of a multimodal block is the negative log likelihood of
block’s mass under an Erdos-Rényi-Poisson model. Mathemat-
ically, given an n1 X - - - Xng block of mass cin Ny x---X Nk
data of total mass C, the suspiciousness score is

| f(n,¢,N,C)=—log [Pr(Y, = 0)]| (1)

where Y,, is the sum of entries in the block.

A. Dense Subvector and Submatrix

Consider an N-length vector X, which we believe to be
generated by the ERP model defined above. We can think of
this vector as the number of tweets per IP address. If there
are C tweets total, then the density is p=% and each X;
has a Poisson distribution. We are searching for an n-length
subvector X, ,...,X;, thatis unlikely and hence has a high

suspiciousness score.

in

Lemma 2 The suspiciousness of an n-length subvector
[Xi,,...,X;,] in the N-length vector data [X1,...,Xy] is
n

N
2 P
f(n.p,N,p) = n(p —p+plog p) = nDgr(p||p)

19

fln,e,N,C) = c(log% — 1) +C’% — clog

Here ¢ = > 7, X;; and Dk (p||p) is the Kullback-Leibler
(KL) divergence of Poisson(p) from Poisson(p).

Proof: We denote the sum of n variables by Y,, =
Z;;l X;;. From the Poisson property, we know Y, ~
Poisson(pn). Then we can have the probability that Y,, equals
a given number of retweets c. With the Stirling’s formula, we
obtain the suspiciousness score:

c _Cn

f(n,c,N,C)= —log [Pr(Y, = c¢)] = —log [C—C(%) e T:|

c!

~ c(log% — 1) +Cx —clog &

We now extend suspiciousness to a 2-mode matrix.

Lemma 3 The suspiciousness of an ni X ns block of mass c
in N1 X Ny data of total mass C' is:

f([nl,ﬂg],(l, [Nh N2]7 C): C(IOg %_1)4_0;\2?\’[22 _CIOg ]7\27]1]22
f([n1,n2l, p, [N1, Na, p)= nina Dx 1.(pl|p)

B. Dense Subtensor: K-Mode Suspiciousness
We now extend suspiciousness to a K-mode tensors.

Lemma 4 Given an ny X --- X ng block of mass c in N1 X
-+ X Nk data of total mass C, the suspiciousness function is

3

K K
c n; Z n;
f(n7 c7N7C):c(log6 a 1)+Ci1;[1 ﬁ_ci=1 logﬁi (2)

Using p as the block’s density and p is the data’s density, we
have the simpler formulation

K

f(n,p,N,p) = (H n) D (pllp) 3)

=1

From the nonnegativity of KL divergence, we have f = f > 0.

C. Proofs: Satisfying the Axioms. Omitted for brevity.
V. SuspICcIOoUS BLOCK DETECTION

Having defined a metric for measuring the suspiciousness
of a block, in this section we formally define the problem of
detecting suspicious blocks across modes, and give a scalable
algorithm based on our proposed metric to identify the blocks.

Problem 1 (Suspicious block detection) Given dataset X
which is a N1 X --- X Nk tensor of mass C, find a list of
blocks in X, in any subset of modes, with high suspiciousness,
in descending order, based on Eq. @) and (@).

As before, we have a K-mode tensor X and a k-mode
subtensor ) to represent the suspicious block. Mode j of the

tensor has N; possible values: P; = {pgj), e ,p%?} Subten-
sor ) covers a~subset of valuqs in each mode: ’ﬁj C P;, V.
Define P = {P;}1< . Let ¢(P) be the number of events in
the subtensor defined by P.

The dimensions of our block n are n; = |P;|. If a mode j
is not included, we consider P; = P;, based on Axiom [5|and
the properties of collapse operation. For the sake of notational
simplicity we define one last alternative parameterization for
our suspiciousness function

A. Proposed Algorithm CROSSSPOT

We define here a local search algorithm to search for
suspicious blocks in the dataset. We start with a seed suspicious
block, then perform an iterative alternating optimization, where
we find the optimal set of values in mode j while holding
constant the included values in all other modes. We run
this sequence of updates until convergence. The complete
algorithm is shown in Algorithm [T}

Algorithm 1 Local Search

Require: Data X, seed region ) with P = {P;}1<,

1: while not converged do

22 forj=1...K do

3 P; < ADJUSTMODE(j)
4:  end for
5
6

: end while
. return P

Adjusting a Mode: During each iteration of ADJUSTMODE,
we optimally choose a subset of values from P; holding
constant the values in other modes, i.e. fixing P;s for j' # j.
Denote Ac ;) as the number of events in the intersection of

row i (in mode j) and the currently fixed values in the other



Algorithm 2 ADJUSTMODE(j)

1 PieA{} .
P; « {pz(-])}izj1 sorted in descending order by ACPW
for p(-j) € P; do

PePup?
Pl {Pji}irz; UP;
if f(P,D)< f(P',D) then
Pj — Pj
end if
end for _
return P;

N

S I A A

—

modes, i.e. 75]-/ for j' # j. We refer to Acp@ as the “benefit”

of pl(j ). In Algorithm [2| we use these benefit scores to order
the values in P;, from greatest to least benefit. We will refer
to this ordered list as P;.

Seeds: In Algorithm El, we start from a seed subtensor V.
In the simplest case, we start from a randomly chosen seed,
containing an individual cell of the tensor or a larger randomly
chosen block. As we will show in Section even using
randomly chosen seeds does well.

Complexity: The time complexity of Algorithm [I|is O(T x
K x (E+ NlogN)), where T is the number of iterations, K
is the number of modes, E is the number of non-zero entries
in the data, and N = max; IN; is the maximum size of any
mode. Because 1" and K are often set to constant values, the
complexity is quasi-linear in N and linear in the number of
non-zero entries. Thus, Algorithm [T]is scalable.

VI. EXPERIMENTS
A. Datasets and Experimental Setup

We used extensive datasets including synthetically gener-
ated datasets and one large, new social networking dataset.
The synthetic data is generated as a K-mode tensor of size
N x --- X Ni with mass C. Within the tensor we inject b
dense blocks. Each block is assigned a size n; X --- X ng
and mass c. When an injected block falls in only a subset
of modes Z, we set n; = N;. We use retweeting data from
Tencent Weibo. These retweets consist of user id, tweet id,
IP address, timestamp and retweeting comment. On Weibo,
retweet boosting is common, where retweets can be purchased
to make a particular tweet seem more popular than it actually
is. This results in a distorted user experience. The dataset has
29.5M users, 19.8M tweets, 27.8M IP addresses and 221.7M
retweets, spanning 56,943 minutes.

We compare CROSSSPOT with the following baselines:
SVD [7] and HOSVD (Higher-Order SVD) [8]], MAF (Mul-
tiAspectForensics) [5], and AVGDEG (Average Degree) [10].

B. Synthetic Experiments

We first evaluate CROSSSPOT on synthetic datasets. Over-
all, CROSSSPOT is effective: it detects dense subgraphs in 2-
mode data, dense k-mode blocks in k-mode tensor data, and
even dense k’-mode blocks in k-mode tensor data (k' < k)

1
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Fig. 2. Finding dense blocks: CROSSSPOT outperforms baselines in finding
3-mode blocks, and directly method improves the recall on top of HOSVD.

0.5
Recall

(a) Performance

with very high precision and recall. It is also efficient: it has
faster execution time than complex traditional methods.

Finding dense high-order blocks in multimodal data: We
generate random tensor data with parameters as (1) the number
of modes k=3, (2) the size of data N1=N5=N3=1,000 and (3)
the mass of data C'=10,000. We inject b=6 blocks of k’'=3
modes into the random data. Each block has size 30x30x30
and mass c€ {16, 32, 64,128,256, 512}. The task is to classify
the entries into suspicious and normal classes. Figure [2[a)
reports the performances of CROSSSPOT and baselines. We
observe that in order to find all the 6 injected blocks, our
proposed CROSSSPOT has better performance than baselines.
The best F1 score CROSSSPOT gives is 0.891, which is 46.0%
higher than the F1 score given by the best of HOSVD (0.610).
If we use the results of HOSVD as seeds to CROSSSPOT,
the best F1 score of CROSSSPOT reaches 0.979. Figure [2(b)
gives the recall value of every injected block. We observe that
CROSSSPOT improves the recall over HOSVD.

Finding dense low-order blocks in multimodal data: We
generate random tensor data with parameters as (1) the number
of modes k=3, (2) the size of data N1=1,000, N5=1,000 and
N3=1,000 and (3) the mass of data C'=10,000. We inject b=4
blocks into the random data:

e Block #1: The number of modes is k}=3 and Z;={1,2,3}.
The size is 30x30x30 and the block’s mass is ¢;=512.

e Block #2: k4=2, To={1,2}; 30x30x 1,000 of cy=512.

e Block #3: k4=2, Z5={1,3}; 30x1,000x30 of c3=512.

e Block #4: k}=2, T4={2,3}; 1,000x30x30 of c4=512.

Note, blocks 2-4 are dense in only 2 modes and random in the
third mode. From Table we show the overall evaluations
and observe that CROSSSPOT has 100% recall in catching
the 3-mode block #1, while the baselines have 85-95% recall.
More impressively, CROSSSPOT successfully catches the 2-
mode blocks, where HOSVD has difficulty and low recall.
The F1 score of overall evaluation is as large as 0.972 with
68.8% improvement.

Testing robustness of the random seed number: Figure [3{(a)
shows the best F1 score for different numbers of random seeds.
We find that when we use 41 random seeds, the best F1 score
is close to the results when we use as many as 1,000 random
seeds. Thus, once we exceed a moderate number of random
seeds, the performance is fairly robust.

Efficiency analysis: CROSSSPOT can be parallelized into
multiple machines to search dense blocks with different sets
of random seeds. Figure [3(b) reports the counts of iterations
in the procedure of 1,000 random seeds. Each iteration takes
only 5.6 seconds. From Table and Figure [3(a), we know



TABLE III. OUR CROSSSPOT CATCHES MORE LOWER-MODE BLOCKS: CROSSSPOT HAS HIGH ACCURACY IN FINDING THE INJECTED 4 BLOCKS.
Recall Overall Evaluation
[ Block #1 H Block #2 [ Block #3 [ Block #4 H Precision [ Recall [ FI score

HOSVD (r=20) 93.7% 29.5% 23.7% 21.3% 0.983 0.407 0.576

HOSVD (r=10) 91.3% 24.4% 1835% 192% 0.972 0317 0.478

HOSVD (r=5) 85.7% 10.0% 9.5% 11.4% 0.952 0.195 0.324

CROSSSPOT 100% 99.9% 94.9% 95.4% 0.978 0.967 0.972
g 1 E 500 of China, No. 61370022 and No. 61210008; International Science
Sos8 /.f, 8 400 and Technology Cooperation Program of China, No. 2013DFG12870.
ool 7 @ 300 Thanks for the support of NExT Research Center under the research
B4 ‘éggo grant, WBS:R-252-300-001-490 and the research fund of Tsinghua-
rg 0alf S100 Tencent Joint Laboratory. Thanks for the support of National Science
oz é 0 Foundation, No. CNS-1314632, Nos. IIS-1217559 and Grant No.
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Fig. 3. CROSSSPOT is robust to the number of random seeds. In detecting
the 4 low-order blocks, when we use 41 seeds, the best F1 score has reported
the final result of as many as 1,000 seeds. CROSSSPOT converges very fast:
the average number of iterations is 2.87.

TABLE IV. BIG DENSE BLOCKS WITH TOP METRIC VALUES
DISCOVERED IN THE RETWEETING DATASET.

[ # | UserxtweetxIPxminute | Mass c [ Suspiciousness

1 14x1x2x1,114 41,396 1,239,865

CROSSSPOT 2 225x1x2x%200 27,313 777,781
3 8x2x4x 1,872 17,701 491,323

1 24x6x11x439 3,582 131,113

HOSVD 2 18x4x5x223 1,942 74,087
3 14x2x1x265 9,061 381,211

that CROSSSPOT takes only 230 seconds to have the best F1
score 0.972, while HOSVD needs more time (280 seconds if
r=5) to have a much smaller F1 score 0.324.

C. Retweeting Boosting

Table shows big, dense block patterns of retweeting
dataset. CROSSSPOT reports blocks of high mass and high
density. For example, we spot that 14 users retweet the same
content for 41,396 times on 2 IP addresses in 19 hours. Their
coordinated, suspicious behaviors result in a few tweets that
seem extremely popular. We observe that CROSSSPOT catches
bigger and denser blocks than HOSVD does: HOSVD eval-
uates the number of retweets per user, item, IP, or minute, but
does not consider the block’s density, mass nor the background.

VII. CONCLUSION

We provide a metric of suspiciousness for a dense block,
in arbitrary number of modes. Our contributions are:

e Metric criteria: We propose a set of axioms that any
metric of suspicious dense behavior should meet.

e Novel metric: We propose a suspiciousness metric, that is
based on a principled, probabilistic model; and we prove
that it obeys our axioms.

e CROSSSPOT algorithm: We propose a scalable algo-
rithm to find dense, suspicious blocks in multi-modal data.

e Empirical results: We demonstrate the effectiveness of
our approach on synthetic as well as on real world data.
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