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Abstract—Multiple Object Tracking (MOT) poses three chal-
lenges to conventional well-studied Single Object Tracking (SOT)
algorithms: 1) Multiple targets lead the configuration space to
be exponential to the number of targets; 2) Multiple motion
conditions due to multiple targets’ entering, exiting and intersec-
tion make the prediction process degrade in precision; 3) Visual
ambiguities among nearby targets make the trackers error prone.
In this paper, we address the MOT problem by embedding con-
textual proposal distributions and contextual observation models
into a mixture tracker which is implemented in a Particle Filter
framework. The proposal distributions are adaptively selected
by motion conditions of targets which are determined by context
information, and the multiple features are combined according
to their discriminative power between ambiguity prone objects.
The induction of contextual proposal distribution and observation
model can help to surmount the incapability of conventional
mixture tracker in handling object occlusions, meanwhile retain
its merits of flexibility and high efficiency. The final experiments
show significant improvement in variable number objects tracking
scenarios compared with other methods.

Index Terms—Contextual observation model, contextual pro-
posal distribution, motion tracking, particle filter.

I. INTRODUCTION

V ISUAL tracking, as the primary part of intelligent visual
surveillance, can be categorized into two classes, Single

Object Tracking (SOT) and Multiple Object Tracking (MOT),
according to the number of targets. In the last decades of re-
search, SOT has been well studied. However, the extension of
the targets number from Single to Multiple brings the old system
three new challenges.

1) Multiple Targets. The configuration space of targets tem-
poral correspondences is exponential to the number of tar-
gets. Searching the optimal configuration in such high di-
mensional space is challenging.

2) Multiple Motion Conditions. In MOT, the number of tar-
gets may vary, and targets may interlace with each other.
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Thus, each target probably undergo multiple motion condi-
tions, such as entering, exiting, splitting, merging, and up-
dating, which makes the motion prediction process more
complex.

3) Visual Ambiguity. In SOT, the visual ambiguity between
target and cluttered background is a main cause of tracking
errors. In MOT, however, this problem becomes more se-
rious, because the targets often have similar appearances.
When these targets are nearby or even interlaced, the
tracker is prone to erroneously swap their identities.

To address these problems, many methods have been pro-
posed. Most of them can be categorized into two classes. The
first category is termed as joint trackers [1], [4], [18], which
straightforwardly extends the motion state space by concate-
nating the states of all targets (so all targets’ motions are depen-
dent of each other). This state space will expand exponentially
with the number of targets. To search the optimal configuration
in such space is computationally too expensive. The second cat-
egory is termed as mixture trackers [23], [6], [2], which assumes
that the motions of targets are independent with each other, and
thus by marginalization the joint state tracker will become to
individually evolved local trackers. Therefore, the state space
only increases linearly with the number of targets, which makes
the trackers much more efficient. However, the assumption of
independency among targets in mixture trackers is too strong in
practice, which degrades their performances in occlusion han-
dling, local tracker adding/deleting, and ambiguous targets dis-
criminating [17].

The joint trackers and mixture trackers are two extreme in-
stantiations of the tradeoff between dependency and efficiency.
In this paper, we address such tradeoff by introducing contexts
into mixture trackers, which is named as contextual mixture
tracker (CMT). In CMT, the evolvement of each local tracker
only depends on its context. The context is constituted by only
a fraction of targets and some scene priors.

More specifically, the CMT is implemented in Sequential
Monte Carlo framework (also known as particle filter), which
consists of two steps: 1) predict the next motion state based on
the current state according to the proposal distribution; and 2)
verify the predictions based on new observed data using the
observation model. We embed the contexts into these two steps
as follows to form the contextual proposal distribution (CPD)
and contextual observation model (COM):

1) Contextual proposal distribution: CPD is a cascaded sam-
pling function, where the particles for motion conditions are first
sampled according to its current state and context, and then the
particles for motion states are sampled by a motion condition
specific proposal distribution. In this step, only spatial contexts
are used, including the distances between the local trackers/
scene boundaries, and the states of nearby local trackers. These
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contexts can help to explicitly predict the motion conditions, and
further improve the motion prediction precision.

2) Contextual observation model: The objective of the obser-
vation model is to evaluate the prediction likelihoods given new
observation data. It is especially challenging when there are vi-
sually ambiguous targets nearby. In order to differentiate the
local target from them, we propose to use spatial-temporal con-
texts to adaptively construct the observation models. First, the
spatial context is used to find nearby targets. Then the histor-
ical appearances of these targets and the local target (temporal
contexts) are used to evaluate the discriminative power of the
features by an mutual information based feature ranking likeli-
hood method. More discriminative features are weighted higher
in the observation model and vice versa. This guarantees that
COM is continuously adapted to different contexts and can ef-
fectively discriminate the local target from variable surrounding
targets.

The rest of this paper is organized as follows. In the next
section, we will briefly review the related works. The framework
for mixture tracking is specified in Section III. Sections IV and
V are respectively devoted to the two elements of CMT: the CPD
and COM, followed by the experiments and conclusion sections.

II. RELATED WORK

Several approaches have been proposed to find an efficient
and robust solution to multiple object tracking, and Bayesian
Recursive Estimation is well accepted as the framework [12],
[20], [9]. In order to make it tractable while maintaining mul-
tiple hypotheses, Particle Filter (PF) is exploited to approximate
the posterior distribution by sampling [11], [26]. In order to si-
multaneously track multiple targets, [19], [25] extend the stan-
dard PF into Joint PF (JPF) where state vector contains the mo-
tion information of all targets. When tracking variable targets,
the dimension of the state vector has to change accordingly. To
maintain a consistent particle space, Smith et al. [19] proposed
a reversible-jump MCMC PF based on [8]. These methods can
indeed naturally model the interactions among targets by max-
imizing the joint state posterior distribution. However, the high
dimensionality of state space requires too much expensive com-
putations.

Another category of methods tend to factorize the JPF into
several independent local trackers. Vermaak et al. proposed a
mixture tracker (MT) [21], where the multimodal distribution
caused by multiple targets is approximated by multiple mixture
components. Each component corresponds to a local tracker and
evolves independently. Okuma et al. [15] extend the standard
MT into a boosted MT by combining it with an Adaboost ob-
ject detector, which can detect and track the new entered and ex-
ited objects. However, the detector is trained offline. This could
be a problem in MOT when there is no prior knowledge on the
classes of objects. In these methods, the independency assump-
tion brings efficiency, while making the local trackers know
nothing about the global states, which limits the ability of MT
to deal with occlusions.

Therefore, the exploration of sufficient but not redundant de-
pendency among targets becomes the central issue. In this paper,

we term this kind of dependency as context. Although not ex-
plicitly stated, several methods have adopted context informa-
tion to handle visual ambiguity and occlusions. One category of
them exploit the spatial distance as the measure to find the spa-
tial context of a local tracker, and the evolvement of the local
tracker is controlled by the observation of both the local tracker
and its context [24], [17], [13]. In [25], a collaborative tracking
method is proposed to allow for the collaboration among adja-
cent local trackers (spatial context) by modeling these targets’
joint prior using a Markov Random Network. In [Magnetic-In-
ertia], Gravitation model is introduced to model the interactive
power between nearby local trackers. Nguyen et al. [13] regard
MOT as a classification problem among nearby targets so that
the decision on the label of a target is influenced by other tar-
gets. The spatial context can be effectively modeled and em-
bedded into the tracking framework by partial joint estimation in
these methods. However, they do not further exploit the context
information to improve the local trackers’ ability of discrimi-
nating the local targets from nearby similar targets. Thus the
visually ambiguous targets are still probable to be erroneously
tracked when they are nearby or occlusion presents. The other
category use the historical appearances of the local targets as its
temporal context and adaptively construct and update its obser-
vation model in hope of an accurate appearance model robust to
occlusions and appearance changes [26], [14]. The generative
models, including eigenspace [14] and mixture of Gaussians
[26] are most commonly applied. The dynamic appearances of
targets can be well incorporated by these models which can be
straightforwardly embedded into the tracking framework. How-
ever, these generative models cannot guarantee sufficient dis-
criminative power if the visual ambiguous targets move nearby
or even occlude.

Compared with previous methods, the approach proposed
in this paper has the advantage of 1) embedding spatial-tem-
poral context information into a unified probabilistic mixture
tracking framework, which is theoretically solid; 2) explicitly
predicting the motion condition of local trackers based on
spatial contexts, which significantly improve the precision of
motion prediction; and 3) exploiting spatial-temporal contexts
to adaptively construct discriminative (rather than generative)
observation models, which greatly alleviates the problem of
visual ambiguity.

III. MIXTURE TRACKER

We denote the state sequence as , and the observations
sequence as . To deal with multiple objects within a
tractable configuration space, we adopt the mixture model pro-
posed in [21] to factorize the configuration space according to
the number of targets:

(1)

where is the total number of objects, and the mixture weights
satisfy .

In Sequential Monte Carlo framework (also known as Particle
Filter), the filtering distribution are approximated by
a set of weighted particles :
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(2)

where denotes the delta-Dirac mass, indicates the compo-
nent attaches to, and denotes the set of particles attached
to component .

Given the particles
at time instant , the particles for

time instant is drawn from , and
weighted by

(3)

Then these samples are resampled to form a set of unweighted
samples to approximate the filtering distribution.

Finally, the components’ mixture weights are updated as

(4)

In this framework, MOT is realized by a number of local
trackers, in which there are two crucial elements: the proposal
distribution for proposing new particles (i.e.,
predicting motion states) and the observation model for veri-
fying predicted particles (i.e., evaluate the likelihood
when new observation is obtained). Unlike [21] and [15], the
proposal distributions and observation models for different local
trackers are not the same. They are influenced by different con-
text information, which will be respectively specified in Sec-
tions IV and V. As the following sections only relate to local
trackers, we ignore the subscript for local tracker index without
confusion.

IV. CONTEXTUAL PROPOSAL DISTRIBUTION

Proposal distribution (PD) is the central issue
in PF framework to predict new particles based upon the cur-
rent states and the recent observations. In practice, local trackers
often share the same transition prior distribution as
a trial [21]. Such a general PD would lead to a majority of un-
informative particles which consume most computation power
while making no contribution. In this section, we extend the pro-
posal distribution in two important aspects: 1) the recent obser-
vation is incorporated into the proposal distribution through mo-
tion detection; 2) the proposal distribution is transformed into a
mixture of motion condition specific proposal distributions.

A. Observation Included PD

Assuming a fixed camera, we firstly establish a pixel-wise
background model based on Gaussian Mixture Model. Then the
foreground blobs are detected, whose envelop information(i.e.,
the envelop position and size)are used as the recent observations

. The proposal state space of is then reduced
from a Gaussian space into several candidate regions, which sig-
nificantly saves the computational burden without lessening the

Fig. 1. Observation incorporated particle propose. The left image is the pre-
vious frame; the middle one is the foreground mask of current frame; and the
right one is current frame. The green and yellow dots are the proposed position
samples respectively by the person bounded with the same color.

Fig. 2. Motion condition specific particle propose. The four top-down layers
correspond respectively to weighted particles at time ���, resampled particles,
sampled motion conditions, and proposed particles. The five nodes in motion
condition layer represent Split, Merge, Normal update, Exit, and Enter.

cover of uncertainty. In order to tolerate misshapen or discontin-
uous foreground regions caused by noises, we keep the uncer-
tainties by Gaussian sampling within nearby regions, as shown
in Fig. 1. Note that the in proposal distribution is different
from in observation model. only considers the envelop in-
formation, which excludes the appearance information in the
foreground regions in .

B. Motion Condition Specific PD

In MOT, each object may undergo different motion condi-
tions, e.g., entering the scene, occluded by another object, reap-
pearing from the occlusion, updating the appearance and po-
sition, and exiting from the scene. In order to propose parti-
cles more precisely, we propose a motion condition specific
PD, in which the incorporated motion condition set is

.
The motion condition specific PD for each component is de-

fined as

(5)

In this PD, the particle proposal process is implemented by
firstly sampling the motion condition from ;
then, the new particles are drawn from the motion condition
specific PD . Fig. 2 depicts the proposal
process.

1) Motion Conditions Sampling: In order to determine the
sampling probability of motion conditions for each component,
we factor the sampling function into two parts:

(6)
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where is the prediction function, and
is the likelihood function. As the likelihood

function cannot be explicitly calculated, here we use it as a
bonus/penalty factor instead.

The prediction function is defined by two kinds of spatial
context information: object-object distances and object-
boundary distances , which are derived from the states of
all components. We denote as the number of objects in the
scene at , and as the number of entrance-exit zone. Then

is an matrix with the elements repre-
senting the distance between object and object is an

matrix, with elements representing the dis-
tance between object and entrance-exit zone . Using the two
matrices, the motion condition sampling function is defined in
the following way.

Normal: In low or moderate complexity tracking, objects un-
dergo Normal condition most often. At each time instant, we
first determine the sampling probability of Normal condition:

(7)

where is the threshold distance, above which the probability
of other conditions is near .

After the determination of Normal’s probability, the other
conditions share the rest probability accordingly:

(8)

Enter&Exit: The probability of Exit decreases monotonically
with respect to the object-boundary distance:

(9)

If there is a blob near at which is indicated by , then
the probability will be penalized by .

In Enter cases, is ineffective. To
remedy this, we use as bonus if there is a blob
near the boundary of the scene.

Merge&Split: The probabilities of Merge and Split monoton-
ically decrease with respect to the object-object distances:

(10)

2) Motion States Sampling: Given the sampled motion con-
dition, the particles are sampled as follows:

Normal: A component undergoes Normal condition when
the other special cases are excluded. In this case, by considering
the recent observation derived from motion detection, the par-
ticles are sampled according to the method in Section III-A.

Enter: If the motion condition is sampled as Enter at , which
means , then the new particles are sampled from a
Gaussian model, whose parameters are estimated from . If
the Enter condition is verified in the Update process, a new
component is added and the new particles are retained to track
the new object. However, in some cases, the incorporation of

Enter results in ambiguities between new entered objects and
objects under other conditions are near the entrance/exit zone.
To remedy this, we propose a dispelling rule in which the new
particles are invalidated when other motion condition hypoth-
esis is verified in the Update process.

Exit: If the motion condition is sampled as Exit at , which
means , the particles supporting this hypothesis are inval-
idated. By including the Enter and Exit conditions, the approach
is capable of tracking variable number objects.

Merge: When one object is predicted to be merged with an-
other object, the two objects merge into one blob, which make
the particle propose process ambiguous. In this case, we use an
AR2 process to predict the object’s state, and let their appear-
ances unupdated.

Split: When one object splits up from the merged blob, the
recent observation is available and effective, so that the par-
ticle propose process is similar with Normal condition.

Until now, local trackers can propose particles according to
their contexts. With the aid of these contexts, more particles
(i.e., computation power) are assigned to more probable motion
states, which greatly improves the predicting precision. The pri-
ority of CPD is demonstrated and analyzed in Section VII.

V. CONTEXTUAL OBSERVATION MODEL

Given the predicted states (represented by newly proposed
particles), observation models for targets are needed to vali-
date these predictions. When nearby targets have similar ap-
pearances, sufficient discriminative power of the local trackers
are desired. The main challenge of observation model construc-
tion lies in its adaptability to different contexts. For example, a
model of object A that can easily discriminate A from object B
may have problems to discriminate A from object C, or it suc-
ceeds under sunlight but may fail in shadow. In this section, we
propose to adaptively adjust the observation models by online
feature re-ranking according to different contexts, so that they
can discriminate the local targets from nearby targets even when
they have similar appearances.

A. Representation

We use a feature pool for observation model construction,
in which each feature constitutes an observer whose output
is . We define Field of Context (FOC) by , where

is in FOC if . As the observers have
different discriminability in different FOCs, we assign to each
observer a weight which is higher if the feature can better
distinguish the object from nearby objects. Using above no-
tations, the observation model is transformed into a
mixture model:

(11)

where indicates the cardinality of the set. Each component
can be simply modeled as a Gaussian model. In the

following sections, we will investigate the approach for calcu-
lating feature weights.
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Fig. 3. Feature discriminability evaluation. The left is the illustrating frame; the middle is the samples of A,B,C, and D; these samples are projected into the two
dimensional feature space, with the horizontal axis representing the intensity, and the vertical axis representing the width of bounding box.

B. Feature Discriminability Evaluation

According to our experiences, the degree to which the objects
can be discriminated depends greatly upon the adopted feature
set. As shown in Fig. 3, the feature that can discriminate and

may not work for and . In our method, we assign variable
weights to observers according to its discriminability in FOC.

In [3] and [22], the online feature selection method for SOT
has been proposed, where the features are used to discriminate
the target and background. However, the problem in MOT is
different from [3], [22] in the following three aspects.

1) Our problem can be treated as a multiclass classification
problem, instead of a two-class classification as [3], [22].
So the evaluation criterion must be able to deal with mul-
ticlass cases.

2) The number of classes is variable, not fixed as in [3], [22],
which poses higher requirements on the scalability of the
evaluation criterion.

3) The importance of training samples are not equal. The
more recent samples have higher confidence levels in eval-
uating the features’ discriminabilities. For example, after
the objects enter into the shadow, the appearance samples
under sunlight are not that convincible.

Based on those considerations, we use an information the-
oretic method to adaptively evaluate features’ discriminability
online. Given the feature and the class label , the de-
pendency of and can be measured by mutual information
[5]:

(12)

As the probability densities are unknown, we estimate the
mutual information using empirical discrete probability densi-
ties:

(13)

where is obtained by frequency counting.
A higher mutual information indicates a stronger correlation

between the feature values and class labels, which means that
the feature is more discriminative with respect to these object
classes. This method is efficient for online computation and easy
to implement. It satisfies all the three requirements mentioned
above.

Multiclass: The intrinsic structure of this method determines
its nonrestraint on the number of classes. It is straightforward to
apply this method in any number of classes.

Scalability: This method has excellent scalability due to the
approximation by histograms. When a new class is added be-
cause of a new object entering the scope, we only need to add a
histogram bucket on the class dimensions of all histograms and
begin to accumulate samples on the new bucket, with all other
buckets unchanged.

Weighted Samples: In the histogram representation, the sam-
ples’ weights can be conveniently incorporated by changing the
sample accumulation strategy, which is detailed in the next sec-
tion.

We use the mutual information to calculate each feature’s
score, and the scores after normalization are taken as the ob-
servers’ weights:

(14)

C. Histogram Approximation

We specify in this section the approach of approximating
the features’ discriminabilities based on histogram estimation.
Assuming there are objects in the FOC, which generate
classes with as the indices, we denote as the appearance
sample set at time with its elements representing the
sample generated at time for class . The 2-D histogram
for feature derived from those samples is with buckets

, where is the class index, and is the feature value
or value interval index. Given a sample , the value of feature

is denoted by .
In order to make the model adapt to appearance changes

caused by motion and environmental factors, the samples’
weights are updated by a decay factor so that the recent samples
are assigned with comparatively higher weights:
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(15)

where controls the decay speed.
The histogram for each feature is updated accordingly:

(16)

where is the delta-Dirac mass.
From feature histogram to feature discriminability is a

process of frequency counting. In order to better approximate
the feature value distribution and further achieve a more precise
discriminability, we use a pyramid kernel for discriminability
estimation.

We map the feature values onto multiresolution histograms
, where represents the quantization level with cor-

responding to the finest level. We denote the mutual information
estimated by as . Then the mutual information
estimated from multiresolution histograms is:

(17)

and the weight of the feature is calculated by (14).

VI. IMPLEMENTATION

In this section, we specify the flow chart of the proposed al-
gorithm. We use as the state, where
and represent the position of an object, and and repre-
sent the width and height of the minimum bounding box. Thus,
the state of an object actually specifies a rectangle image re-
gion that the object reside in. The feature pool for observation
model includes color features and shape features. We firstly di-
vide rectangle image regions into top and bottom regions, and
respectively calculate the normalized color histograms for the
two regions. We use each bucket in the histogram as a color fea-
ture. If denoting the quantization step by , and adopting the
color space of RGB, then we can compute the number of color
features as . As to the shape feature, we use
the width-height ratio of the bounding box to describe the shape
information. These features’ discriminabilities are online evalu-
ated, and those scored lower than the threshold are filtered. Note
that more features, like texture, can be straightforwardly incor-
porated into the observation model, although we find the color
and shape features are sufficient in our experiments.

The algorithm is initialized by background subtraction, where
each blob is assigned with a local tracker with its parameters
defined by the centroid and bounding box of the blob. In each
local tracker, 40 particles are used for approximation. The con-
text information can also be derived from the blobs. Given the

initialized particles and context information, the algorithm esti-
mates the targets’ motions in a recursive way which is specified
in Algorithm 1.

Algorithm 1 The algorithm flowchart of CMT

Given the particle set of CMT at
, weights of features

( and are the indices of features
and local targets), and the context informations

the algorithm proceeds as
follows at time :

Local Tracking: For each local tracker , its feature
weights are , the context is ,
and the assigned particle set is represented as

whose size is . These particles
evolve as follows:

(1) Motion Prediction:

• Background subtraction on frame to derive

• Sample motion conditions

• Given the sampled motion conditions, particles are
sampled .

(2) Verification: For ,

• For , calculate ;

• Proposed particles are weighted by

(3) Local Decision: Cluster the particles , and
let be the cluster with maximum weight. Then is
decided to be

Global Decision:

(1) Component Weight Update Update the component
weight from to by (4).

(2) Local Decision Verification If is lower than
a predefined threshold, then the local decision of local
tracker at is canceled and the local tracker is deleted.

Context Update: Update the context to
by the decisioned local tracker

states.

Feature Reevaluation: For each local tracker , for each
feature ,

(1) Histogram Construction Construct the histogram
using .

(2) Discriminability Evaluation} Evaluate the
discriminability of : .

(3) Feature Weighting Calculate the normalized feature
weights .
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TABLE I
CHARACTERISTICS OF EXPERIMENT DATA SETS. RES: RESOLUTION; �� :
TOTAL NUMBER OF FRAMES; VON: WHETHER THE NUMBER OF OBJECT

IS VARIABLE; ���: WHETHER OCCLUSIONS HAPPEN; MOC: WHETHER

MULTIPLE OBJECT CATEGORIES EXIST

Fig. 4. Experiment results on PETS.

VII. EXPERIMENTS

A. Data Sets

To validate the proposed method, we conducted experiments
on four real world data sets. The first data set, denoted by
PETS, is a subset of the public PETS2004 data set. All these
sequences include multiple targets, and the environmental
illumination is unstable and non-uniform, which poses more
challenges to the tracker. The second data set, denoted by
Vehicles, is an aerial footage of vehicles driving through the
multiple overhead bridges. This video is used to evaluate the
proposed method in the abilities of tracking variable number
vehicles, and vehicles occluded by overhead bridges. The third
data set, denoted by Pedestrians, is captured in front of a
hall where multiple pedestrians come into the field of view.
As a number of occlusions happen among pedestrians, we
use this video to evaluate the method’s ability of occlusion
handling. The fourth data set, denoted by Hybrid, is an aerial
footage of a crossing road, where multiple kinds of moving
objects, like pedestrians, cars, and bicyclers, enter and exit
from the field of view. As our method place no constraint on
the tracked object’s category, we use this video to demonstrate
the capability of our method in tracking multiple categories of
targets. The detailed information about the three data sets is
listed in Table I. Note that the occlusions occurring in Vehicles
and Pedestrians are different. In Vehicles, the targets are often
occluded by background objects (background occlusions),
while in Pedestrians the targets sometimes occlude each other
(inter-objects occlusions).

B. Evaluation Measures

In order to fairly evaluate the proposed method, we use the
following three criteria for performance evaluation:

1) Overall Error (OE): This criterion is used to evaluate the
overall performance. It is defined as the ratio of the number
of false tracked frames to total frame number.

2) Delay Error (DE): This criterion is used to evaluate the
variable number targets tracking, which is defined as the
ratio of the number of untracked entered targets tracked
exited targets to total exited and entered objects.

TABLE II
TRACKING ERROR RATES ON PETS

Fig. 5. Experiment results on Vehicle.

TABLE III
TRACKING ERROR RATES ON VEHICLES

3) Swap Error (SE): This criterion is used to evaluate the dis-
criminability of the proposed method to tackle visual ambi-
guity. It is defined as the ratio of the number of false iden-
tification swap frames to the total frame number.

C. Results

In order to demonstrate the benefits derived from context in-
formation, we implement the standard mixture tracker (denoted
as MTb) proposed in [21] for a baseline, where no context infor-
mation is incorporated, and the features in observation models
always have equal weights. Then we add the module of CPD
to take into account the spatial context information, which is
denoted as . Finally, the COM is added, and the
resulted tracker is the proposed CMT. We evaluate the three al-
gorithms on four data sets.

1) PETS: The error rates of the three algorithms on PETS are
listed in Table II, and some typical results of CMT are shown
in Fig. 4. There are mainly two causes of errors. One is that the
targets in these sequences are often nearby and have similar ap-
pearances, which leads to some swap errors. The other is that the
illumination is nonuniform, which make the appearances of tar-
gets photometrically vary as they moves. Therefore, the tracker
sometimes lose one of its tracks when the target move through
the bright region. These errors are especially serious in MTb.
With the assist of CPD, the second type of errors are reduced
because the spatial context forbid the local tracker to be deleted
if it is not near an exit/enter zone. At the same time, as the tem-
poral context in COM lay more emphasis on recent appearances,
the observation model can quickly incorporate the photometric
changes. Thus, in Fig. II, the target in green window can be cor-
rectly tracked. In addition, the online feature evaluation mech-
anism automatically broaden the differences of nearby targets,
so the swap error problem is alleviated.

2) Vehicles: The error rates of the three algorithms on Vehi-
cles are listed in Table III, and some typical results of CMT are
shown in Fig. 5.

In the Vehicle video, the background is constituted by com-
plex multiple overhead bridges, and numerous vehicles enter
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Fig. 6. Experiment results on Pedestrians.

TABLE IV
TRACKING ERROR RATES ON PEDESTRIANS

Fig. 7. Experiment results on Hybrid.

TABLE V
TRACKING ERROR RATES ON HYBRID

and exit from the filed of view at times. As is shown in the top
row of Fig. 5, our method can detect the new entering objects
in time and assign new particles to track the object. Also, as
denoted by the yellow arrow, when the car is occluded by the
background, the motion condition of the car is recognized as
Merge, as it disappears not in an exit zone. In this case, the ap-
pearance of the car is recorded, and its motion is predicted by
AR2 model. When the car reappear, the system can still re-track
it. In MTb, however, all these cases are erroneously regarded as
exit. The majority of the remained error in CMT is caused by
background occlusion, especially when multiple similar vehi-
cles are occluded by the background which is also difficult for
people to retrack when they reappear.

3) Pedestrians: The error rates of the three algorithms on Ve-
hicles are listed in Table IV, and some typical results of CMT
are shown in Fig. 6.

In the Pedestrian video, the density of pedestrians is mod-
erate, and there exit a number of complex occlusions. Different
from the Vehicle video, these occlusions are mostly inter-objects
occlusions. This kind of occlusions is more challenging, espe-
cially when the occluder and occludee have similar appearances.
The discriminability of the observation model can be well eval-
uated in these scenarios. Our method demonstrate its excellent
ability to handle the inter-object occlusions owing to the con-
textual observation model, as shown in the Fig. 6. The average
tracking error rate of our method in this video is 2.1%. Most of
these errors happen when the interlaced objects cannot be well
discriminated by any feature in the feature pool.

4) Hybrid: The error rates of the three algorithms on Vehicles
are listed in Table V, and some typical results of CMT are shown
in Fig. 7.

Fig. 8. Comparison on motion prediction precision between CPD and Gaussian
prior.

In the Hybrid video, most of the moving objects are pedes-
trians, bicyclers and vehicles. As we don’t place any constraints
on the object category in our method, we can track all these
objects at the same time, as shown in Fig. 7. The overall error
rate of CMT is 1.8%. Most of these errors are caused by occlu-
sion-entering, that is multiple targets together enter the scene
with occlusions, so that the tracker can not assign right number
of local trackers to the blob. The solution to this problem is a
general pedestrian detector, which is very computationally ex-
pensive.

In all the four data sets, the proposed CMT show significantly
improvements on MTb. Here, we empirically analyze the rea-
sons. On one hand, as mentioned that the priority of CPD is that
the context information helps to improve its motion prediction
precision. In order to explicitly demonstrate this, we use a sub-
sequence of PETS2004 to evaluate the prediction precision. In
PETS2004, the centroids of targets in each frame are manually
annotated. We use the position information of each proposed
particle to calculate the distance from the groundtruth
position to the predicted position and sum over the distances of
all particles to represent the prediction precision of the proposal
distribution. We compare CPD with commonly used Gaussian
prior [19], [1] on the sequence. The result is shown in Fig. 8. It
can be seen that in most cases, the prediction-groundtruth dis-
tance of CPD is smaller than that of Gaussian prior. The im-
provement on motion prediction precision is not trivial, because
it saves computation power, meanwhile reduce the tracking er-
rors result from erroneous predictions.

On the other hand, the COM has much more discrimina-
tive power than commonly used equally weighted observation
models (EWOM) [6], [2]. We demonstrate this using the anno-
tated PETS2004 sequence either. The image patches of two near
and similar targets (A and B) are collected. We online train the
observation model of one target (A) with the other (B) as its
context. Given a frame, we use the likelihood of A’s appearance
to minus the likelihood of B’s appearance, and the likelihood
difference is used as the measure of discriminative power. The
result is shown in Fig. 9. We can see that in most cases, the COM
has large differences than EWOM. At the beginning frames, the
two model perform all square. With the samples accumulating,
the COM raise up the weights of discriminative features, and the
difference between the two visual ambiguous targets is gradu-
ally broadened. However, the likelihood differences in EWOM
maintain at a low level, and around the frame 8, the difference
is minus, which represents that a swap error occurs.
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Fig. 9. Comparison on likelihood difference between COM and equally
weighted observation model.

VIII. CONCLUSION

In this paper, we have proposed an contextual mixture tracker
for variable number objects tracking. In this tracker, each object
is tracked by a local tracker, which greatly factorize the con-
figuration space. At the same time, the local trackers implicitly
interact through the contextual proposal distribution and contex-
tual observation model, where spatial and temporal context in-
formation plays an important role. We have testified our method
in four real-life data sets, and the experimental results show its
significant superiority in handling variable number objects, and
discriminating nearby or occluded objects compared with pre-
vious mixture trackers.
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