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Abstract

Covariate shift generalization, a typical case in out-of-distribution (OOD) generalization,
requires a good performance on the unknown testing distribution, which varies from the accessi-
ble training distribution in the form of covariate shift. Recently, stable learning algorithms have
shown empirical effectiveness to deal with covariate shift generalization on several learning
models involving regression algorithms and deep neural networks. However, the theoretical
explanations for such effectiveness are still missing. In this paper, we take a step further
towards the theoretical analysis of stable learning algorithms by explaining them as feature
selection processes. We first specify a set of variables, named minimal stable variable set, that
is minimal and optimal to deal with covariate shift generalization for common loss functions,
including the mean squared loss and binary cross entropy loss. Then we prove that under ideal
conditions, stable learning algorithms could identify the variables in this set. Further analysis
on asymptotic properties and error propagation are also provided. These theories shed light on
why stable learning works for covariate shift generalization.

1 Introduction

Although modern machine learning techniques have achieved great success in various areas, many
researchers have revealed the vulnerability of machine learning models when exposed to data
with distribution shifts. This issue arises from the violation of a fundamental assumption that
training and testing data are independent and identically distributed (i.i.d. assumption) and
stimulates recent research on out-of-distribution (OOD) generalization [Shen et al., 2021]. Among
different types of distribution shifts considered in OOD literature, covariate shift, where the
marginal distribution of variables shifts from the training phase to the testing phase while the label
generation mechanism keeps unchanged, is the most common one [Shimodaira, 2000; Sugiyama
et al., 2007; Ben-David et al., 2007]. With prior knowledge of testing distribution, traditional
methods showed effectiveness in handling the covariate shift problem via importance sampling
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[Huang et al., 2006; Storkey and Sugiyama, 2007; Bickel et al., 2007] or feature space transformation
[Fernando et al., 2013; Long et al., 2017]. Nevertheless, covariate shift generalization is much more
challenging, given that testing distribution remains unknown in the training phase.

Recently, stable learning algorithms [Shen et al., 2020b; Kuang et al., 2020b; Zhang et al., 2021]
have shown empirical effectiveness to deal with covariate shift generalization on several learning
tasks, involving regression algorithms and deep models. The framework of these stable learning
algorithms usually consists of two steps, namely importance sampling [Koller and Friedman,
2009] and weighted regression. In the importance sampling step, the algorithms learn sample
weights to ensure statistical independence between features in weighted distribution. Then typical
regression models are adopted in the weighted regression step. Although the advantages of stable
learning algorithms have been proved empirically, the theoretical explanations for these methods
are missing. In this paper, we take a step towards the theoretical analysis of stable learning
algorithms by explaining them as feature selection processes.

We first show that for common loss functions, including the mean squared loss and binary cross
entropy loss, the covariate shift generalization problem can be tackled by a minimal set of variables
S that satisfies the condition: E[Y |S] = E[Y |X]. Such minimal set of variables is named the minimal
stable variable set. Afterward, we prove that stable learning algorithms could identify the minimal
stable variable set. We analyze the typical algorithms [Kuang et al., 2020b; Shen et al., 2020b] where
the weighted least squares (WLS) is adopted in the weighted regression step. Variables whose
corresponding coefficients of WLS are not zero could be considered as chosen variables. Under
ideal conditions, i.e., perfectly learned sample weights and infinite samples, the selected variables
are proved to be the minimal stable variable set. We further provide asymptotic properties and
error analysis when the ideal conditions are not satisfied. We highlight that although a linear model
(WLS) is adopted, these theoretical results hold for both linear and non-linear data-generating
processes. Along with the optimality and minimality of the minimal stable variable set, these
theories provide a way to explain why stable learning works for covariate shift generalization.

1.1 Overview of results

We begin with a simplified presentation of our results. Consider a set of variables (X,Y ) where
X are features and Y is the outcome that we try to predict from X. We consider OOD problems
with covariate shift, which is the most common one among the different distribution shifts [Shen
et al., 2021]. Covariate shift considers the scenario where the marginal distribution of X shifts from
training phase to testing phase while the label generation mechanism keeps unchanged.

Assumption 1. Suppose the testing distribution P te differs from the training distribution P tr in
covariate shift only, i.e.,

P te(X,Y ) = P te(X)P tr(Y |X). (1)

In addition, P te has the same support of P tr.

Problem 1 (Covariate shift generalization problem). Given the samples from the training distribu-
tion P tr, covariate shift generalization problem is to design an algorithm which can guarantee the
performance on the unknown testing distribution P te that satisfies Assumption 1.

We focus on several common loss functions, including the mean squared loss and binary cross
entropy loss, where EP te[Y |X] is the global optimum for the testing distribution P te.

Theorem 1 (Informal version of Theorem 3). Let P te be the unknown testing distribution in the
covariate shift generalization problem defined in Problem 1. Then a subset of variables S ⊆ X that can
approximate the target EP te[Y |X] if and only if it satisfies EP tr[Y |S] = EP tr[Y |X].
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We define the minimal set of variables that satisfies EP tr[Y |S] = EP tr[Y |X] as the minimal
stable variable set (Definition 4). Under mild assumptions (Assumption 2), the existence and
uniqueness of such variables are guaranteed (Theorem 4). As relationships between X are unstable,
i.e., P tr(X) , P te(X), it is reasonable to find the minimal set of variables to make predictions so that
it can relieve the negative impact from other features in the testing distribution.

Now we consider stable learning algorithms. Typical stable learning algorithms [Shen et al.,
2020b; Kuang et al., 2018] learn sample weights first and then adopt a weighted least squares
regression step. The algorithms can be considered as processes of feature selection by examining
the coefficients of WLS. In detail, the variables with non-zero coefficients are chosen. The variables
chosen by stable learning algorithms have the following properties.

Theorem 2 (Informal version of Theorem 5 and Theorem 6). Under ideal conditions (perfectly learned
sample weights and infinite samples),
– if Xi is not in the minimal stable variable set, stable learning algorithms could filter it out, and
– if Xi is in the minimal stable variable set, there exists sample weighting functions with which stable
learning algorithms could identify Xi .

We further analyze the error of coefficients if these ideal conditions are not satisfied (Corollary 8,
Corollary 9, and Theorem 10).

Theorem 1 and Theorem 2 provide a general picture of the effectiveness of stable learning
algorithms. To conclude, under ideal assumptions, stable learning algorithms could identify the
minimal stable variable set, which is the minimal and optimal set of variables to deal with covariate
shift generalization.

1.2 Related works

OOD and covariate shift generalization OOD generalization has raised great concerns. Accord-
ing to [Shen et al., 2021], OOD methods could be categorized into unsupervised representation
learning methods [Bengio et al., 2013; Yang et al., 2021], supervised learning models [Peters et al.,
2016; Zhou et al., 2021], and optimization methods [Duchi and Namkoong, 2021; Liu et al., 2021].
More thorough discussions could be found in [Shen et al., 2021].

There are many types of distribution shift, including covariate shift [Shimodaira, 2000], label
shift [Garg et al., 2020], and concept shift [Gama et al., 2014]. Covariate shift is the most common
distribution shift and stable learning algorithms mainly deal with it. Much of the work consider
the domain adaptation (DA) setting where methods [Huang et al., 2006; Storkey and Sugiyama,
2007; Bickel et al., 2007; Gretton et al., 2009; Zhao et al., 2019] make importance sampling with
the knowledge of the unlabeled testing distribution. To deal with unknown testing distribution
under covariate shift, there are several methods recently including stable learning algorithms [Shen
et al., 2020b; Kuang et al., 2020b; Zhang et al., 2021] and DRO [Duchi and Namkoong, 2021].

Stable learning Stable learning algorithms can be considered as a feature selection mechanism
according to the regression coefficients [Shen et al., 2021]. Motivated by the literature of variable
balancing methods [Hainmueller, 2012; Zubizarreta, 2015; Athey et al., 2016], Shen et al. [2018]
proposed to consider all the variables as the treatment and learn a set of weights for all of available
samples to remove the confounding bias from data distribution. Specifically, a global balancing loss
is proposed as a regularizer which can be easily plugged into machine learning models. Kuang et al.
[2018] managed to combine global balancing and unsupervised feature representation learning
with auto-encoders [Bengio et al., 2007].
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The following work [Shen et al., 2020b] proposed to address model misspecification scenarios
with linear models via a sample reweighting strategy. Shen et al. [2020a] further proposed to
recover the latent cluster structures among variables using unlabeled data and proved decorrelating
the variables between clusters instead of each other sufficient to achieve a stable estimation while
preventing the variance inflation. Recently, Zhang et al. [2021] proposed a framework named
StableNet, which extends former linear stable learning frameworks [Shen et al., 2018; Kuang et al.,
2018; Shen et al., 2020b] to incorporate deep models. StableNet adopted Random Fourier Features
(RFF) [Rahimi et al., 2007] to eliminate non-linear dependences between features sufficiently.
Moreover, Kuang et al. [2020b] attempted to reduce the effects of confounding bias by sampling the
data and several extensions of stable learning algorithms are proposed for causal feature selection
or out-of-distribution generalization [Zhang et al., 2020; Wang et al., 2020; Yuan et al., 2021].

Feature Selection Feature selection aims to construct a diagnostic or predictive model for a given
regression or classification task via selecting a minimal-size subset of variables that show the best
performance [Guyon and Elisseeff, 2003]. It is of great importance for learning trustworthy models
especially when there are distribution shifts between training and testing data and, thus some
variables can be uninformative or even misleading [Shen et al., 2020b; Kuang et al., 2020a].

Feature selection approaches can be broadly divided into four categories, namely filter methods,
wrapper methods, embedded methods and others [Guyon and Elisseeff, 2003; Bolón-Canedo et al.,
2013; Urbanowicz et al., 2018]. Filter methods adopt statistical criteria to rank and select features
before building classifier with selected features [John et al., 1994; Langley et al., 1994; Guyon and
Elisseeff, 2003; Law et al., 2004]. Given filter methods are usually independent from the learning
of classifier, they show superiority in operating time and applicability over other methods [Kira
and Rendell, 1992; Bolón-Canedo et al., 2013]. Wrapper methods heuristically search variable
subsets via learning a predictive model, thus they can identify the best performing feature subsets
for given modeling algorithm, but are typically computationally intensive [Menze et al., 2009;
Bolón-Canedo et al., 2013; Urbanowicz et al., 2018]. Embedded methods seek to minimizing the
size of selected feature subset while maximizing the classification performance simultaneously
[Tibshirani, 1996; Rakotomamonjy, 2003; Zou and Hastie, 2005; Loh, 2011; Chen and Guestrin,
2016]. There are also some methods attempt to combine the advantages of wrapper methods and
filter methods [Cortizo and Giraldez, 2006; Liu et al., 2014; Benoît et al., 2013].

Causal discovery and Markov boundary Causal literature can be categorized into two frame-
works, namely the potential outcome [Rosenbaum and Rubin, 1983; Holland, 1986; Rubin, 2005;
Imbens and Rubin, 2015] and structural causal model framework [Pearl, 2014]. The definition
of the minimal stable variable set in this work is closely related to the Markov boundary, which
falls into the structural causal model framework. Traditional causal discovery literature aims to
discover the causal relationship between all variables. Typical methods include constraint-based
methods [Spirtes et al., 2000, 2013], scored-based [Chickering, 2002; Huang et al., 2018], and
learning-based [Zheng et al., 2018, 2020; He et al., 2021].

Markov blankets and Markov boundary [Pearl, 2014] are the cores of local causal discovery.
Under the intersection assumption [Pearl, 2014], Markov boundary is proved unique and the
discovery algorithms include [Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a,b; Mani
and Cooper, 2004; Aliferis et al., 2010a,b; Pena et al., 2007]. Moreover, Liu et al. [2010a,b];
Statnikov et al. [2013] studied the setting when multiple Markov boundaries exist. In this paper,
we assume that the probability are strictly positive, which is a stronger assumption than intersection
assumption [Pearl, 2014] but is also common in reality [Strobl and Visweswaran, 2016]. With this
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assumption, we can guarantee the uniqueness of the Markov boundary and the minimal stable
variable set proposed in this paper.

2 Preliminaries

2.1 Notations

Let X = (X1,X2, . . .Xd)T ∈Rd denote the d-dimensional features and Y ∈R denote the outcome. The
data is from a joint training distribution P tr(X,Y ). Let X , Xj , and Y denote the support of X, Xj ,

and Y , respectively. Suppose we get n i.i.d. samples,
{

X(i) =
(
x

(i)
1 , . . . ,x

(i)
d

)T
, y(i)

}n
i=1

sampled from

the distribution. Let P te denote the testing distribution.
We use S ⊆ X to indicate that S is a subset of features X and ( to mean proper subset. We

write A⊥ B|C when two sets of variables A,B ⊆ X are statistically independent given another set of
variables C ⊆ X. We also adopt A⊥ B when conditioning set is empty to indicate that A and B are
statistically independent.

We use EQ(·)[·] and EQ(·)[·|·] to denote expectation and conditional expectation, respectively,
under a distribution Q. For example, EQ(X)[X] =

∫
X xQ(X = x)dx represent the expectation of X

and EQ(X,Y )[Y |X] =
∫
Y Q(Y = y|X)ydy represent the conditional expectation of Y given X under

distribution Q. Q could be chosen as the training distribution P tr, testing distribution P te, or any
other proper distributions. If not confusing, we will use E[·] and E[·|·] to denote the expectation
and conditional expectation under the training distribution P tr.

2.2 Assumptions

Assumption 2 (Strictly positive density assumption). ∀x1 ∈ X1,x2 ∈ X2, . . . ,xd ∈ Xd , P tr(X1 =
x1,X2 = x2, . . . ,Xd = xd) > 0.

Remark. Assumption 2 is reasonable on the grounds that there always exists uncertainty in the
data [Pearl, 2014; Strobl and Visweswaran, 2016]. Therefore, we suppose strictly positive density
assumption in the whole paper for simplicity.

3 Minimal and optimal predictor for covariate shift generalization

In this section, we specify the set of variables that are suitable for covariate shift generalization
problems. We first provide the definition of the minimal and optimal predictor.

Definition 1 (Optimal predictor [Statnikov et al., 2013]). Given a dataset sampled from P tr(X,Y ),
a learning algorithm L, and a performance metric M to assess learner’s models, a variable set
S ⊆ X is an optimal predictor of Y if S maximizes the performance metric M for predicting Y using
learner L in the dataset.

Definition 2 (Minimal and optimal predictor [Strobl and Visweswaran, 2016]). Let S be an optimal
predictor of Y . If no proper subset of S satisfies the definition of an optimal predictor of Y , then S
is a minimal and optimal predictor of Y .

The minimal and optimal predictor for covariate shift generalization can be given as follows.
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Theorem 3. Under Assumption 1 and Assumption 2, if M is a performance metric that is maximized
only when EP te[Y |X] is estimated accurately and L is a learning algorithm that can approximate any
conditional expectation. Suppose S ⊆ X is a subset of variables, then

1. S is an optimal predictor of Y under distribution P te if and only if EP tr[Y |X] = EP tr[Y |S], and
2. S is a minimal and optimal predictor of Y under distribution P te if and only if EP tr[Y |X] = EP tr[Y |S]

and no proper subset S′ ( S satisfies EP tr[Y |X] = EP tr[Y |S′].

Remark. To deal with covariate shift generalization, M should be measured on the unknown testing
distribution P te with common loss functions. In practice, researchers often adopt the mean squared
loss in regression problems and the cross entropy loss in binary classification problems. It is easy to
check that the global optimum for both loss functions are EP te[Y |X] if applying the loss functions
on the testing distribution P te.

As a result, we provide the following definitions.

Definition 3 (Stable variable set). A stable variable set of Y under distribution P is any subset S of
X for which

EP [Y |S] = EP [Y |X]. (2)

The set of all stable variable sets for Y is denoted as StableP (Y ). In addition, we use Stable(Y ) to
denote the set under the training distribution P tr for simplicity, i.e., Stable(Y ) , StableP tr(Y ).

Definition 4 (Minimal stable variable set). A minimal stable variable set of Y is a minimal set in
Stable(Y ), i.e., none of its proper subsets satisfy Equation 2.

With these definitions, the conclusions of Theorem 3 become: (1) S is an optimal predictor of
Y under P te if and only if it is a stable variable set under P tr, and (2) S is a minimal and optimal
predictor of Y under P te if and only if it is a minimal stable variable set under P tr. Furthermore,
the existence and uniqueness of the minimal stable variable set are given by the following theorem.

Theorem 4. Under Assumption 2, there exists a unique minimal stable variable set of Y , which can be
denoted as MinStable(Y ). Furthermore, with the unique MinStable(Y ), the set of all stable variable sets
of Y under the training distribution P tr, i.e., Stable(Y ), can be expressed as

Stable(Y ) = {S ⊆ X |MinStable(Y ) ⊆ S}. (3)

Theorem 3 and Theorem 4 provides a way to ensure promising OOD performance for covariate
shift generalization problems. The minimal stable variable set under the training distribution
P tr is a minimal and optimal predictor in the testing distribution P te, with which we can learn
reliable models [John et al., 1994; Guyon and Elisseeff, 2003]. As relationships between X are
usually unstable and P tr(X) , P te(X), it is reasonable to find the minimal and optimal predictor, i.e.,
MinStable(Y ), to make predictions so that it can relieve the negative impact from X\MinStable(Y )
under the testing distribution.

MinStable(Y ) could be explained as the direct causal variables in typical data-generating
processes. Consider the following mechanism [Tibshirani, 1996; Ravikumar et al., 2009; Hastie
and Tibshirani, 2017; Kuang et al., 2020a],

X = (S,V), Y = f (S) + ε, ε ⊥ X. (4)

The relationship between S and V is arbitrary. In such common cases, S includes all the direct
causal variables and is the minimal stable variable set of Y .
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The minimal stable variable set is also closely related to the Markov boundary [Pearl, 2014].
From a causal perspective, under the performance metric in Theorem 3, the minimal stable variable
set shares the same prediction power of Y with the Markov boundary while the minimal stable
variable set contains fewer variables and thus combats covariate shift generalization problems
better. A detailed comparison between the minimal stable variable set and Markov boundary can
be found in Section 6.

4 Stable learning algorithms

4.1 General framework

Algorithm 1 Stable Learning Algorithm

Input: Dataset D =
{

x(i) =
(
x

(i)
1 , . . . ,x

(i)
d

)T
, y(i)

}n
i=1

Output: Coefficients β̂ on each variables
1: /* Step I */
2: Learn weight w(X) to make X are mutually independent of each other.
3: /* Step II */

4: Solve weighted least squares with weighting function w(X). The solution is β̂
(n)
w .

5: Return β̂
(n)
w .

The framework of typical stable learning algorithms [Shen et al., 2020b; Kuang et al., 2020a] is
shown in Algorithm 1. The algorithms usually consist of two steps, which are importance sampling
and weighted least squares respectively.

A) Importance sampling

Importance sampling [Koller and Friedman, 2009, Section 12.2.2] is a general approach for es-
timating the expectation of a function f (X,Y ) relative to some distribution P̃ (X,Y ), typically
called the target distribution. If samples are generated from P tr instead of P̃ , one needs to adjust
the estimator to compensate for the incorrect sampling distribution. We have EP̃ (X,Y )[f (X,Y )] =

EP tr(X,Y )

[
P̃ (X,Y )
P tr(X,Y )f (X,Y )

]
. Stable learning algorithms consider a weighting function that depends

on X only.

Definition 5 (Weighting function). LetW be the set of weighting functions that satisfies

W =
{
w : X →R

+ | EP tr(X)[w(X)] = 1
}
. (5)

Then ∀w ∈ W , the corresponding weighted distribution is P̃w(X,Y ) = w(X)P tr(X,Y ). P̃w is well
defined with the same support of P tr.

Instead of the whole setW , stable learning algorithms consider a subsetW⊥ ⊆W . The weighting
functions in W⊥ satisfies that X are mutually independent of each other in the corresponding
distribution, i.e.,

W⊥ =
{
w ∈W | X are mutually independent in distribution P̃w

}
. (6)
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B) Weighted least squares

Let w ∈ W be a weighing function. With n samples sampled from P tr(X,Y ), the weighted least
squares solves the following equation

β̂
(n)
w = argmin

β

n∑
i=1

w
(
x(i)

)(
βT1...dx(i) + β0 − y(i)

)2
. (7)

And we denote the solution to population-level weighted least squares under distribution P tr(X,Y )
as

βw = argmin
β

EP tr(X,Y )

[
w (X)

(
βT1...dX + β0 −Y

)2
]
. (8)

We use βw(Xi) and β̂
(n)
w (Xi) to denote the corresponding coefficient of Xi .

4.2 Two specific stable learning algorithms

Algorithm 1 has two typical implementations, namely DWR [Kuang et al., 2020a] and SRDO [Shen
et al., 2020b]. They differ mainly in the way to learn sample weights.

DWR Kuang et al. [2020a] proposed to decorrelate the every two features, i.e.,

w(X) = arg min
w0(X)

∑
1≤i,j≤d,i,j

(
Cov(Xi ,Xj ;w0)

)2
, (9)

where Cov(Xi ,Xj ;w0) represents the covariance of feature Xi and Xj under weighted distribution
P̃w0

. The loss function in Equation 9 focuses on the linear correlation only and is used as an
approximation for statistical independence. They proved that linear decorrelation suffices to
generate good prediction models under simple models. Recently, Zhang et al. [2021] combined
DWR with random fourier features [Rahimi et al., 2007] to achieve the statistical independence and
showed that deep models could perform better if the representations are statistically independent
instead of linearly decorrelated.

SRDO Shen et al. [2020b] proposed to learn w(X) by estimating the density ratio of the training
distribution P tr and a specific target distribution P̃ . The target distribution P̃ is determined by
performing random resampling on each feature so that P̃ (X1,X2, . . . ,Xd) =

∏d
i=1 P

tr(Xi). And the
weighting function w(X) is given by

w(X) =
P (Z = 1|X)

1− P (Z = 1|X)
. (10)

Here P (Z = 1|X) means the probability of a sample X, which is drawn from the balanced mixture of
P tr and P̃ , belonging to P tr. It can be learned by several different methods such as the cross entropy
loss, the LSIF loss [Kanamori et al., 2009], and the KLIEP loss [Sugiyama et al., 2009]. A thorough
review of density ratio estimation methods can be found in [Menon and Ong, 2016]. SRDO method
can guarantee the statistical independence between variables X if the density ratio is estimated
accurately.
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5 Theoretical analysis of stable learning algorithms

In this section, we will show that stable learning algorithms as shown in Algorithm 1 can be
considered as a process of feature selection according to the coefficients of weighted least squares.
The chosen features are the minimal stable variable set in Definition 4. We first show the iden-
tifiability result with perfectly learned weighting functions and infinite samples in Section 5.1.
These theoretical results, along with Theorem 3 could prove the effectiveness of stable learning
algorithms for the covariate shift generalization problem (Problem 1). In Section 5.2, we relax
the assumption to finite samples. Finally in Section 5.3, we consider the scenario when weighting
functions could only be learned nearly perfectly.

5.1 Population level properties

Generally speaking, with infinite samples, for any perfectly learned proper weighting function
w ∈W⊥ adopted by the algorithms, the coefficient on variables that do not belong to the minimal
stable variable set will be zero (Theorem 5). In addition, there exists proper weighting function
such that the coefficients on the minimal stable variable set would not be zero (Theorem 6).

Theorem 5. Under Assumption 2, suppose Xi <MinStable(Y ). Let w be any weighting function inW⊥.
Suppose EP tr(X)

[
w(X)‖X‖22

]
<∞ and EP tr(X,Y )

[
w(X)Y 2

]
<∞. Then the population level solution βw of

weighted least squares under w satisfies
βw(Xi) = 0. (11)

Here βw(Xi) means the corresponding coefficient on Xi .

Theorem 6. Under Assumption 2, suppose Xi ∈MinStable(Y ). Then there exists w ∈W⊥ and constant
α , 0, such that the population-level solution βw satisfies

βw(Xi) = α. (12)

Here βw(Xi) means the corresponding coefficient on Xi .

Remark. In very rare cases, stable learning algorithms may fail to identify the minimal stable
variable set if Xi is not independent of Y but is linearly decorrelated with Y in the weighted
distribution P̃w.

Shen et al. [2020b] analyzed the theoretical properties of stable learning algorithms under a
specific form of data-generating process, i.e., linear model with a bounded bias term. However,
besides Assumption 2, Theorem 5 and Theorem 6 do not need further assumptions on label
generation mechanism P tr(Y |X), which implies that stable learning algorithms could be applied to
both linear and non-linear data-generating processes.

These two theorems, along with Theorem 3, prove the effectiveness of stable learning algorithms
for the covariate shift generalization problem (Problem 1). In detail, under ideal conditions, i.e.,
perfectly learned sample weights and infinite samples, stable learning algorithms could find the
minimal stable variable set of Y , which are minimal and optimal predictor under the testing
distribution P te according to Theorem 3.

5.2 Asymptotic properties of finite samples

With the asymptotic property of weighted least squares (Theorem 7), we can show the asymptotic
properties (Corollary 8 and Corollary 9) of stable learning algorithms with perfectly learned
weighting functions.
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Theorem 7. ∀w ∈ W , suppose EP (X)

[
w(X)‖X‖22

]
< ∞, EP (X,Y )

[
w(X)Y 2

]
< ∞, and covariance matrix

CovP̃w [X] is invertible. Let β̂
(n)
w be the solution to weighted least squares under w with n samples, and βw

be the solution to population level weighted least squares. Then

β̂
(n)
w

p
−−→ βw, when n→∞. (13)

Here
p
−−→ means convergence in probability.

Combining Theorem 7 with Theorem 5, Theorem 6, we can get the following corollaries.

Corollary 8. Under Assumption 2, suppose Xi <MinStable(Y ). Let w be any weighting function in
W⊥. Suppose EP tr(X)

[
w(X)‖X‖22

]
<∞ and EP tr(X,Y )

[
w(X)Y 2

]
<∞. Then

β̂
(n)
w (Xi)

p
−−→ 0, when n→∞. (14)

Corollary 9. Under Assumption 2, suppose Xi ∈MinStable(Y ). Then there exists w ∈W⊥ and constant
α , 0 such that

β̂
(n)
w (Xi)

p
−−→ α, when n→∞. (15)

5.3 Error analysis with imperfectly learned weights

In this subsection, we further analyze the relative error of β if weighting function w is not perfectly
learned.

Theorem 10. Suppose C = max
{√

EP tr(X)

[
‖X‖42

]
,
√
EP tr(X,Y )

[
‖XY ‖22

]}
< ∞. Let w ∈ W and ŵ be an

estimation of w. Suppose EP tr(X)

[
w(X)XXT

]
and EP tr(X)

[
ŵ(X)XXT

]
is invertible. Let EP tr(X)[(w(X) −

ŵ(X))2] = ε2, A = EP tr(X)

[
w(X)XXT

]
, and b = EP tr(X,Y ) [w(X)XY ]. Suppose εC‖A−1‖2 < 1, then∥∥∥βŵ −βw∥∥∥2∥∥∥βw∥∥∥2

≤ εC‖A−1‖2
1− εC‖A−1‖2

·
(
1 +
‖A‖2
‖b‖2

)
. (16)

Here βŵ and βw represents the population-level solution to weighted linear squares under w and ŵ
respectively.

Remark. Theorem 10 ensures that if the error ε2, of weighting function is small enough, the relative
error of estimated coefficients β will also be small. To ensure a small ε2, we adopt LSIF [Kanamori
et al., 2009] to optimize EP tr(X)[(w(X) − ŵ(X))2] directly. If we know a target distribution Q and

want to learn a weighting function w(X) = Q(X)
P tr(X) . According to Menon and Ong [2016], the loss of

LSIF is
L(w) = EQ(X)[−w(X)] +EP tr(X)

[1
2
w(X)2

]
. (17)

It is easy to see that w∗(X) = minw L(w) = Q(X)
P tr(X) and

L(w)−L(w∗) =
1
2
EP tr(X)

[
(w∗(X)−w(X))2

]
. (18)

As a result, minimizing the loss of LSIF will meet the assumption which requires that EP tr(X)[(w(X)−
ŵ(X))2] = ε2 be small enough.

10



6 Relationships between minimal stable variable set and Markov bound-
ary

The minimal stable variable set is closely related to the Markov boundary and stable learning
may help identify the Markov boundary to some extent. In addition, if setting covariate shift
generalization as the goal, the Markov boundary is not necessary while the minimal stable variable
set is sufficient and optimal.

Definition and basic property of the Markov blankets and boundary According to [Statnikov
et al., 2013; Pearl, 2014], Markov blankets and Markov boundary are defined as follows.

Definition 6 (Markov blanket). A Markov blanket of Y under distribution P is any subset S of X
for which

Y ⊥ (X\S) | S. (19)

The set of all Markov blankets for Y is denoted as BLP (Y ). In addition, we use BL(Y ) to denote the
set under the training distribution P tr for simplicity, i.e., BL(Y ) , BLP tr(Y ).

Definition 7 (Markov boundary). A Markov Boundary of Y is a minimal Markov blanket of Y , i.e.,
none of its proper subsets satisfy Equation 19.

The existence of Markov blankets and Markov boundaries are given by the following proposi-
tion.

Proposition 11. Under Assumption 2, there exists a unique Markov boundary of Y , which can be
denoted as BD(Y ). Furthermore, with the unique Markov boundary BD(Y ), the set of all Markov blankets
of Y , BL(Y ), can be expressed as

BL(Y ) = {S ⊆ X | BD(Y ) ⊆ S}. (20)

Comparing the minimal stable variable set and the Markov boundary Besides the similarities
in mathematical forms, there exist some connections between the stable variable set and the Markov
blanket, and between the minimal stable variable set and the Markov boundary.

Theorem 12. Under Assumption 2, a stable variable set is also a Markov blanket and the minimal stable
variable set is a subset of the Markov boundary, i.e.,

BL(Y ) ⊆ Stable(Y ), MinStable(Y ) ⊆ BD(Y ). (21)

The above theorem shows the inclusion relations between those two concepts, and the following
example further illustrates an proper inclusion case.

Example 1 (from Strobl and Visweswaran [2016]). Let X = (X1,X2) and the data-generating process
is given as follows.

X1,X2 ∼N (0,1), Y = f (X1) +N
(
0,ρ(X2)2

)
, (22)

where f (·) and ρ(·) are fixed functions. Then

{X1} = MinStable(Y ) ( BD(Y ) = {X1,X2},
{{X1,X2}} = BL(Y ) ( Stable(Y ) = {{X1}, {X1,X2}}.

(23)

11



The following proposition provides the property of the Markov boundary on covariate shift
generalization.

Theorem 13. Under Assumption 1 and Assumption 2, if M is a performance metric that is maximized
only when P te(Y |X) is estimated accurately and L is a learning algorithm that can approximate any
conditional expectation, then

1. S is an optimal predictor of Y under the testing distribution P te if and only if it is a Markov blanket
of Y under the training distribution P tr, and

2. S is a minimal and optimal predictor of Y under the testing distribution P te if and only if it is a
Markov boundary of Y under the training distribution P tr.

Remark. The main difference of Theorem 3 and Theorem 13 is the requirement on the performance
metric M. The Markov boundary is minimal and optimal predictor if M is chosen as maximizing
P te(Y |X). However, for regression problems with the mean squared loss and binary classification
problems with the cross entropy loss, EP te[Y |X] is optimal in the testing distribution P te.

As a result, compared with the Markov boundary, the minimal stable variable set can bring two
advantages.

1. The conditional independence test is the crux to the precise discovery of the Markov boundary.
Shah and Peters [2020] have shown that conditional independence is a particularly difficult
hypothesis to test for, which highlights the challenges of discovering the Markov boundary in
real-world tasks. However, discovering the minimal stable variable set is relatively easier and
proved possible in this paper.

2. In several common machine learning tasks, including regression and binary classification,
not all variables in the Markov boundary are necessary. As shown in Example 1, if a variable
only affects the variance of the response variable Y , it would not be useful to predict Y when
adopting mean squared loss. The minimal stable variable set is proved to be a subset of the
Markov boundary and it excludes useless variables in the Markov boundary for covariate
shift generalization.

7 Discussions

To conclude, in this paper, we theoretically prove the effectiveness of stable learning algorithms.
We show that under ideal conditions, i.e. perfectly learned sample weights and infinite samples, the
algorithms could identify the minimal stable variable set, which is the minimal set of variables that
could provide good predictions under covariate shift. We further provide asymptotic properties
and error analysis when the two conditions are not satisfied.

We should notice that the definitions are applicable only when E[Y |X] is well defined. This
implies that the definitions could be applied to typical regression and binary classification settings,
but they may not be applicable in multi-class classification settings. In addition, under regression
settings, E[Y |X] will not be the solution in other forms of losses. For example, consider the
Minkowski loss [Bishop, 2006, Section 1.5.5] given as Lq = E[|Y − f (X)|q]. It reduces to the expected
squared loss when q = 2. The minimum of Lq is given by the conditional mean E[Y |X] for q = 2,
which is our case. But the solution becomes the conditional median for q = 1 and the conditional
mode for q→ 0. Nevertheless, we do highlight that the squared loss under regression settings and
the cross-entropy loss under binary classification settings are general enough for most potential
applications. We leave the theoretical analysis and applications of stable learning algorithms on
multi-class classification settings as future work.
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A Proofs

A.1 Proof of Theorem 3

Lemma A.1. Under Assumption 2, if M is a performance metric that is maximized only when EP tr[Y |X]
is estimated accurately and L is a learning algorithm that can approximate any conditional expectation,
then

1. S is an optimal predictor of Y if and only if it is a stable variable set of Y under distribution P tr,
and

2. S is a minimal and optimal predictor of Y if and only if it is a minimal stable variable set of Y
under distribution P tr.

Proof. We omit the subscript of EP tr[·|·] for simplicity.
Consider the first part. On the one hand, if S is a stable variable set of Y , then E[Y |X] = E[Y |S]

by definition. Hence S is an optimal predictor because E[Y |X] = E[Y |S] can be approximated
perfectly by L and M will be maximized. On the other hand, assume S is an optimal predictor
but not a stable variable set, which implies that E[Y |S] , E[Y |X]. X is a stable variable set by
definition. Hence, By first part of the proof, X is an optimal predictor of Y , similar to S. Therefore,
the following should hold: E[Y |X] = E[Y |S], which contradicts the assumption that S is not a stable
variable set. As a result, S is a stable variable set of Y .

Consider the second part. On the one hand, if S is the minimal stable variable set of Y , then
it is also a stable variable set of Y . So S is an optimal predictor. Moreover, by the definition of
the minimal stable variable set, no proper subset of S is a stable variable set of Y . Therefore, no
proper subset of S satisfies the definition of an optimal predictor. Thus, S is a minimal and optimal
predictor of Y . On the other hand, assume S is a minimal and optimal predictor of Y . Then, S is
also an optimal predictor of Y, which implies that S is a stable variable set of Y . By the definition
of minimality, no proper subset of S is a minimal and optimal predictor. Hence, no proper subset
of S is a stable variable set of Y . As a result, S is the minimal stable variable of Y .

Now we prove the original theorem.

Proof. It is obvious that EP tr[Y |X] = EP te[Y |X] from Assumption 1. As a result, the original theorem
is proved according to Lemma A.1.

A.2 Proof of Theorem 4

The proof is based on the following intersection property.

Lemma A.2. Under Assumption 2, if S1,S2 ∈ Stable(Y ), then S1 ∩S2 ∈ Stable(Y ).

Proof. Let S = S1 ∩S2, S̄1 = S1\S, S̄2 = S2\S, and X̄ = X\(S1 ∪S2). Then X = (S, S̄1, S̄2, X̄).
By definition, ∀s ∈ S , s̄1 ∈ S̄1, s̄2 ∈ S̄2, x̄ ∈ X̄ , E[Y |S = s, S̄1 = s̄1] = E[Y |S = s, S̄2 = s̄2] = E[Y |S =
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s, S̄1 = s̄1, S̄2 = s̄2, X̄ = x̄]. Let x = (s, s̄1, s̄2, x̄). Under Assumption 2,

E[Y |S = s]

=
∫
Y
yP tr(Y = y|S = s)dy

=
∫
Y

∫
S̄1

yP tr(Y = y|S = s, S̄1 = s̄1)P tr(S̄1 = s̄1|S = s)ds̄1dy

=
∫
S̄1

E[Y |S = s, S̄1 = s̄1]P tr(S̄1 = s̄1|S = s)ds̄1

=E[Y |S = s, S̄2 = s̄2]
∫
S̄1

P tr(S̄1 = s̄1|S = s)ds̄1

=E[Y |S = s, S̄2 = s̄2] = E[Y |S = s, S̄1 = s̄1, S̄2 = s̄2, X̄ = x̄] = E[Y |X = x].

As a result, S ∈ Stable(Y ).

Now we prove the original theorem.

Proof. We first prove the uniqueness of the minimal stable variable set. Suppose there are two
minimal stable variable sets w.r.t. Y , denoted as MinStable1(Y ) and MinStable2(Y ). By defini-
tion, MinStable1(Y ),MinStable2(Y ) ∈ Stable(Y ). Under Assumption 2, according to Lemma A.2,
MinStable1(Y )∩MinStable2(Y ) ∈ Stable(Y ). Because MinStable1(Y ) has no proper subset that is
in Stable(Y ), we have MinStable1(Y )∩MinStable2(Y ) = MinStable1(Y ). Similarly, MinStable1(Y )∩
MinStable2(Y ) = MinStable2(Y ), which means MinStable1(Y ) = MinStable2(Y ).

Next, we prove the exact form of the stable variable sets. Let

Ω = {S ⊆ X |MinStable(Y ) ⊆ S}.

On the one hand, ∀S ∈ Stable(Y ), according to Lemma A.2, S∩MinStable(Y ) ∈ Stable(Y ). Because of
the minimality of MinStable(Y ), |S∩MinStable(Y )| ≥ |MinStable(Y )|. As a result, MinStable(Y ) ⊆ S
and S ∈Ω. Hence Stable(Y ) ⊆Ω.

On the other hand, ∀S ∈Ω, let D = MinStable(Y ), W = S\D, and X̄ = X\S. Then ∀d ∈ D,w ∈W ,
s = (d,w), we can get

E[Y |S = s] =
∫
Y
yP tr(Y = y|D = d,W = w)dy

=
∫
Y

∫
X̄
yP tr(Y = y|D = d,W = w, X̄ = x̄)P tr(X̄ = x̄|D = d,W = w)dx̄dy

=
∫
X̄
P tr(X̄ = x̄|D = d,W = w)E[Y |D = d,W = w, X̄ = x̄]dx̄

=
∫
X̄
P tr(X̄ = x̄|D = d,W = w)E[Y |D = d]dx̄

=E[Y |D = d]
∫
X̄
P tr(X̄ = x̄|D = d,W = w)dx̄

=E[Y |D = d].

As a result, S satisfies the requirement of stable variable sets and S ∈ Stable(Y ). Hence Ω ⊆
Stable(Y ).

To conclude, Stable(Y ) ⊆Ω and Ω ⊆ Stable(Y ), which results in Ω = Stable(Y ).
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A.3 Proof of Theorem 5

We need the following lemma first.

Lemma A.3. Let w ∈ W be a weighting function, and P̃w be the corresponding weighted distribution.
Then P̃w(Y |X) = P tr(Y |X).

Proof. ∀x ∈ X , y ∈ Y ,

P̃w(Y = y|X = x) =
P̃w(Y = y,X = x)
P̃w(X = x)

=
P tr(Y = y,X = x)w(x)∫
y′
P̃w(X,Y = y′)dy′

=
P tr(Y = y,X = x)w(x)

w(x)
∫
y′
P tr(X = x,Y = y′)dy′

=
P tr(Y = y,X = x)
P tr(X = x)

= P tr(Y = y|X = x).

Now we prove the original theorem.

Proof. Let X−i denote variables other than Xi and X−i denote the support of X−i .
Given Xi < MinStable(Y ), there exists a function f : X−i → Y such that EP tr(X,Y )[Y |X] =

f (X−i). According to Lemma A.3, EP̃w(X,Y )[Y |X] = EP tr(X,Y )[Y |X] = f (X−i). As a result, because

EP tr(X)

[
w(X)‖X‖22

]
<∞ and EP tr(X,Y )

[
w(X)Y 2

]
<∞, the covariance between Xi and Y under P̃w is

CovP̃w [XiY ] =EP̃w(Xi ,Y )[XiY ]−EP̃w(Xi )[Xi]EP̃w(Y )[Y ]

=EP̃w(X)

[
XiEP̃w(X,Y )[Y |X]

]
−EP̃w(Xi )[Xi]EP̃w(X)

[
EP̃w(X,Y )[Y |X]

]
=EP̃w(X)[Xif (X−i)]−EP̃w(Xi )[Xi]EP̃w(X−i ) [f (X−i)] = 0.

The last equation is due to the independence between Xi and X−i . As a result, the coefficient βw(Xi)
on Xi is

βw(Xi) = VarP̃w(Xi)
−1 CovP̃w [XiY ] = 0.

A.4 Proof of Theorem 6

Proof. Let X−i denote the rest variable except Xi and P tr
−i denote the marginal distribution of P tr

on X−i . Because Xi ∈MinStable(Y ), EP tr(X,Y )[Y |X] depends on Xi . Hence, there exists a probability
density function P̃−i with the same support of P tr

−i that satisfies
1. X−i are mutually independent under P̃−i , and
2. g(Xi) , EP̃−i (X−i )[EP tr(X,Y ) [Y |X−i ,Xi]] depends on Xi .

Moreover, there exist a probability density function P̃i with the same support of P tr
i that satisfies

g(Xi) is linearly correlated with Xi under P̃i .
Let P̃ be the joint distribution on (X,Y ) and P̃ (X−i ,Xi ,Y ) = P̃−i(X−i)P̃i(Xi)P tr(Y |X). Hence,

EP̃ (Xi ,Y )[Y |Xi] = EP̃−i (X−i )[EP tr(X,Y ) [Y |X−i ,Xi]] = g(Xi).
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Let w(X) = P̃ (X)/P tr(X). Because EP tr(X,Y )[Y |X] depends on Xi , VarP tr(Xi) > 0. Hence, VarP̃ (Xi) > 0.
As a result, the coefficient on Xi is

βw(Xi)

=
1

VarP̃i (Xi)

(
EP tr(X,Y )[w(X)XiY ]−EP tr(X)[w(X)Xi]EP tr(X,Y )[w(X)Y ]

)
=

1
VarP̃i (Xi)

(
EP̃ (Xi ,Y )[XiY ]−EP̃ (Xi )[Xi]EP̃ (Y )[Y ]

)
=

1
VarP̃i (Xi)

(
EP̃ (Xi )

[
XiEP̃ (Xi ,Y )[Y |Xi]

]
−EP̃i (Xi )[Xi]EP̃i (Xi )

[
EP̃ (Xi ,Y )[Y |Xi]

])
=

1
VarP̃i (Xi)

(
EP̃i (Xi )[Xig(Xi)]−EP̃i (Xi )[Xi]EP̃i (Xi )[g(Xi)]

)
, 0.

A.5 Proof of Theorem 7

Proof. For convenience, we append an 1 in the front of feature variable, i.e., Ẍ = (1,X) and ẍ(i) =(
1,x(i)

)
. Then the loss of weighted least squares becomes

β̂
(n)
w = argmin

β

n∑
i=1

w
(
x(i)

)(
βT ẍ(i) − y(i)

)2
.

Hence,

β̂
(n)
w =

1
n

n∑
i=1

w
(
x(i)

)
ẍ(i)

(
ẍ(i)

)T −1 1
n

n∑
i=1

w
(
x(i)

)
ẍ(i)y(i)

 .
By the weak law of large numbers,

1
n

n∑
i=1

w
(
x(i)

)
ẍ(i)

(
ẍ(i)

)T p
−−→ EP (X)

[
w(X)ẌẌT

]
= EP̃w(X)

[
ẌẌT

]
,

1
n

n∑
i=1

w
(
x(i)

)
ẍ(i)y(i) p

−−→ EP (X,Y )

[
w(X)ẌY

]
= EP̃w(X,Y )

[
ẌY

]
.

Because covariance matrix CovP̃w [X] is invertible,(
EP̃w(X)

[
ẌẌT

])−1

=

 1 EP̃w(X)[X]T

EP̃w(X)[X] EP̃w(X)

[
XXT

]−1

=
(
1 +EP̃w(X)[X]T CovP̃w [X]−1

EP̃w(X)[X] −EP̃w(X)[X]T CovP̃w [X]−1

−CovP̃w [X]−1
EP̃w(X)[X] CovP̃w [X]−1

)
.

Hence, EP̃w(X)

[
ẌẌT

]
is invertible.

Finally, because function g(A,b) = A−1b is continuous at
(
EP̃w(X)

[
ẌẌT

]
,EP̃w(X)

[
ẌY

])
, by continu-

ous mapping theorem, we have

β̂
(n)
w

p
−−→

(
EP̃w(X)

[
ẌẌT

])−1 (
EP̃w(X)

[
ẌY

])
= βw.
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A.6 Proof of Theorem 10

The theorem is inspired by the following lemma.

Lemma A.4 (Chandrasekaran and Ipsen [1995]). Suppose Ax = b and Âx̂ = b̂. Suppose ‖A−1‖‖A−Â‖ <
1, then

‖x − x̂‖
‖x‖

≤ ‖A‖‖A−1‖
1− ‖A−1‖‖A− Â‖

(
‖A− Â‖
‖A‖

+
‖b − b̂‖
‖b‖

)
.

Now we prove the original theorem.

Proof. Let ∆w(X) = ŵ(X)−w(X) and∆A = EP tr(X)

[
∆w(X)XXT

]
,

∆b = EP tr(X,Y ) [∆w(X)XY ] .

Then

‖∆A‖2
= sup
‖c‖2=1

‖∆A · c‖2 = sup
‖c‖2=1

∥∥∥∥EP tr(X)

[
∆w(X)XXT c

]∥∥∥∥
2

≤ sup
‖c‖2=1

EP tr(X)

[
∆w(X)‖XXT c‖2

]
(triangle inequality of norms)

≤ sup
‖c‖2=1

√
EP tr(X)

[
∆w(X)2]

EP tr(X)

[
‖XXT c‖22

]
(Cauchy–Schwarz inequality)

=ε sup
‖c‖2=1

√
EP tr(X)

[
‖XXT c‖22

]
(E

[
∆w(X)2

]
= ε)

≤ε

√
EP tr(X)

 sup
‖c‖2=1

‖XXT c‖22

 (supE[·] ≤ E[sup ·])

=ε
√
EP tr(X)

[
‖X‖42

]
(see below)

≤ε ·C.

Here
sup
‖c‖2=1

‖XXT c‖22 = sup
‖c‖2=1

cTXXTXXT c = sup
‖c‖2=1

det
(
XTXXT ccTX

)
=XTX sup

‖c‖2=1
det

(
XT ccTX

)
= ‖X‖22 sup

‖c‖2=1
(XT c)2 = ‖X‖42.

And
‖∆b‖2 = ‖EP tr(X,Y ) [∆w(X)XY ]‖2

≤ EP tr(X,Y ) [∆w(X)‖XY ‖2] (triangle inequality of norms)

≤
√
EP tr(X)[∆w(X)2]EP tr(X,Y )

[
‖XY ‖22

]
(Cauchy–Schwarz inequality)

= ε
√
EP tr(X,Y )

[
‖XY ‖22

]
(EP tr

[
∆w(X)2

]
= ε)

≤ ε ·C.
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In addition, Aβw = b and (A+∆A)βŵ = b+∆b. As a result, according to Lemma A.4,

‖βŵ −βw‖2
‖βw‖2

≤ ‖A‖2‖A−1‖2
1− ‖A−1‖2‖∆A‖2

(
‖∆A‖2
‖A‖2

+
‖∆b‖2
‖b‖2

)
≤ ‖A‖2‖A

−1‖2
1− εC‖A−1‖2

(
εC
‖A‖2

+
εC
‖b‖2

)
=

εC‖A−1‖2
1− εC‖A−1‖2

·
(
1 +
‖A‖2
‖b‖2

)
.

A.7 Proof of Proposition 11

The proof is based on the following lemma.

Lemma A.5 (Intersection Property). Under Assumption 2, let V1, V2, and S be subset of X. Then,

Y ⊥V1 | (S∪V2) & Y ⊥V2 | (S∪V1) =⇒ Y ⊥ (V1 ∪V2) | S.

The proof of Lemma A.5 can be found in [Pearl, 2014, Section 3.1.2]. Now we prove the original
theorem.

Proof. According to Statnikov et al. [2013], if the distribution P tr satisfies the intersetion property,
then there exists a unique Markov boundary of Y .

Next we prove the exact form of the Markov blankets. On the one hand, from Lemma A.5, we
can know that under Assumption 2, if S1 and S2 are Markov blankets of Y , so does S1 ∩S2. As a
result, for any S ∈ BL(Y ), S∩BD(Y ) ∈ BL(Y ). Because BD(Y ) is the minimal element in BL(Y ), we
have |S∩BD(Y )| ≥ |BD(Y )|. Hence, BD(Y ) ⊆ S.

On the other hand, for any S that BD(Y ) ⊆ S ⊆ X. Let V = X\S and W = S\BD(Y ). Then

P tr(Y ,V|S) =
P tr(Y ,V,BD(Y ),W)

P tr(S)
=
P tr(Y ,V,W|BD(Y ))P tr(BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V,W|BD(Y ))P tr(BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V,W,BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V,S)

P tr(S)
= P tr(Y |S)P tr(V|S).

As a result, Y ⊥V | S and S is a Markov blanket of Y . To conclude, BL(Y ) = {S ⊆ X | BD(Y ) ⊆ S}.

A.8 Proof of Theorem 12

Proof. ∀S ∈ BL(Y ), Y ⊥ (X\S) | S. Hence E[Y |X] = E[Y |S] and S ∈ Stable(Y ), which implies BL(Y ) ⊆
Stable(Y ).

Therefore, ∀S ∈ BL(Y ), S ∈ Stable(Y ). According to Theorem 4, MinStable(Y ) ⊆ S. In particular,
let S = BD(Y ) ∈ BL(Y ) and we have MinStable(Y ) ⊆ BD(Y ).
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A.9 Proof of Theorem 13

The proof is based on the following proposition.

Proposition A.6 (Statnikov et al. [2013]; Strobl and Visweswaran [2016]). If M is a performance
metric that is maximized only when P (Y |X) is estimated accurately and L is a learning algorithm that
can approximate any conditional probability distribution, then

1. S is a Markov blanket of Y if and only if it is an optimal predictor of Y , and
2. S is a Markov boundary of Y if and only if it is a minimal and optimal predictor of Y .

Now we can prove the orginal proposition.

Proof. We use BLtest and BDtest to denote the Markov blankets and Markov boundary in the testing
distribution. We first prove that BLtest(Y ) = BL(Y ) and BDtest(Y ) = BD(Y ).

Suppose S is a Markov blanket under the training distribution P tr. Let V = X\S. Under
Assumption 2 and Assumption 1, ∀v ∈ V ,s ∈ S , y ∈ Y ,

P te(Y = y|V = v,S = s) = P tr(Y = y|V = v,S = s) = P tr(Y = y|S = s).

Hence,
P te(Y = y|S = s)

=
∫
V
P te(Y = y|V = v′ ,S = s)P te(V = v′ |S = s)dv′

=
∫
V
P tr(Y = y|S = s)P te(V = v′ |S = s)dv′

=P tr(Y = y|S = s) = P te(Y = y|V = v,S = s).

As a result, S is a Markov blanket under P te, which implies BL(Y ) ⊆ BLtest(Y ). With similar
calculation, we can show that BLtest(Y ) ⊆ BL(Y ), which finally shows that BLtest(Y ) = BL(Y ).
Because Markov boundary is the minimal element of the set of Markov blankets, we can get that
BDtest(Y ) = BD(Y ).

Now the original proposition is straightforward with Proposition A.6.
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