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Abstract

Domain generalization (DG) aims to help models trained
on a set of source domains generalize better on unseen tar-
get domains. The performances of current DG methods
largely rely on sufficient labeled data, which are usually
costly or unavailable, however. Since unlabeled data are
far more accessible, we seek to explore how unsupervised
learning can help deep models generalize across domains.
Specifically, we study a novel generalization problem called
unsupervised domain generalization (UDG), which aims to
learn generalizable models with unlabeled data and analyze
the effects of pre-training on DG. In UDG, models are pre-
trained with unlabeled data from various source domains
before being trained on labeled source data and eventu-
ally tested on unseen target domains. Then we propose
a method named Domain-Aware Representation LearnING
(DARLING) to cope with the significant and misleading
heterogeneity within unlabeled pretraining data and severe
distribution shifts between source and target data. Surpris-
ingly we observe that DARLING can not only counterbal-
ance the scarcity of labeled data but also further strengthen
the generalization ability of models when the labeled data
are insufficient. As a pretraining approach, DARLING
shows superior or comparable performance compared with
ImageNet pretraining protocol even when the available data
are unlabeled and of a vastly smaller amount compared to
ImageNet, which may shed light on improving generaliza-
tion with large-scale unlabeled data.

1. Introduction

Deep neural network based approaches have achieved
striking performance in tasks where training and test data
share similar distribution [23, 24]. However, under con-
siderable distribution shifts, they can significantly fail [4,
15, 27, 49, 57]. To address this problem, the literature in
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domain generalization (DG) proposes algorithms that have
access to labeled data from multiple domains or environ-
ments during training and generalize well to unseen test do-
mains [18, 32, 36, 37, 43, 64].

Sufficient labeled data are crucial for current DG meth-
ods to learn domain invariant features, which are proved to
be generalizable to unseen domains [1, 43, 54, 65]. A com-
mon and effective approach to learning discriminative fea-
tures in DG is to enlarge the available data space with aug-
mentations of source domains [5, 70, 71]. With sufficient
source data and strong augmentations, even empirical risk
minimization (ERM) can outperform previous state-of-the-
art methods [21]. Nevertheless, both augmentation-based
methods and carefully hyperparameter tuned ERM assume
adequate labeled data from multiple domains available for
representation learning.

As manually labeled data can be costly or unavailable
while unlabeled data are far more accessible, we study a
novel generalization problem called unsupervised domain
generalization (UDG). UDG aims to unsupervised learn dis-
criminative representations that generalize well across do-
mains and thus reduce the dependence of DG methods on
labeled data. Specifically, models are trained with unla-
beled heterogeneous data before finetuned and evaluated on
labeled data, so that methods for UDG can be easily assem-
bled with current DG methods as pretraining and study how
pre-training affects models’ generalization ability.

In the field of unsupervised learning [22, 50, 66], con-
trastive learning (CL) advances in discriminative represen-
tation learning for downstream tasks compared to its coun-
terparts [6, 23, 58]. Actually, the objective of CL, which
is to maximize the similarity between a given image and
its variant under disturbance while contrasting with nega-
tives [16, 34, 67], agrees with the target of DG. However,
current CL only learns robust representations against pre-
defined perturbation under independent and identically dis-
tributed (I.I.D) hypothesis [3, 26, 28] and fails to consider
severe distribution shifts across domains beyond predefined
perturbation types [45, 68]. With samples from various do-
mains as negative pairs, current CL methods leverage both



domain-related (i.e., features irrelevant to categories) and
category-discriminative features to push their representa-
tions away. Furthermore, in UDG, the distribution shifts
across domains in training data are significant and can not
be fully counterweighed via data transformations (for in-
stance, one can hardly transform a dog in sketch to photo).
The strong heterogeneity induces models to leverage the
domain-related features to distinguish one sample from its
negatives [2, 52] and thus, hinders the learning of an invari-
ant representation space where dissimilarity across domains
is minimized [41,43]. Thus current contrastive learning can
not perfectly handle the UDG problem.

To address this problem, we propose Domain-Aware
Representation LearnING (DARLING), a novel contrastive
learning algorithm for UDG which unifies objectives of
DG and contrastive learning. To force the model to ignore
domain-related features, we select valid sources of nega-
tive samples for any given queue according to the similarity
between different domains. Specifically, the more similar
two domains are, the more likely two samples in a negative
pair are selected from these two domains, respectively. Intu-
itively, consider samples from two domains with enormous
differences in distribution, the domain-related features of
which are discriminative enough to distinguish them from
each other and, in turn, boost variance across domains in
the representation space. On the contrary, if a negative pair
of samples comes from a single domain and shares identical
domain-related features, domain-irrelevant representations
are learned to contrast them.

As shown in Section 4, the proposed unsupervised pre-
training protocol achieves a significant improvement in gen-
eralization even with raw ERM finetuning, indicating that
the UDG problem gives an effective and enlightening com-
plementary to supervised methods for DG. We further show
that DARLING outperforms state-of-the-art counterparts by
a considerable margin with quantitative and qualitative ex-
periments. Moreover, prepositive unsupervised learning
can be considered as a protocol of pretraining. Although
initialization of weights pretrained on ImageNet shows un-
paralleled effectiveness on independent and identically dis-
tributed (I.I.D.) tasks, we argue that it lacks rationality for
the DG problem. Since ImageNet can be considered as a
set of data sampled from latent domains [55, 69], the distri-
bution shifts across domains are not as significant as most
DG datasets [25,36,46], resulting in insufficient heterogene-
ity for models to learn a generalizable representation space.
Thus the protocol of unsupervised pretraining on heteroge-
neous unlabeled data is a reasonable alternative to initial-
ization with weights pretrained on ImageNet for DG.

2. Related work
Domain Generalization. Domain generalization (DG)
considers the generalization ability to novel domains of

deep models trained on source domains where the hetero-
geneity caused by domain shifts is significant. A common
approach is extracting domain-invariant features over mul-
tiple source domains [12, 18, 30, 32, 35, 38, 42, 47, 51, 69]
or aggregating domain-specific modules [39,40] to conduct
domain-invariant or domain-specific. Many works propose
to enlarge the available data space with augmentation of
source domains [5, 13, 48, 53, 70, 71]. There are several
approaches that exploit regularization with meta-learning
[12, 37] and Invariant Risk Minimization (IRM) framework
[2] for DG. Despite the promising results achieved by cur-
rent DG methods, all of them assume that the training data
provide ample heterogeneity and knowledge for target cat-
egories. Such assumptions hinder DG methods from real
applications.
Unsupervised learning. Unsupervised representation
learning generally involve two categories, namely gener-
ative and discriminative [8, 9]. Many of generative ap-
proaches rely on auto-encoder [63] or adversarial learn-
ing [19], where data and representations are jointly mod-
eled [10,14,17]. There are some self learning methods rely-
ing on auxiliary handcrafted prediction tasks such as image
jigsaw puzzle [44] and geometric transformations [11] to
learn representations. Among discriminative method, Con-
trastive loss based approaches forces representation of dif-
ferent views of the same image closer with spreads repre-
sentations of views from different images apart and achieves
current state-of-the-art performance [6,20,23,26,29,45,59]
. As designed for problems under the I.I.D assumption, cur-
rent contrastive learning can not distinguish domain or cat-
egory related features, resulting in low training efficiency or
misleading by spurious correlations between categories and
domains.

3. Methods
3.1. Unsupervised Domain Generalization

Notations Let X be the feature space, Y the category la-
bel space, and D the domain label space. Accordingly, we
use X , Y , D to denote the random variables which take
values in X , Y and D. A dataset S contains NS sam-
ples {Xi, yi, di}NS

i=1 sampled from a joint distribution PS on
X ×Y×D. Let PS

X , PS
Y and PS

D denote the marginal distri-
bution of PS on X , Y , D respectively. Let Supp(·) denote
the support of a distribution. For example, Supp(PS

X) de-
notes the support of distribution PS

X . Let [K] denote the set
{1, 2, . . . ,K}.

We describe datasets as labeled when the category labels
are available while others as unlabeled. We aim to learn
a model generalizable to any unknown testing distribution.
Formally, the problem is defined as follows:

Problem 3.1 (Unsupervised Domain Generalization
(UDG)). Let SUL = {Xi, di}NUL

i=1 be the unlabeled



dataset with NUL samples from distribution PSUL and
SL = {Xi, yi}NL

i=1 be the labeled dataset with NL samples
from distribution PSL . There exists an unknown testing
distribution PStest that satisfies

Supp
(
PStest
D

)
∩
(
Supp

(
PSUL
D

)
∪ Supp

(
PSL
D

))
= ∅. (1)

Supp
(
PStest
Y

)
= Supp

(
PSL
Y

)
. (2)

Given SUL, SL and a loss function ℓ(X,Y ; θ), we aim to learn
a model with parameters θ∗ that achieves best performance on
PStest .

θ∗ = argmin
θ

E(X,Y,D)∼PStest [ℓ(X,Y ; θ)] . (3)

Remark 3.1 (Explanation of the two constraints). Follow-
ing the standard DG setting, Equation 1 requires that there is
no domain overlap between testing and all available training
datasets, including labeled and unlabeled ones. Meanwhile,
Equation 2 requires that the category space should be the
same between the testing dataset and the labeled dataset.

This setting is sound since we can consider the source or
mechanism of data generation as the domain while the latent
structure of data other than domains determines the cate-
gories. Accordingly, the domain label is significantly easier
to access while category labeling can be expensive, lead-
ing to a large scale of data with domain label while without
category label.

UDG settings We specifically describe all possible 4
settings that support unsupervised domain generalization
(UDG) according to the intersections in the category and
domain spaces between unlabeled PSUL and labeled PSL

data, namely all correlated, domain correlated, category
correlated, uncorrelated.
All correlated When the data are partially and randomly
labeled, the unlabeled and labeled data are homologous so
that there can be overlap in the category and domain spaces
between them. Formally, Supp(PSUL

D ) = Supp(PSL

D ),
Supp(PSUL

Y ) = Supp(PSL

Y ).
Domain correlated A more challenging but common set-
ting is that unlabeled and labeled data share the same do-
main space while there is no overlap between the cat-
egory space of unlabeled and labeled data. Formally,
Supp(PSUL

D ) = Supp(PSL

D ), Supp(PSUL

Y )∩Supp(PSL

Y ) =
∅.
Category correlated Similar with domain correlated, this
setting assumes that unlabeled and labeled data share the
same category space while there is no overlap between
the domain space of unlabeled and labeled data. For-
mally, Supp(PSUL

D ) ∩ Supp(PSL

D ) = ∅, Supp(PSUL

Y ) =

Supp(PSL

Y ).
Uncorrelated When extra data from the same sources (do-
mains) as labeled data are unavailable, there may be no

Y

X
(a)

Y

X D
(b)

Figure 1. The graphical model of traditional contrastive learning
(a) and our method (b).

overlap between the category and domain spaces of un-
labeled data and labeled data, resulting in the most chal-
lenging and flexible setting. Formally, Supp(PSUL

D ) ∩
Supp(PSL

D ) = ∅, Supp(PSUL

Y ) ∩ Supp(PSL

Y ) = ∅.

3.2. Domain-irrelevant unsupervised learning

We propose the Domain-Aware Representation Learn-
ING (DARLING) algorithm for unsupervised domain gen-
eralization. Generally, we pretrain DARLING on the unla-
beled dataset SUL before finetuning with the labeled dataset
SL. The finetuning phase can be considered as a standard
DG setting thus any DG method such as [31, 41, 48] can be
applied. We focus on exploring how unsupervised learning
helps models generalize to unseen domains.

Let SUL = {Xn, dn}Nn=1 be the unlabeled dataset with a
set of N images with domain labels but without the ground-
truth category labels. [61] has shown that the traditional
contrastive learning could be modeled by:

P (Y|X) =

N∏
n=1

p(yn|Xn) =

N∏
n=1

exp(v⊤
yn fn/τ)∑N

i=1 exp(v
⊤
i fn/τ)

. (4)

Here each of the datapoint Xn is assigned with a unique
surrogate label yn ∈ {1, 2, · · · , N}. vyn

and fn are given
by passing the input image Xn to two encoder networks fθ
and fθ′ . τ is the temperature hyper-parameter that controls
the concentration level. The graphical model is shown in
Fig. 1a.

The conditional probability given by Eqn. 4 leads to
the standard contrastive learning loss. In particular, MoCo
learns Eqn. 4 via InfoNCE loss by sampling negative sam-
ples as follows:

L(θ, θ′) = − 1

N

N∑
n=1

log
exp

(
v⊤
n fn/τ

)
exp (v⊤

n fn/τ) +
∑K

k=1 exp
(
q⊤
k fn/τ

) .
(5)

Here q ∈ RK×d is a queue of negative samples with size K
storing previous embeddings from fθ′ .

However, traditional contrastive learning fails to model
domain information. Specifically, the classifier P (Y |X)
may be different under different domain label D, which
leads to model misspecification. Hence given domain la-
bel information, we consider the new graphical probability
model described in Fig. 1b.
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Figure 2. Structure of the proposed DARLING. The upper branch learns domain similarity for a given Xn across all domains and the
backpropagation of similarity loss is limited inside the branch (marked with blue arrows). The similarity loss contributes no supervision
signal to the training of main network while the contrastive loss does not contribute the learning of similarity branch (connection marked
with dashed line).

Next, we give the concrete form of the two conditional
probabilities as follows, the generation process of Y is given
by:

P (yn|Xn, D = d) =
exp(v⊤

yn,dfn/τ)∑
i∈Nd

exp(v⊤
i,dfn/τ)

=
exp(v⊤

yn fn/τ)∑
i∈Nd

exp(v⊤
i fn/τ)

,

(6)

where Nd is a collection of training sample indices which
belongs to domain d. The second equation holds as we
further assume the dictionary vectors vi,d are domain-
irrelevant, i.e. vi,d = vi, which could be modeled by a
single neural network across all domains.

And the generation process of D is given by:

P (D = d|Xn) = softmax(h(Xn; Φ))d, (7)

where h could be represented as a learnable convolutional
neural network parameterized by Φ. Specifically, as shown
in Fig. 2, features output of shallow layers of the encoder
are fed into a stack of extra convolutional networks and a
similarity predictor to learn domain similarity for current
input. We adopt cross-entropy as the similarity loss.

Hence the likelihood could be obtained from combining
Eqn. 6 and Eqn. 7 as follows:

P (yn|Xn) = ED∼P (D|Xn)P (yn|Xn, D)

=
∑
d

P (D = d|Xn)P (yn|Xn, D = d)

=
∑
d

wn,d
exp(v⊤

yn fn/τ)∑
i∈Nd

exp(v⊤
i fn/τ)

.

(8)

Here wn,d = P (D = d|Xn) is given by Eqn. 7. Noticing
that wn,d implies the similarity between domains via each
sample, hence Eqn. 8 eliminates the relevance of domains
by reweighting loss on different domains.

We maintain K negative samples q1,q2, . . . ,qK and
split them into D parts Q1,Q2, . . . ,QD w.r.t. their do-
mains. To be specific, let ek ∈ [D] represent the domain

of the negative sample qk. Then Qd (∀d ∈ [D]) can be
written as {qk|ek = d}. As a result, similar to Eqn. 5, we
write our loss function as:

L(θ, θ′)

=−
1

N

N∑
n=1

log
∑
d

wn,d · exp
(
v⊤
n fn/τ

)
exp

(
v⊤
n fn/τ

)
+

∑
q∈Qd

exp
(
q⊤fn/τ

) .
(9)

In the processing of optimization, we first learn Φ by Eqn.7.
With a given Φ we optimize θ via minimizing Eqn. 9 until
convergence.

3.3. Domain Specific Negative Samples

As shown in Eqn. 9, we maintain domain specific nega-
tive queries to calculate similarity across domains. Inspired
by [29], we propose a domain specific negative samples
generating mechanism with a adversarial updating manner
to closely track the change of representations for each do-
main. Our objective can be considered as:

θ⋆,Q⋆
1, ...,Q⋆

D = argmin
θ

max
Q1,...,QD

L(θ,Q1, ...,QD). (10)

Specifically, we iteratively update network weights θ and
domain-specific negative adversaries as follows:

θ ←− θ − ηθ
∂L(θ,Q1, ...,QD)

∂θ
,

qk ←− qk + ηN
∂L(θ,Q1, ...,QD)

∂qk
,

(11)

where k = 1, 2, . . . ,K is the index of negative samples,
ηθ and ηN are the learning rates for network weights and
negative adversaries, respectively.

To simplify the calculation of negative samples, here we
constrict wn,d = I[dn = d], thus a given sample only con-
tributes to the generation of negative samples from the same
domain. Under this circumstance, the loss function in Eqn.



Table 1. Results of the all correlated setting on DomainNet. We reimplement state-of-the-art unsupervised methods on DomainNet with
ResNet18 [24] as the backbone network for all the methods unless otherwise specified. ERM indicates the randomly initialed ResNet18.
Overall and Avg. indicate the overall accuracy of all the test data and the arithmetic mean of the accuracy of 3 domains, respectively. Note
that they are different because the capacities of different domains are not equal. The reported results are average over three repetitions of
each run. All the models are trained on ‘Painting’, ‘Real’, and ‘Sketch’ domains of DomainNet and tested on the other three domains. The
title of each column indicates the name of the domain used as target. All the models are pretrained for 1000 epoches before finetuned on
the labeled data. The best results of all methods are highlighted with the bold font.

Label Fraction 1% Label Fraction 5%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

MoCo V2 [8, 23] 18.85 10.57 6.32 10.05 11.92 28.13 13.79 9.67 14.56 17.20
SimCLR V2 [7] 23.51 15.42 5.29 11.80 14.74 34.03 17.17 10.88 17.32 20.69

BYOL [20] 6.21 3.48 4.27 4.45 4.65 9.60 5.09 6.02 6.49 6.90
AdCo [29] 16.16 12.26 5.65 9.57 11.36 30.77 18.65 7.75 15.44 19.06

ERM 6.54 2.96 5.00 4.75 4.83 10.21 7.08 5.34 6.81 7.54

DARLING (ours) 18.53 10.62 12.65 13.29 13.93 39.32 19.09 10.50 18.73 22.97

Label Fraction 10% Label Fraction 100%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

MoCo V2 32.46 18.54 8.05 15.92 19.69 64.18 27.44 25.26 33.76 38.96
SimCLR V2 37.11 19.87 12.33 19.45 23.10 68.72 27.60 30.56 37.47 42.29

BYOL 14.55 8.71 5.95 8.46 9.74 54.44 23.70 20.42 28.23 32.86
AdCo 32.25 17.96 11.56 17.53 20.59 62.84 26.69 26.26 33.80 38.60
ERM 15.10 9.39 7.11 9.36 10.53 52.79 23.72 19.05 27.19 31.85

DARLING (ours) 35.15 20.88 15.69 21.08 23.91 72.79 32.01 33.75 41.19 46.18

9 could be written as
L(θ, θ′)

=−
1

N

N∑
n=1

log
exp

(
v⊤
n fn/τ

)
exp

(
v⊤
n fn/τ

)
+

∑
q∈Qdn

exp
(
q⊤fn/τ

) . (12)

And the derivative of L in updating negative sample qk is

∂L
∂qk

=
1

Nτ

N∑
n=1

snk · fn, (13)

where

snk =


exp

(
q⊤
k fn/τ

)
exp

(
v⊤
n fn/τ

)
+

∑
q∈Qdn

exp
(
q⊤fn/τ

) , if ek = dn,

0, otherwise.
(14)

Our objective is to maintain hard samples for positive
ones in each domain, so the negative samples in a given
domain are pushed closer towards the queries from the same
domain, thus nk,d is optimized to maximize the similarities
between them and positive queries within the corresponding
domains.

The superiority of the proposed domain specific nega-
tive sample generation is two fold. Firstly, it yields constant
number of negative samples while other updating methods
such as [6] may yield various number of samples from dif-
ferent domains. Secondly, the proposed method generates
hard negative samples with the most confusing negative
pairs within each domain, which is consistent with Eqn. 9.

4. Experiments
In this section, we specifically describe experimental

settings that support unsupervised domain generalization

(UDG) and show experimental results of the proposed
DARLING and its state-of-the-art counterparts.

4.1. Unsupervised Domain Generalization (UDG)

Settings and datasets We present extensive experimental
results on 3 of 4 settings that are more common in real-
world scenarios, namely all correlated, domain correlated,
and uncorrelated. The correlations between unlabeled and
labeled data gradually decrease in these settings. Exper-
iments on the remaining category correlated setting are in
Appendix B.1. We adopt four datasets to carry through eval-
uations, namely DomainNet [46], PACS [36], CIFAR-10-C
and CIFAR-100-C [27, 33]. Introduction to these datasets
and details of implementation are in Appendix B.1.

All correlated UDG We explore how unsupervised learn-
ing enhances the generalization ability of models when
training data are partially labeled and both the category and
domain between unlabeled and labeled data are correlated.
We adopt DomainNet and PACS for this setting. For Do-
mainNet, we randomly select 3 out of 6 domains as source
domains and the remaining as target domains. 20 out of 300
categories are randomly selected for both training and test-
ing. For PACS, we follow the common DG setting where
one domain is considered as the target domain while the
others as source domains for each run. The proportion of
labeled data to training data for both datasets varies from
1% to 10%.

Results are shown in Table 1 (DomainNet) and 2 (PACS).
DARLING outperforms other counterparts with all given



Table 2. Results of the all correlated setting on PACS. Given the experiment for each target domain is run respectively, there is no overall
accuracy across domains. Thus we report the average accuracy and the accuracy for each domain. For details about the number of runs,
meaning of column titles and fonts, see Table 1.

Label Fraction 1% Label Fraction 5%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 22.97 15.58 23.65 25.27 21.87 37.39 25.57 28.11 31.16 30.56
SimCLR V2 30.94 17.43 30.16 25.20 25.93 54.67 35.92 35.31 36.84 40.68

BYOL 11.20 14.53 16.21 10.01 12.99 26.55 17.79 21.87 19.65 21.47
AdCo 26.13 17.11 22.96 23.37 22.39 37.65 28.21 28.52 30.35 31.18

ResNet-18 10.90 11.21 14.33 18.83 13.82 14.15 18.67 13.37 18.34 16.13

DARLING (ours) 27.78 19.82 27.51 29.54 26.16 44.61 39.25 36.41 36.53 39.20

Label Fraction 10% Label Fraction 100%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 44.19 25.85 33.53 24.97 32.14 59.86 28.58 48.89 34.79 43.03
SimCLR V2 54.65 37.65 46.00 28.25 41.64 67.45 43.60 54.48 34.73 50.06

BYOL 27.01 25.94 20.98 19.69 23.40 41.42 23.73 30.02 18.78 28.49
AdCo 46.51 30.21 31.45 22.96 32.78 58.59 29.81 50.19 30.45 42.26

ResNet-18 16.27 16.62 18.40 12.01 15.82 43.29 24.27 32.62 20.84 30.26

DARLING (ours) 53.37 39.91 46.41 30.17 42.47 68.66 41.53 56.89 37.51 51.15

fractions of labeled data on average accuracy on both Do-
mainNet and PACS. Surprisingly, when all the training data
are labeled, unsupervised pretraining with the same data
improves the prediction accuracy on target domains by a
noticeable margin. This indicates that when there are se-
vere distribution shifts between training and testing data,
the supervision from category labels of source domains is
insufficient given that it can be considered as biased knowl-
edge in target domains. Unsupervised learned dissimilar-
ities among samples from the same category in source do-
mains can introduce valid knowledge for distinguishing cat-
egories in target domains, for which unsupervised learning
naturally fits the DG problem.

Moreover, from the perspective of the graphical model
mentioned in Section 3.2, supervision from the source do-
main helps the model to learn a domain-relevant classi-
fier, which can fail in target domains. While DARLING
learns a domain-irrelevant representation space leading to
more robust predictions in novel domains. Thus DARLING
achieves a significant improvement compared to SOTA un-
supervised learning methods (7.43% compared to MoCo V2
and 3.89% to SimCLR V2). When the fraction of labeled
data is lower than 10%, we only finetune the linear classi-
fier for all the methods to prevent overfitting. Both random
initialized ResNet-18 and BYOL fail to learn a valid model
with label fractions of 1% and 5%, while DARLING consis-
tently achieves considerable improvement. Here we report
the results of one of the possible divisions. Details of the
data partition and results of other divisions are in Appendix
B.2.

Domain correlated UDG Domain correlated UDG is a
challenging setting with a great degree of flexibility, where

unlabeled data can be sampled from other categories or even
other datasets compared with labeled data as long as they
share the same domain space. This setting is quite common
in real-world scenarios, given that when category space is
unknown, one can hardly assume that the unlabeled data
share the same categories with labeled data. We use this
setting to validate the generalization ability of unsupervised
learning methods under both domain and category shifts.

We adopt DomainNet for this setting, given that the cat-
egory spaces of other popular DG datasets (such as PACS,
VLCS [60] and Office-home [62]) are limited. We ran-
domly select 3 out of 6 domains as source domains, and the
remaining domains are considered as targets. We choose 20
out of 300 categories for labeled training and testing data
and the other 40 or 100 categories for unlabeled data. There
is no overlap between categories in unlabeled and labeled
data, leading to the most challenging scenario in this setting.
Details of data proportion and more experimental results are
in Appendix B.3.

Results are shown in Table 3. DARLING achieves the
highest generalization accuracy on all of the domains. As
aforementioned, current contrastive loss not only enlarges
the distance between representations of samples from dif-
ferent categories but also that of samples from different do-
mains. However, the representations of domains being more
distinguishable brings no benefit on downstream tasks [43].
On the contrary, DARLING forces the model to learn a
domain-irrelevant representation space where only repre-
sentations from different latent categories can be easily dis-
tinguished. Intuitively, DARLING learns two kinds of abili-
ties: 1) selecting domain-irrelevant features which are most
likely related to categories, and generating a latent represen-
tation space with them; 2) discerning domain-related fea-



Table 3. Results of the domain correlated setting on DomainNet. For details about meaning of column titles and fonts, see Table 1.

Pretraining with data from 40 categories Pretraining with data from 100 categories

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

MoCo V2 72.84 33.40 34.20 41.19 46.82 77.03 37.68 35.25 43.71 49.98
SimCLR V2 75.58 35.52 37.08 43.83 49.39 79.70 38.88 38.89 46.50 52.49

BYOL 58.39 23.99 28.56 32.87 36.98 58.27 24.14 27.83 32.49 36.75
AdCo 76.61 31.55 33.42 40.96 47.19 75.19 33.76 38.51 43.77 49.15
ERM 55.78 22.40 25.75 30.43 34.64 55.78 22.40 25.75 30.43 34.64

DARLING (ours) 78.40 33.98 39.87 44.20 50.75 82.28 40.60 47.68 52.19 56.85

Table 4. Results of the uncorrelated setting on CIFAR. Pre. and
Fine. are short for pretraining and finetuning data. All methods are
pretrained on domain ‘elastic’, ‘fog’, ‘impulse noise’ and ‘motion
blur’, and fine-tuned on domain ‘contrast’, ‘frost’, ‘glass’, ‘blur’
and ‘shot noise’. For details about the number of runs, meaning of
column titles and fonts, see Table 1.

method Brightness Defocus Blur Gaussian Noise Snow Avg.

MoCo V2 77.13 75.88 75.18 72.27 75.12
SimCLR V2 78.54 77.60 75.92 72.68 76.19

BYOL 58.10 57.07 56.31 53.96 56.36
AdCo 75.63 77.32 78.84 72.25 76.01
ERM 36.53 34.61 33.49 32.98 34.40

DARLING (ours) 80.28 77.74 79.65 77.76 78.86

Table 5. Results of state-of-the-art methods with different initial-
ization methods under the domain correlated setting on Domain-
Net. For details about the number of runs, meaning of column
titles and fonts, see Table 1.

method Clipart Infograph Quickdraw Overall Avg.

M-ADA [48] 65.33 37.51 30.16 38.75 44.33
RSC [31] 61.25 23.27 27.48 31.52 37.33

MMLD [41] 74.09 36.09 33.44 42.46 47.88
MoCo V2 + RSC 81.36 37.59 41.38 46.81 53.44

MoCo V2 + MMLD 82.46 39.52 40.58 47.83 54.19

DARLING (ours) + RSC 86.47 39.00 45.71 49.71 57.06
DARLING (ours) + MMLD 85.53 38.14 44.08 48.62 55.92

tures and preventing them from contributing to the repre-
sentation space. As a result, DARLING shows strong gen-
eralization ability under both domain and category shifts.

Uncorrelated UDG In this setting, we make no restric-
tions or assumptions about the correlation between unla-
beled and labeled data. Thus unlabeled data can be sampled
from novel domains, unknown categories or other datasets
compared with labeled data. This brings a great challenge
to the generalization ability of models and the effectiveness
of unsupervised learning, given that the mutual information
between unlabeled and labeled data can reach the minimum.
Intuitively, with a stronger connection between unlabeled
and labeled data, unsupervised learning on unlabeled data
brings greater improvement. We explore how unsupervised
learning affects the generalization ability of models to novel
domains when the distribution shifts between unlabeled and
labeled data are significant.

Since the domain spaces of DomainNet and PACS are
limited, we adopt CIFAR-100-C and CIFAR-10-C for this
setting. In the most challenging scenario, the distribution of
unlabeled data and labeled data can be uncorrelated, where
we consider unlabeled CIFAR-100-C as the pretraining data
and CIFAR-10-C for finetuning data and target data. To
make the domain space sufficient, we generate distinguish-
ing domains for CIFAR-100 and CIFAR-10 and, there is
no overlap among unlabeled training data, labeled training
data, and test data. As shown in Table 4, we randomly se-
lect 4 specific domains for pretraining, finetuning, and test
data, respectively, and set the severity level to 3. We adopt
ResNet18 for this setting and the first layer was replaced by
a convolution layer with a kernel size of 3 and stride of 1,
since the size of images from CIFAR is 32× 32. Details of
implementation and further experimental results when do-
mains are differently selected are in Appendix B.4.

Results are shown in Table 4. Surprisingly, unsuper-
vised pretraining methods achieve significant improvement
though the pretraining data provides limited knowledge
about labeled training and testing data. DARLING outper-
forms all the unsupervised learning counterparts on all the
domains by a noticeable margin. The superiority of DAR-
LING shows that samples even from different domains and
categories compared to test data can help the model dis-
tinguish domain correlated features and category-correlated
features in the finetuning phase. In other words, similari-
ties among category correlated features may help select pre-
dictive features, while similarities among domain correlated
features help the models ignore category irrelevant features.

This largely broadens the valid scope of unsupervised
learning, given that no constraints of the category and
source (domain) of pretraining data and labeled data are
required to improve the model performance on novel do-
mains.

Finetuning with DG methods Table 5 shows how un-
supervised pretraining methods benefit the generalization
ability of ERM models since all the finetuning phases of
these methods can be considered as the training phase of
ERM models. Here we further explore how unsupervised
training affects the models trained with effective domain
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Figure 3. Figure (a) shows how the generalization accuracy of DARLING grows as the amount of available data increases. All the
models are pretrained with DARLING for 600 epochs. Pretraining classes indicates the number of categories used in the pretraining phase.
DARLING outperfroms models with ImageNet pretrained weights as the initialization when the number of available categories reaches
100. Figure (b) shows the convergence speed of MoCo V2 and DARLING. Pretraining epoch is the number of epoch for pretraining.
DARLING is more time efficient and achieves considerable higher generalization accuracy after convergence.

generalization methods. We report the results of state-of-
the-art methods of domain generalization with unsupervised
trained parameters as the initial state in Table 5. More ex-
perimental results are in Appendix B.5.

4.2. Comparison with ImageNet Pretrained Models

As the amount of available unlabeled data grows, unsu-
pervised pretraining achieves better performance. Surpris-
ingly, we find it is possible for DARLING to outperform
models pretrained on ImageNet though our unlabeled train-
ing data is of a significantly smaller amount compared to
ImageNet. Actually, if we consider ImageNet as a mixture
of data sampled from latent domains, the heterogeneity is
limited for learning a generalizable model with a domain-
irrelevant representation space [25]. Given data with strong
heterogeneity (such as a subset of DomainNet), although
there are strong distribution shifts between training data and
testing data, DARLING can still learn domain-irrelevant
representations and strengthen the generalization ability to
target domains. As shown in Figure 3a, when the available
data for pretraining are more than 100 out of 300 categories
from DomainNet, DARLING outperforms ImageNet pre-
trained initialization by a noticeable margin. Note that the
number of data that DARLING uses for pretraining is less
than 1/10 of the number of ImageNet data. This observa-
tion indicates that stronger unsupervised pretrained models
can be alternatives to the ones pretrained on ImageNet as
the initialization approach for DG tasks.

4.3. Analysis

Figure 3b visualizes the accuracy on the all correlated
setting under various pretraining epochs. All the param-
eters and pretraining protocols used for both methods are
the same for a fair comparison. With a small number of
pretraining epochs, DARLING outperforms MoCo V2 by a

considerable margin. As the number of pretraining epochs
grows, MoCo V2 reaches a maximal overall accuracy of
34.04% after pretraining for 600 epochs before the curve
tends to be flat, while DARLING outperforms MoCo V2
by around 7.43% at epoch 1000. The curve indicates that
DARLING is not only an efficient pretraining method but
also with a better convergence point. Moreover, Figure
3a and 3b indicate that with more unlabeled data sampled
from different domains and more training epochs, strong
UDG methods can gradually improve models’ generaliza-
tion ability. Thus pretraining models on data from different
datasets may further enhance generalization ability.

5. Conclusion
In this paper, we proposed a novel problem called un-

supervised domain generalization (UDG), where unlabeled
data are used to strengthen the generalization ability of
models since labeled data are usually costly or unavailable.
We also proposed a Domain-Aware Representation Learn-
ing method called DARLING to address the UDG problem.
Extensive experiments clearly demonstrated the effective-
ness of the proposed DARLING compared with state-of-
the-art unsupervised learning counterparts. As a pretrain-
ing approach, DARLING outperforms ImageNet pretrain-
ing approach with significantly less data, showing an en-
couraging way to initialize models for the DG problem.
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and Elisa Ricci. Best sources forward: domain generaliza-
tion through source-specific nets. In 2018 25th IEEE interna-
tional conference on image processing (ICIP), pages 1353–
1357. IEEE, 2018. 2

[40] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Robust place categorization with deep do-
main generalization. IEEE Robotics and Automation Letters,
3(3):2093–2100, 2018. 2

[41] Toshihiko Matsuura and Tatsuya Harada. Domain general-
ization using a mixture of multiple latent domains. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 11749–11756, 2020. 2, 3, 7, 14

[42] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5715–5725,
2017. 2

[43] Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf. Domain generalization via invariant fea-
ture representation. In International Conference on Machine
Learning, pages 10–18. PMLR, 2013. 1, 2, 6

[44] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean conference on computer vision, pages 69–84. Springer,
2016. 2

[45] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 1, 2

[46] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1406–1415,
2019. 2, 5

[47] Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Ef-
ficient domain generalization via common-specific low-rank
decomposition. In International Conference on Machine
Learning, pages 7728–7738. PMLR, 2020. 2

[48] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020. 2, 3, 7, 14

[49] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In International Conference on Machine Learning,
pages 5389–5400. PMLR, 2019. 1

[50] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail
Khodak, and Hrishikesh Khandeparkar. A theoretical analy-
sis of contrastive unsupervised representation learning. In In-
ternational Conference on Machine Learning, pages 5628–
5637. PMLR, 2019. 1

[51] Seonguk Seo, Yumin Suh, Dongwan Kim, Jongwoo Han,
and Bohyung Han. Learning to optimize domain specific
normalization for domain generalization. arXiv preprint
arXiv:1907.04275, 3(6):7, 2019. 2

[52] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek
Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias
in neural networks. arXiv preprint arXiv:2006.07710, 2020.
2

[53] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Sid-
dhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi.
Generalizing across domains via cross-gradient training.
In International Conference on Learning Representations,
2018. 2

[54] Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen.
Multi-adversarial discriminative deep domain generalization



for face presentation attack detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10023–10031, 2019. 1

[55] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Ren-
zhe Xu, Han Yu, and Peng Cui. Towards out-of-distribution
generalization: A survey. arXiv preprint arXiv:2108.13624,
2021. 2

[56] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han
Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020. 12, 13

[57] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation, 23(5):828–841,
2019. 1

[58] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 1

[59] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning. arXiv preprint
arXiv:2005.10243, 2020. 2

[60] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528. IEEE, 2011.
6

[61] Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. Mi{ce}: Mix-
ture of contrastive experts for unsupervised image cluster-
ing. In International Conference on Learning Representa-
tions, 2021. 3

[62] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 6

[63] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning, pages
1096–1103, 2008. 2

[64] Shujun Wang, Lequan Yu, Caizi Li, Chi-Wing Fu, and
Pheng-Ann Heng. Learning from extrinsic and intrinsic su-
pervisions for domain generalization. In European Confer-
ence on Computer Vision, pages 159–176. Springer, 2020.
1

[65] Zhen Wang, Qiansheng Wang, Chengguo Lv, Xue Cao, and
Guohong Fu. Unseen target stance detection with adversarial
domain generalization. In 2020 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.
1

[66] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and
Philipp Krahenbuhl. Sampling matters in deep embedding
learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2840–2848, 2017. 1

[67] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi
Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang Ma. Con-
trastive learning for compact single image dehazing. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10551–10560, 2021. 1

[68] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3733–
3742, 2018. 1

[69] Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou,
Yue He, and Zheyan Shen. Deep stable learning
for out-of-distribution generalization. arXiv preprint
arXiv:2104.07876, 2021. 2

[70] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Deep domain-adversarial image generation for do-
main generalisation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 13025–13032,
2020. 1, 2

[71] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Learning to generate novel domains for domain gen-
eralization. In European Conference on Computer Vision,
pages 561–578. Springer, 2020. 1, 2



A. Extra Experimental Results and Details

A.1. Datasets and details of implementation

We adopt 4 datasets to conduct experiments in our 4 settings. We briefly introduce them as follows.
CIFAR-10-C and CIFAR-100-C are robustness benchmarks consisting of 19 corruptions types with five levels of sever-

ities. We select level 3 for all the experiments. Example images are shown in Fig. 4.
DomainNet is comprised of 6 domains, namely clipart, infograph, painting, quickdraw, real, sketch. It contains 586, 575

examples of size (3, 224, 224) and 345 classes. Example images are shown in Fig. 5.
PACS is a widely used benchmark for domain generalization which consists of 7 object categories spanning 4 image

styles, namely photo, art-painting, cartoon and sketch. We adopt the protocol in [36] to split the training and val set. Example
images are shown in Fig. 6.

Details of implementation. For all the experiments, we use ResNet-18 as the backbone network unless otherwise speci-
fied. The learning rate for pretraining is 0.03 and then decays with a cosine decay schedule. The weight decay is set to 1e−4

and the batch size is set to 1024. For domain correlated and category correlated, all methods are pretrained for 600 epochs,
while for other settings 1000 epochs. We follow [8] for the augmentations and the optimization temperature. The feature
dimension is set to 128. For finetuning, all methods are trained for 30 epochs for all the settings, while the learning rate and
weight decay are set to 1e−3 and 1e−4, respectively.

A.2. All correlated UDG

Table 6. Results of the all correlated setting on DomainNet. We reimplement state-of-the-art unsupervised methods on DomainNet with
ResNet18 [24] as the backbone network for all the methods. ERM indicates the randomly initialed ResNet18. Overall and Avg. indicate
the overall accuracy of all the test data and the arithmetic mean of the accuracy of 3 domains, respectively. Note that they are different
because the capacities of different domains are not equal. The reported results are average over three repetitions of each run. All of the
models are trained on Clipart, Infograph, and Quickdraw domains of DomainNet and tested on the other three domains. The title of each
column indicates the name of the domain used as target. All the models are pretrained for 1000 epoches before finetuned on the labeled
data. The best results of all methods are highlighted with the bold font.

Label Fraction 1% Label Fraction 5%

method Painting Real Sketch Overall Avg. Painting Real Sketch Overall Avg.

MoCo V2 [8, 23] 11.38 14.97 15.28 14.04 13.88 20.80 24.91 21.44 23.06 22.39
SimCLR V2 [7] 16.97 20.25 17.84 18.85 18.36 21.35 24.34 27.46 24.15 24.38

BYOL [20] 5.00 8.47 4.42 6.68 5.96 9.78 10.73 3.97 9.09 8.16
AdCo [29] 11.13 16.53 17.19 15.16 14.95 19.97 24.31 24.19 23.08 22.82

FixMatch [56] 12.25 12.98 15.56 13.30 13.60 21.59 26.01 27.32 25.67 24.97
ERM 6.68 6.97 7.25 6.94 6.96 7.45 6.08 5.00 6.24 6.18

DARL (ours) 14.45 21.68 21.30 19.59 19.14 21.09 30.51 28.49 27.48 28.19

Label Fraction 10% Label Fraction 100%

method Painting Real Sketch Overall Avg. Painting Real Sketch Overall Avg.

MoCo V2 25.35 29.91 23.71 27.37 26.32 43.42 58.61 40.38 50.66 47.47
SimCLR V2 24.01 30.17 31.58 28.75 28.59 46.79 62.32 51.05 55.71 53.39

BYOL 9.50 10.38 4.45 8.92 8.11 34.02 46.48 24.82 38.59 35.11
AdCo 23.35 29.98 27.57 27.65 26.97 43.55 61.42 51.23 54.37 52.07

FixMatch 25.15 32.39 33.18 30.54 30.24 44.76 55.15 54.93 52.22 51.62
ERM 9.90 9.19 5.12 8.56 8.07 31.50 40.21 24.01 34.48 31.91

DARL (ours) 25.90 33.29 30.77 30.72 29.99 49.64 63.77 54.31 57.91 55.91

In Table 6 we show the effectiveness of unsupervised learning methods for DG on setting all correlated with when source
domains are Clipart, Inforgraph and Quickdraw and target domains are Painting, Real and Sketch, respectively. Unsupervised
training improves the generalization ability of models on the All correlated UDG setting. As explained in Section 4.1, this
indicates the supervision from category labels of source domains is insufficient given that it can be considered as biased
knowledge in target domains so that unsupervised pretraining is a effective approach for DG.



DARL consistently outperforms other unsupervised learning conterparts with all of the the split manners of pretrain-
ing/finetuning subsets, showing the superior of domain-irrelevant features against domain-relevant features when generalizing
to novel domains.

One can consider the all correlated setting as a semi-supervised domain generalization setting. Thus we compare DARL
with a SOTA semi-supervised method FixMatch [56]. DARL outperforms FixMatch on almost all of the subsets. Note
that semi-supervised methods such as FixMatch can only be applied to deal with the all correlated setting but not other
settings such as the uncorelated or the domain correlated setting. DARL shows much wider applicability compared to
semi-supervised methods when the labeled data are heterogeneous and insufficient.

Details of data split are shown in Table 12, 13, 18, and 19.

A.3. Domain correlated UDG

Table 7. Results of the domain correlated setting on DomainNet. For details about the number of runs, meaning of column titles and fonts,
see Table 6.

Pretraining with data from 40 categories

method Painting Real Sketch Overall Avg.

MoCo V2 45.83 60.75 43.98 53.18 50.19
SimCLR V2 47.94 62.40 54.47 56.76 54.93

BYOL 33.73 45.63 25.48 38.21 34.95
AdCo 43.77 64.58 47.76 55.36 52.04
ERM 31.92 41.58 24.10 35.32 32.53

DARL (ours) 47.82 65.07 56.90 58.61 56.60

We show that unsupervised learning improves models performance when the domains are re-split randomly in Table
7. DARL achieves the best performance compared to other unsupervised methods, that indicates the superior of domain-
irrelevant features against domain-relevant features when generalizing to novel domains.

A.4. Uncorrelated UDG

Table 8. Results of the uncorrelated setting on CIFAR. Pre. and Fine. are short for pretraining and finetuning data. B, D, G, and S donate
Brightness, Defocus blur, Gaussian noise and Snow, respectively. C, F, G, and S donates Contrast, Frost, Glass, Blur and Shot noise,
respectively. For details about the number of runs, meaning of column titles and fonts, see Table 6.

method Pre. Fine. Elastic Fog Impulse Noise Motion Blur Avg.

MoCo V2 C, F, G, S B, D, G, S 76.33 70.45 74.73 72.57 73.52
SimCLR V2 C, F, G, S B, D, G, S 77.91 72.38 76.00 73.46 74.94

BYOL C, F, G, S B, D, G, S 58.32 50.88 54.34 56.95 55.13
AdCo C, F, G, S B, D, G, S 79.67 71.05 74.35 72.17 74.31
ERM C, F, G, S B, D, G, S 28.80 26.46 28.46 28.62 28.09

DARL (ours) C, F, G, S B, D, G, S 78.98 71.52 76.65 73.19 75.09

We show that unsupervised learning improves models performance when the domains are re-split randomly on the un-
correlated UDG setting in Table 8. DARL achieves the best performance compared to other unsueprvised methods, that
indicates the superior of domain-irrelevant features against domain-relevant features when generalizing to novel domains.

A.5. Finetuning with DG methods

Here we further explore how unsupervised training affects the models trained with effective domain generalization meth-
ods. We show that DARL can be easily assembled with current DG methods to further improve the generalization ability.

Finetuning with DG methods Table 9 shows how unsupervised pretraining methods benefit the generalization ability of
empirical risk minimization (ERM) models since all the finetuning phase of these method can be considered as the training
phase of ERM models. Here we further explore how unsupervised training affects the models trained with effective domain



generalization methods. We report the results of state-of-the-art methods of domain generalization with unsupervised trained
parameters as the initial state in Table 9.

With unsupervised learning, DG methods show stronger generalization ability. As a strong initialization, DARL learns
a domain-irrelevant embedding space which maintains prior knowledge about distinguishing between domain-relevant and
domain-irrelevant features. Thus DARL can help DG methods including RSC and MMLD learn stronger generalization
ability to unseen domains.

If we consider DG methods as the backend of DARL, they achieve better performance compared to finetuning methods
with ERM, as shown in Table 9. Thus strong fully-supervised methods as the backend can further improve the performance
of DARL.

Then we compare DARL with DG methods that enlarge the available data space with augmentations of source domains.
The generation based methods learns to generate samples while training, so that they can easily handle tasks with simple
inputs, such as MNIST dataset. But when the structure of source data are complex, such as large scale real-world images,
generation based methods usually require considerable computation cost and the effectiveness is harmed. DARL significantly
outperforms generation based method such as M-ADA on the domain correlated setting, showing the superior of DARL for
real-world DG tasks.

Table 9. Results of state-of-the-art methods with different initialization methods under the domain correlated setting on DomainNet. For
details about the number of runs, meaning of column titles and fonts, see Table 6.

method Painting Real Sketch Overall Avg.

M-ADA [48] 31.24 44.96 25.51 37.17 33.90
RSC [31] 35.19 48.28 24.59 39.81 36.02

MMLD [41] 42.72 57.80 37.31 49.42 45.95
MoCo V2 + RSC 48.64 64.74 45.14 56.26 52.84

MoCo V2 + MMLD 51.57 65.75 50.52 58.70 55.94

DARL (ours) + RSC 56.62 72.08 60.32 65.39 63.01
DARL (ours) + MMLD 54.11 69.08 59.08 62.88 60.76

B. Category correlated UDG
We present the forth UDG setting, namely category correlated UDG, where unlabeled and labeled data share the same

category space but not the domain space. This setting has practical significance, given we can consider any kind of data
structure of the source other than category, such as the batch of medical data generation or the time real-world images are
taken, as domain. Thus data from different domains can share the same category space.

Table 10. Results of the category correlated setting on CIFAR. Pre. and Fine. are short for pretraining and finetuning data. B, C, E, and
G donate Brightness, Contrast, Elastic and Gaussian noise, respectively. F, G, M, and S donate Frost, Glass Blur Motion blur and Snow,
respectively. For details about the number of runs, meaning of column titles and fonts, see Table 6.

method Pre. Fine. Defocus Blur Fog Impulse Noise Shot Noise Avg.

MoCo V2 B, C, E, G F, G, M, S 76.90 73.67 73.33 76.54 75.11
SimCLR V2 B, C, E, G F, G, M, S 80.26 75.39 76.48 79.43 77.89

BYOL B, C, E, G F, G, M, S 55.27 49.87 52.36 53.13 52.66
AdCo B, C, E, G F, G, M, S 77.96 75.33 75.62 77.89 76.70
ERM B, C, E, G F, G, M, S 26.53 23.34 25.67 27.94 25.87

DARL (ours) B, C, E, G F, G, M, S 83.49 78.76 78.61 79.23 80.02

We use CIFAR-10-C for this setting since the domain spaces of DomainNet(6) and PACS(4) are limited. To make sure
the category spaces of unlabeled and labeled data are correlated, we randomly select 60%, 20% and 20% of CIFAR-10 for
pretraining, finetuning and test. We randomly select 4 specific domains for pretraining, finetuning and test data, respectively.
The details of data split are in Table 17.



Results are shown in Table 10. Given pretraining, finetuning and test data share the same category space, the prior
knowledge about category holds in the finetuning and inference phase. Thus unsupervised learning including MoVo V2,
SimCLR V2 and BYOL achieve significant improvement for the category correlated setting. The embedding space DARL
learns maintains more prior knowledge about the category compared to other unsupervised methods since the DARL prevents
it from learning domain-related features. So DARL further improves the performance by 2.13%.

C. Ablation Study
The contrastive loss in the proposed DARL relies largely on the similarity prediction network and domain specific negative

sample sets. However, the domain specific negative sample sets are indispensable for DARL, thus we exploit the effect of sim-
ilarity prediction network in this ablation study. A straightforward approach to hinder models from leveraging domain-related
features to contrast negative pairs is splitting negative samples regarding to their domains and only calculating contrastive
loss with negative pairs where two samples are from the same domain. Thus none of domain related features are considered
in negative pairs.

We present the results on domain correlated setting with 100 categories in DomainNet for pretraining to conduct the
ablation and show the results in Table 11. Raw contrastive in the table refers to a model trained with contrastive loss without
similarity prediction network and domain specific negative sample sets. DARL-st refers to the straightforward alternative of
DARL without the similarity prediction network. DARL-st shows considerable improvement compared with raw contrastive
loss, indicating that the adversarially generated domain specific negative samples are effective for helping the model learn
category-discriminative features. Then the comparison between DARL-st and DARL further shows the effectiveness of the
similarity prediction network, which learns more category-discriminative features from negative pairs from similar domains.

Table 11. Results of the domain correlated setting on DomainNet for ablation study. For details about meaning of column titles and fonts,
see Table 6.

Pretraining with data from 100 categories

method Clipart Infograph Quickdraw Overall Avg.

ERM 55.78 22.40 25.75 30.43 34.64
Raw contrastive 75.32 32.96 38.17 43.67 48.82

DARL-st 80.15 36.81 45.50 49.57 54.15
DARL 82.28 40.60 47.68 52.19 56.85

Table 12. Data split details of all correlated setting when source domains are Painting, Real and Sketch. Pretrain, finetune, test indicate the
number of available samples from corresponding domains in the pretraining, finetuning and testing phase, respectively.

phase Painting Real Sketch Clipart Infograph Quickdraw All.

pretrain 5305 9896 3901 0 0 0 19102
finetune 5305 9896 3901 0 0 0 19102

validation 600 1111 444 0 0 0 2155

test 0 0 0 3904 5348 10000 19252

Table 13. Data split details of all correlated setting when source domains are Clipart, Infograph and Quickdraw. Pretrain, finetune, test
indicates the number of available samples from corresponding domains in the pretraining, finetuning and testing phase, respectively.

phase Painting Real Sketch Clipart Infograph Quickdraw All.

pretrain 0 0 0 3504 4804 9000 17308
finetune 0 0 0 3504 4804 9000 17308

validation 0 0 0 400 544 1000 1944

test 5905 11007 4345 0 0 0 21257



Table 14. Data split details of domain correlated setting when source domains are Painting, Real and Sketch, while the number of class is
40. Pretrain, finetune, test indicate the number of available samples from corresponding domains in the pretraining, finetuning and testing
phase, respectively.

phase Painting Real Sketch Clipart Infograph Quickdraw All.

pretrain 9644 22421 10200 0 0 0 42265
finetune 4572 9726 4198 0 0 0 18496

validation 516 1092 478 0 0 0 2086

test 0 0 0 3471 5128 10000 18599

Table 15. Data split details of domain correlated setting when source domains are Clipart, Infograph and Quickdraw, while the number of
class is 40. Pretrain, finetune, test indicate the number of available samples from corresponding domains in the pretraining, finetuning and
testing phase, respectively.

phase Painting Real Sketch Clipart Infograph Quickdraw All.

pretrain 0 0 0 5304 5625 20000 30929
finetune 0 0 0 3504 4804 9000 17308

validation 0 0 0 400 544 1000 1944

test 5905 11007 4345 0 0 0 21257

Table 16. Data split details of domain correlated setting when source domains are Painting, Real and Sketch, while the number of class is
100. Pretrain, finetune, test indicate the number of available samples from corresponding domains in the pretraining, finetuning and testing
phase, respectively.

phase Painting Real Sketch Clipart Infograph Quickdraw All.

pretrain 21213 49701 20868 0 0 0 91782
finetune 4572 9726 4198 0 0 0 18496

validation 516 1092 478 0 0 0 2086

test 0 0 0 3471 5128 10000 18599

Table 17. Data split details of category correlated setting. Pretrain, finetune, test indicate the number of available samples from corre-
sponding domains in the pretraining, finetuning and testing phase, respectively.

phase Brightness Contrast Elastic Gaussian Noise Frost Glass Blur

pretrain 9000 9000 9000 9000 0 0
finetune 0 0 0 0 3000 3000

test 0 0 0 0 0

phase Motion Blur Snow Defocus Blur Fog Impulse Noise Shot Noise

pretrain 0 0 0 0 0 0
finetune 3000 3000 0 0 0 0

test 0 0 3000 3000 3000 3000

Table 18. Category space of pretraining, finetuning and test for all correlated setting when source domains are Painting, Real and Sketch.

Phase Available categories.

pretrain, finetune, test The Eiffel Tower, bee, bird, blueberry, broccoli, fish, flower, giraffe, grass, hamburger, hexagon,
horse, sun, tiger, toaster, tornado, train, violin, watermelon, zigzag



Table 19. Category space of pretraining, finetuning and test for all correlated setting when source domains are Clipart, Infograph and
Quickdraw.

Phase Available categories.

pretrain, finetune, test The Eiffel Tower, bee, bird, blueberry, broccoli, fish, flower, giraffe, grass, hamburger, hexagon,
horse, sun, tiger, toaster, tornado, train, violin, watermelon, zigzag

Table 20. Category space of pretraining, finetuning and test for domain correlated setting when source domains are Painting, Real and
Sketch and the number of available category is 40.

Phase Available categories.

pretrain arm, backpack, basket, bear, beard, belt, bird, book, bridge, cat, cookie, couch, donut, drill, face, fan,
finger, golf club, grass, helicopter, jacket, key, keyboard, lighthouse, mailbox, marker, mug, pencil, pizza,
potato, shoe, shovel, sink, skyscraper, spoon, squirrel, sweater, telephone, tiger, train

finetune, test The Eiffel Tower, barn, bee, blueberry, broccoli, bus, butterfly, fish, giraffe, hamburger, hockey stick, sea
turtle, spider, toaster, tornado, triangle, violin, watermelon, wine glass, zigzag

Table 21. Category space of pretraining, finetuning and test for domain correlated setting when source domains are Painting, Real and
Sketch and the number of available category is 100.

Phase Available categories.

pretrain The Great Wall of China, The Mona Lisa, apple, arm, asparagus, baseball bat, bathtub, belt, bicycle,
binoculars, boomerang, bracelet, brain, bread, bucket, cake, calendar, candle, cannon, carrot, cat, ceil-
ing fan, chair, circle, crayon, crocodile, cruise ship, cup, dolphin, door, dragon, dresser, elbow, elephant,
eye, fire hydrant, flamingo, flashlight, flip flops, garden hose, hammer, harp, helmet, hot air balloon,
hourglass, house, kangaroo, knife, leg, light bulb, lighter, line, mailbox, marker, microwave, monkey,
moon, ocean, paintbrush, piano, pickup truck, pliers, pond, pool, potato, rabbit, rain, rake, rifle, river,
rollerskates, sailboat, sandwich, saxophone, school bus, see saw, shoe, sink, snail, snorkel, snowflake,
soccer ball, sock, spoon, square, string bean, swing set, table, telephone, tennis racquet, tent, toe, tooth-
brush, toothpaste, tree, trombone, umbrella, vase, waterslide, windmill

finetune, test The Eiffel Tower, barn, bee, blueberry, broccoli, bus, butterfly, fish, giraffe, hamburger, hockey stick, sea
turtle, spider, toaster, tornado, triangle, violin, watermelon, wine glass, zigzag

Table 22. Category space of pretraining, finetuning and test for domain correlated setting when source domains are Clipart, Infograph and
Quickdraw.

Phase Available categories.

pretrain arm, backpack, basket, bear, beard, belt, bird, book, bridge, cat, cookie, couch, donut, drill, face, fan,
finger, golf club, grass, helicopter, jacket, key, keyboard, lighthouse, mailbox, marker, mug, pencil, pizza,
potato, shoe, shovel, sink, skyscraper, spoon, squirrel, sweater, telephone, tiger, train

finetune, test The Eiffel Tower, bee, bird, blueberry, broccoli, fish, flower, giraffe, grass, hamburger, hexagon, horse,
sun, tiger, toaster, tornado, train, violin, watermelon, zigzag
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(a) Example images of class cat in Cifar10-C.
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Figure 4. Example images of Cifar.
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Figure 5. Example images of class horse in DomainNet.



Art painting

Cartoon

Photo

Sketch

Figure 6. Example images of class dog in PACS.
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