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ABSTRACT
How do social groups, such as Facebook groups and Wechat
groups, dynamically evolve over time? How do people join
the social groups, uniformly or with burst? What is the
pattern of people quitting from groups? Is there a simple u-
niversal model to depict the come-and-go patterns of various
groups?

In this paper, we examine temporal evolution patterns
of more than 100 thousands social groups with more than
10 million users. We surprisingly find that the evolution
patterns of real social groups goes far beyond the classic
dynamic models like SI and SIR. For example, we observe
both diffusion and non-diffusion mechanism in the group
joining process, and power-law decay in group quitting pro-
cess, rather than exponential decay as expected in SIR mod-
el. Therefore we propose a new model comeNgo, a concise
yet flexible dynamic model for group evolution. Our model
has the following advantages: (a) unification power: it gen-
eralizes earlier theoretical models and different joining and
quitting mechanisms we find from observation. (b) succinct-
ness and interpretability: it contains only six parameters
with clear physical meanings. (c) accuracy: it can capture
various kinds of group evolution patterns preciously and the
goodness of fit increase by 58% over baseline. (d) useful-
ness: it can be used in multiple application scenarios such
as forecasting and pattern discovery.

CCS Concepts
•Information systems → Data mining;
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1. INTRODUCTION
Forming social groups is an inherent human nature and

the evolution of social groups is an essential mechanism in
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society. Understanding how these groups take shape and e-
volve over time is one of the central building blocks of mod-
eling and understanding various social phenomena such as
information spreading [13, 4], social-tie formation [10, 25],
and social cooperations and competitions [9, 3]. Further-
more, studying the dynamics of groups also has rich prac-
tical use in various application scenarios. For example, the
evolution of certain industry association can provide insight
into the development trend of the business; the activities of
online communities can become the vane of the popularity of
new topics; and the detection of abnormal group growth can
even help to handle the threat of online terrorist recruitment
or find the trace of terrorist organization.

In literature, group evolution is a theme that runs through
large parts of social science research [5]. Recently, some
computational studies on social groups provide an profound
foundation of the mechanism of group growth and also find
several features that have significant influence on the group
growth process [2, 11]. However, previous works still have
some limitations and leave some fundamental problems un-
solved.

The first fundamental problem is how to model the
temporal patterns of group evolution. A comprehen-
sive understanding of group evolution should contain both
spatial dimension and temporal dimension. The spatial di-
mension studies how groups evolve over the underlying net-
work while the temporal dimension studies how groups e-
volve over time. Several studies have been done in spatial
dimension and they have found serval structure features in-
fluencing the evolution of group and the mechanism of how
groups attract new member through the network [2, 22, 25,
11]. However, such feature based models can not capture
the temporal patterns and reveal the inherent mechanism in
temporal dimension.

The second fundamental problem is how to model the
quit process of group. Group evolution process is the
resultant of both come and go: a group attracts new mem-
bers through diffusion or non-diffusion mechanisms [11] and
meanwhile, members in the group may also leave the group.
Most studies mainly focus on the growth mechanism but ig-
nore the fact that, in most situations, groups also have quit
mechanism, for both online and offline groups. Although
some researches find the importance of member mobility
in group evolution [7], there is no explicit model for the
quit mechanism of groups. Compared to our understand-
ing about how people join groups, how people quit groups
remains quite unclear.



Figure 1: (a-1) and (b-1) The evolution process of two groups and in 42 days, the dots represent real data
and the lines are the results of our model. (a-2) and (b-2) The prediction result of our model. We use the
data of first 15 days to train the model. (a-3) and (b-3) Survival rate of holding time of these two groups.

In order to solve the two fundamental problems, we ana-
lyze a large real dataset with 103,548 groups from Wechat,
the largest social communication network in China. Note
that this is the first-ever large-scale dataset providing de-
tailed logs of users joining and quiting social groups.. We
observe rich complexities in the temporal patterns of group
evolution. In fig 1 we showcase the group evolution process
of two online groups over a time period of 42 days. From
Figure 1.1, we can see different growth patterns with re-
spect to group size of the two groups: one group gradually
grows and then stays relatively stable while the other group
shows continuous decline after a quick growth. We further
look into the joining and quitting processes respectively. In
quitting process, we observe different patterns of quit rates
in different groups, as shown in Figure 1.3. The resulted
holding time (the time interval between join group and quit
group) distributions for different groups follows exponen-
tial decay ( as expected in SIR, only account for 15% of all
groups), power-law decay or inbetween. However, there is
no published model to deal with the latter two cases, which
account for the majority of groups. Moreover, we observe
both diffusion and non-diffusion mechanism in joining pro-
cess, while non-diffusion mechanism is beyond the capability
of traditional dynamic models such as SI and SIR. Based on
the observations, we propose a unified dynamic model for
the group evolution process with temporal data. Our pro-
posed model has the following appealing advantages:

• Unification power: It is a general model that in-
cludes previous models as special case and also em-

bodies new mechanisms.

• Succinctness and interpretability: It uses only six
parameters and every parameter has a clear physical
meaning.

• Accuracy: It can capture the temporal patterns of d-
ifferent groups precisely as shown in fig 1.1. We achieve
an improvement of 58% in goodness of fit in a real
dataset with more than 100 thousands groups.

• Usefulness: It is useful in multiple application sce-
narios such as forecasting and pattern discovery. Fig
1.2 is a showcase. With the early stage information of
the group evolution process, our model can predict the
remained evolution process accurately.

The rest of the paper goes as follows: Section 2 presents
the fundamental concepts about dynamic models and Sec-
tion 3 the proposed model. Section 4 shows our experimental
results on a large-scale real dataset. We conclude in Section
5.

2. RELATED WORK
With the rapid growth of different kinds of online social

network, we have more source and opportunity to study the
structure and dynamics of social groups. In recent years,
a lot of studies have been done on online group evolution
patterns.



As one of the first empirical investigations on online group-
s, Backstrom, et al. study how structural features influ-
ence group formation and evolution in large social networks
[2]. They reveal an important mechanism that group grows
through the ties its members have to individuals outside the
group. This mechanism is similar to the ’word-of-mouth’
mechanism in diffusion process [21]. Several studies also fo-
cus on the influence of structural properties of groups in
various underlying networks such as online games [8], mo-
bile communication network [24, 25], co-authorship network
[25, 14] and online social networks [22, 15]. Lin, et al. pro-
pose a probabilistic framework to analyze the evolution of
community structures on a dynamic network [19]. Kairam,
et al. conduct further research to reveal the more complex
group evolve mechanism by making a conceptual difference
between diffusion and non-diffusion growth in groups [11].
They find that non-diffusion mechanism also plays an im-
portant role in group evolution process.

As noted earlier, the previous works provide a profound
explanation of how group grows through the network but do
not answer the equally fundamental question that how group
grows over time. Another limitation is that the do not reveal
and model the mechanism of quitting the group. To both
utilize the achievements and overcome the limitations of the
previous works, we propose a dynamic model that captures
the temporal patterns of both join and quit process.

3. PROPOSED METHOD
In this section we present our proposed method and ana-

lyze it.
First of all, our model should be a dynamic model that

can present both temporal dimension and spatial dimension
of group evolution. Besides, our model tries to capture the
following behaviours, that we observed from our real data.

• P1: dependence mechanism: power-law holding time
distribution in quit process.

• P2: non-diffusion mechanism: impulses in join process

To handle P1, we assume that the recoverability of a node
may decay with the holding time exponentially, which is dis-
cussed in subsection 3.2. To handle P2, we import external
shocks in our model, which is discussed in subsection 3.3.

We describe our model in steps, adding complexity, and
we start with preliminaries..

3.1 Preliminaries
Dynamic models are widely used to describe the mech-

anism of temporal process such as epidemic spreading [1,
27], information diffusion [17, 20, 28], network evolving [16,
6]. In this subsection, we present the fundamental concepts
about dynamic model. We start from one of the most basic
dynamic models in spreading process: epidemiology models.
We consider epidemic models as the baseline because they
can capture the ’word-of-mouth’ diffusion mechanism and
can deal with the quit mechanism.

Susceptible-Infected model. The most basic epidemi-
ology model is ’Susceptible-Infected’(SI) model. Each ob-
ject/node is in one of two states - Susceptible(S) or Infect-
ed(I). Each infected node attempts to infect each of its neigh-
bors independently at a constant rate β, which reflects the

strength of the virus. Once infected, each node stays in-
fected forever. The dynamic equation of the basic SI model
is:

dI(t)

dt
= β ∗ (N − I(t))I(t) (1)

where N is the total amount of obejcts/nodes and we as-
sume that the underlying network is a clique of N, the time
t is considered continuous, dI/dt is the derivative, and the
initial condition I(0)>0 need to be given.

Susceptible-Infected-Recovered model. Another ba-
sic epidemiology model is an extension of SI model called
’Susceptible-Infected-Recovered’(SIR) model [12]. It allows
Infected node to get recovered. Each object/node is in one
of three states - Susceptible(S), Infected(I) or Recovered(R).
The infect process is similar to SI model with a constant in-
fect rate β while each infected node may get recovered at
a constant rate γ. Once get recovered, the node will nei-
ther infect other nodes nor get infected by other nodes. The
dynamic equation of the basic SIR model is:

dI(t)

dt
= β ∗ (N − I(t)−R(t))I(t)− γI(t)

dR(t)

dt
= γI(t)

(2)

where the initial condition R(0)=0.

In SIR model, the recover rate γ(τ) is a constant γ and
we can derive the holding time follows an exponential dis-
tribution, that is,

Theorem 1. Let f(τ) be the probability density function
of holding time τ in SIR model, then

f(τ) = γe−γτ

Proof. By definition of f(τ),

f(τ) = −dPr{T > τ}
dτ

(3)

By definition of γ(τ),

f(τ) = Pr{T > τ}γ(τ) = γPr{T > τ} (4)

Take the derivative of Eq.5 with respect to τ and combine
with Eq.4, we can derive that,

df(τ)

dτ
= −γf(τ)

Solve this differential equation with initial condition f(0) =
γ and we can derive that,

f(τ) = γe−γτ

This theorem demonstrate that the holding time distribu-
tion of SIR model follows an exponential distribution with
an exponent of −γ. However, as is shown in Fig. 2, the
holding time distribution of real data follows a power-law
distribution, so the recover function γ(τ) should be a func-
tion decays verses holding time τ .

The above are the parameters of the base model and we
will model the group evolve process as follows:
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Figure 2: holding time distribution.

• n initial users found a group at birth time 0

• the group occasionally attracts other users in the pop-
ulation N

• users in the group may also quit the group

Note that the n initial users are also included in the pop-
ulation N and we assume that users who quit the group will
not add it again, which is similar to SIR model.

Next we present our comeNgo model, which is a concise
yet flexible dynamic model with several desirable properties.

3.2 Base model

3.2.1 Dynamics equation
A group evolve process can be seen as the interaction of

two processes: join process and quit process. We also build
our model on these two processes. Let J(t) be the cumula-
tive number of people who ever joined the group before time
t, and Q(t) be the cumulative number of people who quit
the group before time t. Let I(t) be the number of people
in the group at time t, so the group evolve process I(t) can
be defined as follows,

I(t) = J(t)−Q(t) (5)

So our task is to find the dynamics equation for J(t) and
Q(t). For join process J(t), we only consider the word-of-
mouth mechanism in base model. We assume that each
member in the group occasionally attracts other users to
join the group and the possibility is determined by the at-
tractiveness of the group β. So the dynamic equation of join
process is as follows,

J ′(t) =
dJ

dt
= β(N − J(t))I(t) (6)

For quit process Q(t), we need to consider the holding
time distribution problem. As is proved in Theorem. 1,
a constant recover function λ(τ) will lead to a exponential
holding time distribution. In our model, we add an power-
law decay with an exponent α to the recover function as

follows,

γ(τ) = γ0τ
−α (7)

We will prove that the γ(τ) can generate both power-
law and exponential holding time distribution depending on
α. We first derive the probability density function f(τ) of
holding time distribution as follows,

Lemma 1. Let f(τ) be the probability density function of
holding time τ in comeNgo model, then

f(τ) = cτ−α exp(
γ0τ

1−α

α− 1
) (8)

Proof. By definition of f(τ),

f(τ) = −dPr{T > τ}
dτ

(9)

By definition of γ(τ)

f(τ) = Pr{T > τ}γ(τ) (10)

this is,

Pr{T > τ} =
1

γ0
ταf(τ) (11)

Take the derivative of Eq.9 with respect to τ and combine
with Eq.11, we can derive that,

−f(τ) =
α

γ0
τα−1f(τ) +

1

γ0
τα
df(τ)

dτ

Solve this differential equation, we can get that,

f(τ) = cτ−α exp(
γ0τ

1−α

α− 1
)

where c is a constant decided by the initial condition.

Now we prove that the holding time distribution can be
both power-law tail and exponential tail depending on α.

Theorem 2. when α > 1,

lim
τ→∞

f(τ) ∝ τ−α

Proof.

lim
τ→∞

f(τ)

τ−α
= lim
τ→∞

c · exp(γ0τ
1−α

α− 1
)

∵ α > 1 ∴ lim
τ→∞

τ1−α = 0, lim
τ→∞

exp(
γ0τ

1−α

α− 1
) = 1

∴ lim
τ→∞

f(τ)

τ−α
= c, lim

τ→∞
f(τ) ∝ τ−α

Theorem 3. when α < 1,

lim
τ→∞

f(τ) ∝ e−γτ
1−α

Proof.

lim
τ→∞

log f(τ)

τ1−α
= lim
τ→∞

log c

τ1−α
− α log τ

τ1−α
+

γ0
α− 1

∵ α < 1 ∴ lim
τ→∞

τα−1 = 0, lim
τ→∞

τα−1 log τ = 0

∴ lim
τ→∞

f(τ) ∝ e−γτ
1−α



As a result,the tail of the holding time distribution gener-
ated by our model mainly depends on the decay parameter
α. When α > 1, the holding time distribution will be power-
law tailed while when α < 1, it will have an exponential
decay, and when α→ 0, it will become an exact exponential
distribution.

We also show the result of holding time distribution in
Fig.2. The blue dot represents the holding time distribution
of all groups and the red line is the result of our model.
We can see from the figure that it can approximate the re-
al data quit well. This evidence further demonstrates the
correctness of our model.

With the appropriate recover function γ(τ) = γ0τ
−α, we

can derive the dynamics equation for the quit process as
follows,

Q′(t) =
dQ

dt
=

∫ t

0

J ′(x)f(t− x)dx (12)

where f(τ) is defined in Eq.8.
Now we have the dynamics equation for join process (E-

q.7) and quit process (Eq.15), in the next section, we will
propose our dynamic model in discrete time based on the
equation.

3.2.2 comeNgo-Base

Let I(n) be the number of people in the group at time-
tick n, let ∆J(n) be the number of people join the group
at time-tick n, and let ∆Q(n) be the number of people quit
the group at time-tick n. Our base model is governed by the
equations

Model 1 (comeNgo-Base). Our base model is gener-
ated by the equations

I(n+ 1) = I(n) + ∆J(n)−∆Q(n)

∆J(n+ 1) = β(N − J(n))I(n)/N

∆Q(n+ 1) =

n∑
t=0

∆J(n) · f(n+ 1− t)

(13)

where,

f(τ) = γ0τ
−α exp(

γ0(τ1−α − 1)

α− 1
)

and initial conditions:

∆J(0) = J0,∆Q(0) = 0

and also, by definition

J(n) =
n∑
t=0

∆J(t), Q(n) =

n∑
t=0

∆Q(t)

Justification of the model. There are 4 parameters in
our base model, {β, γ, α,N}. An advantage of our dynamic
model is that all the parameters have clear and explain-
able physical meaning, which means our model is more than
fitting the data. Following is a brief explanation to each
parameter:

• β indicates the attractiveness of the group. It deter-
mines how fast the group will attract new users and
grow larger.

• γ0 indicates group members’ short time satisfaction
degree of the group. The higher the value is, the higher
percentage of users will feel boring and quit the group
soon.

• α indicates group members’ long time dependence on
the group. If α is high, it means that the users who
have been in the group for some time may become de-
pendent on the group and are unlikely to quit anymore.
In contrast, if α is low, group members are less likely
to develop the long term interest in the group and the
will gradually quit the group, sooner of later.

• N is the population of all potential members of the
group. Although N may change over time, but it is
relatively steady in most condition. So we set it to a
constant in our model for brief.

We should also note that the initial condition in our mod-
el ∆J(0) = J0 needs to be given. It is the initial size of the
group when found. Since group evolves mainly through dif-
fusion mechanism, the initial size will greatly influence the
growth speed at the beginning.

3.3 With Non-diffusion Growth
Although groups grow mainly through influence between

nodes, non word-of-mouth mechanism may also plays an im-
portant part in group evolution process. Let’s take the evo-
lution of a new association in university for example. In
the one hand, the founders and members may try to attract
their friends into the association. This is ’word-of-mouth’
mechanism and such mechanism will last all the time. In
the other hand, they may also conduct membership recruit-
ment meeting to attract new members. Such activity may
attract a lot of new members in a short time, causing a burst
like an external shock. Such non-diffusion mechanism may
have great impact on the whole evolve process so we need
to reflect it in our model.

We add the external shocks in the join process to model
the non-diffusion growth. The dynamics equation of the join
process is as follows,

J ′(t) =
dJ

dt
= β(N − J(t))I(t) +

∑
λiδ(t− ti) (14)

where δ(t − ti) is dirac delta function that indicates an
impulse at time ti, and λi is the strength of the shock.

So we propose our model as follows,

Model 2 (comeNgo).

I(n+ 1) = I(n) + ∆J(n)−∆Q(n)

∆J(n+ 1) = β(N − J(n))I(n)/N +

k∑
i=1

λi · 1{ti}(n)

∆Q(n+ 1) =

n∑
t=0

∆J(n) · f(n+ 1− t)

(15)

where 1{ti}(n) is an indicator function, by definition,

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A.



Justification of the model. The model is identical to
comeNgo-base with the addition of the impulse term λiδ(t−
ti). This term captures the effect of non-diffusion mechanis-
m in group evolution process. The impulse term indicates an
external shock occurs at time ti and attracts λi users to the
group. Following is a brief explanation to the parameters of
this term:

• ti is the time when the external shock, such as a re-
cruitment campaign, occurs. Such campaign can also
last for some time but we regard it as an impulse be-
cause the duration is actually quite short compared
with the duration of the word-of-mouth effect.

• λi is the effect strength of the impulse. λ0 users will be
recruited into the group and after that they can attract
other users through word-of-mouth mechanism.

3.4 Parameter Learning
Our base model consists of four parameters: θ = {β, γ

, α,N}. Given two real time sequences X(n) and Y(n), X(n)
is the cumulative number of people who ever joined the
group before time-tick n and Y(n) is the cumulative num-
ber of people who ever quit the group before time-tick n,
(n = 1, ..., nd). Note that the initial condition J0 mean-
s the initial size of the group, so we can directly get from
the data. To learn the parameters of the base model, we
use Levenberg-Marquardt (LM) [18] to minimize the sum of
errors:

min
θ
D(X,Y, θ) =

nd∑
n=1

(X(n)−J(n))2+(Y (n)−Q(n))2 (16)

Our model with non-diffusion mechanism consists two more
parameters in impulse term, location parameter ti and strength
parameter λi. We first determine the location parameter by
detecting external shock larger than predefined threshold
and then learn the strength parameter together with other
parameters using Levenberg-Marquardt(LM) method [18].

4. EXPERIMENTS
To evaluate the effectiveness of comeNgo model, we con-

duct experiments on a real dataset. First we provide a brief
data description in Section 4.1. In Section 4.2, we show how
well we match the real data. In Section 4.3, we demonstrate
the strong predicting power of our model. In section 4.4, we
analyze the distribution of parameters and illustrate how to
recognize different group evolving patterns.

4.1 Data Description
We conduct experiments on a real large-scale social net-

work dataset - Wechat. Wechat is the most widely used
social network and messaging service in China with more
than 600 million monthly active users.

Group is one of the most important feature in Wechat.
Every user can found groups to chat together. According
to our statistics, more than one million groups are founded
everyday. There are mainly two ways to add new members
to the group. The usual way is by invitation. Every member
in the group can invite their friends to the group, which is
a typical diffusion (word-of-mouth) mechanism. The other
way is by scanning the QR code. Users can generate a QR
code for their group and promote the group by publishing

Name Value
Group Number 103548
Time Duration 42 days

Total Join Records Number 10675984
Average Number of Join Records 103.10

Total Quit Records Number 5713719
Average Number of Quit Records 55.18

Table 1: Dataset Description

the QR code in open places. For example, the group of an as-
sociation can print the QR code on their posters and leaflets
so that people who are interested in the association can scan
it and join the group. This is a non-diffusion mechanism.

We use the logs of wechat group as our data. From the
groups established in November 20th, 2015 which contain at
least 40 join records before January 1st, 2016, we sampled
103,548 groups as our experiment data. For each group we
have the following three kinds of records. Table 1 summa-
rizes the statistics of the dataset used for this study.

• Group Founding Records G: It consists of all the
group foundation records (C, T ) for each of the sam-
pled groups. Each record means group C is founded
at time T.

• Group Joining Records J : It consists of all the
group joining records (u,C, T ) for each of the sampled
groups. Each record means user u joined group C at
time T.

• Group Quitting Records Q: It consists of all the
group quitting records (u,C, T ) for each of the sampled
groups. Each record means user u quitted group C at
time T.

This is the first dataset for large scale social groups with
detailed log of both joining and quitting behaviours. The
dataset provides valuable opportunity to get insight about
the temporal dynamics of group evolution mechanism. For
privacy issues, the dataset is fully anonymized and all da-
ta are collected according to the terms and conditions of
Wechat.

4.2 Discovering and Matching Group Evolu-
tion Patterns

In this section, we demonstrate how well our model match-
es the real data. First, we give the formulation of group e-
volving process for the real data. As is mentioned in section
3.1.1, a group evolving process can be regarded as the inte-
gral of join process and quit process. For each group Ci in G
founded at timestamp Ti, we can generate the join process
sequence Xi(n) and quit process sequence Yi(n) with a daily
time tick as follows,

Xi(n) = ‖{(u,C, T ) ∈ J |C = Ci, T − Ti < n ∗∆T}‖

Yi(n) = ‖{(u,C, T ) ∈ Q|C = Ci, T − Ti < n ∗∆T}‖
(17)

where ∆T is the length of each time tick, which is one day
in our experiment. Then the group size sequence G(n) can
be derived by

Gi(n) = Xi(n)− Yi(n) (18)



Figure 3: Fitting result of four kinds of patterns. Upper: Fitting result of group size. The dots present real
data, the red line is the result of our model and blue for SIR model, black for SI model. Below: Fitting result
of group size(black), join process(blue) and quit process(black).

Model RMSE-I RMSE-J RMSE-Q
SI 18.17 - -
SIR 11.07 5.36 9.12
comeNgo-Base 6.01 4.80 4.41
comeNgo 4.64 2.63 3.81

Table 2: Fitting accuracy of different models. Our
comeNgo model outperforms all the baselines in fit-
ting group size, join number and quit number.

Figure 3 shows the results of model fitting on Wechat
dataset. We select 4 typical groups which represent differen-
t group evolving patterns. We show the original sequences
G(n)(black dots) and fitting result of comeNgo I(n)(red
line). We compare our result with SI model(blue line) and
SIR model(black line). The second line of Figure 3 shows
the fitting results of joining and quitting process. We can
see that although the groups have quite different temporal
patterns, our model can fit all the patterns very well, includ-
ing the groups with external shocks (as shown in the fourth
column of Figure 3). It demonstrates that our model is not
only accurate but also has strong unification power.

We further evaluate the fitting accuracy using the root
mean square error(RMSE) between estimated values and

real values: RMSE =
√

1
nd

∑nd(G(n)− I(n))2. Besides

group size sequences I(n), we also compare the fitting good-
ness of group joining sequences J(n) and group quitting se-
quences Q(n). We can see from the Table 2 that our model
outperforms all the baselines. The fitting accuracy of our
model increases by 58.08% than baselines in fitting group
size, 50.9% in fitting joining process and 58.22% in fitting
quitting process.

4.3 Group Evolution Prediction
As a dynamic model, comeNgo model can be used to

predict the whole process of group evolution. Here we con-

sider a more practical problem: given the group evolving
process in early stage, can we forecast the future evolution
of the group? To answer the question, we designed two
tasks, trend prediction and size prediction, to measure the
predicting power of our model.

4.3.1 Trend Prediction
An important aspect of group evolving process is the e-

volving trend: will the group grow larger or begin to decline?
For each group, we use the data of the first 10 days to train
our model and use the learned parameters to predict the
trend in the next 5, 15 and 30 days to demonstrate the pre-
dicting power in both short term and long term. Here we
define the trend prediction problem as a classification prob-
lem: if the group size increases more than 20%, we regard
it as a ’positive example’ and if it decreases more than 20%,
we regard it as a ’negative example’. Note that the external
shocks are unpredictable to all models without external in-
formation, so we ignore the groups that have external shocks
in prediction period. Besides, the number of positive and
negative examples are balanced in this experiment.

We use the parameters of our model as features, and the
distribution for each feature were standardized to have a
mean of 0 and standard deviation of 1. Then we conduct
Logistics Regression for the classification problem. We use
5-fold cross validation, that is, we randomly select 80% of the
data as training data and the remaining 20% as testing data.
The experiments are repeated for 5 times and the average
performances are reported in Figure 4. We can see that
our model outperforms all the baselines in three prediction
tasks. In short term prediction, our accuracy is 81.13%,
14.3% higher than baseline. In long term prediction, our
accuracy is 80.10%, 14.9% higher than baseline.

Table.3 shows the regression coefficients of the parameters
of our model and we can find some meaningful information
from them.

Parameters β,N and Σλ influence the dynamics of join-
ing process. β and λ determine the growth speed through



Figure 4: Prediction accuracy of the group growth
trend in 5, 15 and 30 days. The accuracy of our
model is 81.13%, 78.06% and 80.10% respectively.

Feature 5 Days 15 Days 30 Days
β 0.164** — -0.083*
γ -1.52*** -1.13*** -1.05***
α 1.89*** 1.95*** 2.26***
N 0.318*** 0.298*** 0.295***
Σλ -0.598*** -0.652*** -0.731***
ti — — —

Table 3: Regression coefficients for comeNgo model
predicting the trend in 5, 15 and 30 days after the
10th day(For this table, * p<0.01,** p<0.005, ***
p<0.001). Coefficients with p>0.05 are not report-
ed.

diffusion mechanism and non-diffusion mechanism respec-
tively, while N determines the population of the users who
can be reached by these mechanisms. A counterintuitive but
interesting finding is that infection rate β and the external
shock strength λ have negative coefficients for the long term
growth trend. Meanwhile, the total population N of poten-
tial members shows significant positive coefficient for both
short term and long term trend prediction. This finding indi-
cates that growing breadth is more important than growing
speed to the long term growth.

Parameters γ and α influence the dynamics of quit pro-
cess. γ embodies more short term effect while α has more
long term effect. We can find that the regression coefficient
of α becomes larger when the prediction period is longer,
in consist with its physical meaning. Also, γ plays an im-
portant role when predicting short term trend but decreas-
es obviously when predicting long term trend. Considering
that γ and α have the largest coefficients among all param-
eters, we can draw a conclusion that quit process has great
impacts on group evolution trend.

4.3.2 Size Prediction
A more challenging and practical task to evaluate the pre-

diction power of a model is the size prediction problem: if
we only have the sizes of a group at different time ticks in
early stage, can we predict the group size in future?

To demonstrate the predicting power of our model, we
use the temporal data in the first 20 days to train our model
and use it to predict the group size in the next 10 days and

Figure 5: Prediction accuracy of the group size in
10 and 20 days. The average MAE of our model is
6.09 and 10.16 respectively.

10 Days 20 Days
Model MAE-J MAE-Q MAE-J MAE-Q
SI 23.78 - 29.66 -
SIR 7.78 13.77 17.50 21.58
comeNgo-Base 8.36 6.39 20.73 12.02
comeNgo 5.51 5.39 11.53 9.10

Table 4: Results of predicting the join process and
quit process. MAE-J and MAE-Q represent the av-
erage MAE of predicting cumulative join number
and cumulative quit number in 10 and 20 days.

20 days. We also ignore the groups with external shocks in
prediction period, and there are 93660 groups left for the
prediction problem.

We evaluate our prediction accuracy using the mean abso-
lute error(MAE) between estimated values and real values:
MAE = |G(n)− I(n)|. We also use SI and SIR as baseline
models to predict the group size. The results are shown in
Fig.5. We can see from the figure that our model achieves
a significant improvement than baselines in both short term
and long term. When predicting the group size in 10 days,
the average MAE of our model is 6.09, 63.0% better than
SIR and in 20 days, the MAE is 10.16, also 61.9% better
than SIR.

Table.4 shows the predicting accuracy of group joining and
quitting processes, measured by average MAE. SI model can
only capture the joining process so it performs worst. SIR
and comeNgo-Base model perform similar in predicting
joining process, but our model performs much better in pre-
dicting quitting process. As is mentioned above, SIR model
can only capture the non-dependence mechanism while our
base model can capture both non-dependence and depen-
dence mechanism. The improvement further demonstrates
the importance of the dependence mechanism in quitting
process.

4.4 Model Parameters Analysis
A specific advantage of our model is that all of the pa-

rameters have clear physical meanings. As a result, we can
recognize different group evolving patterns through param-
eter analysis. In this subsection, we analyze the distribution



Figure 6: The distribution of six parameters in our model.

of the parameters and use them to recognize the temporal
patterns in group evolution. Fig. 6 shows the distribution
of six parameters in our model, and we get the following
findings.

• α : The distribution of α is a typical bimodal distri-
bution with one peak near 0 and the other near 1.4.
As we proved in Theorem 2 and 3, the clustering near
the first peak represents the groups with exponential
holding time distribution. In such groups, most people
will quit by the non-dependence mechanism, and thus
the group will gradually dies out. Such groups usually
have weak ties between members. The other peak rep-
resents a typical power-law holding time distribution
with an exponent near 1.5, which is consistent with
many study in human dynamics [23, 26]. Groups with
α much larger than 1.5 represents the groups with sta-
ble and strong relations, and thus members become
dependent on the group shortly, such as phenomena
are often observed in the the group of associations or
organizations.

• β : It follows an natural exponential distribution and
most groups have an infection rate less than 0.5.

• γ : It also follows an exponential distribution but it
has an obvious peak near 0. This peak indicates that
these groups have strong stickness and members barely
quit the group. These groups are usually established
by strong ties, such as classmates groups or working
groups.

• N : The distribution of N follows a power-law (note
that the x axis of N is presented in log scale) and the
cutoff near 50 is resulted from our sampling strate-
gy. The power-law decay indicates that the potential

population N can be quite large and as we analyzed
in Section 4.3.1, such groups are more likely to grow
continuously.

• Σλi : We find that 57.46% of groups do not have
any external shocks in the group evolution, which are
omitted in the figure. For the groups with external
shocks, the non-diffusion mechanism are usually not
strong,indicated by the peak near 20 and an power-
law decay. This means that the diffusion mechanism
plays more important roles for the evolution of most
groups.

• ti : Most external shocks occur at the early stage of
the group, which is consistent with our intuition. For
example, a new association usually holds many public-
ity campaigns to attract new members right after its
establishment.

5. CONCLUSIONS
In this paper, we study the come-and-go patterns in group

evolution process. We analyze the temporal patterns of
group joining and quitting behaviours and revealed the dy-
namic mechanism behind these patterns. We propose comeN-
go, a general, accurate and succinct dynamic model that is
able to accurately model and comprehensively explain the
temporal patterns. Our proposed model has the following
appealing advantages:

• Unification power: It is a general model that in-
cludes previous models as special case and also em-
bodies new mechanisms.

• Succinctness and interpretability: It uses only six
parameters, what’s more, every parameter has a clear
physical meaning.



• Accuracy: It can capture the temporal patterns of d-
ifferent groups precisely, with an improvement of 58%
than baseline in goodness of fit.

• Usefulness: We showed how to use our model to do
trend prediction, size prediction and recognize the tem-
poral patterns by parameters analysis.
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