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ABSTRACT

Graph embedding algorithms embed a graph into a vector
space where the structure and the inherent properties of the
graph are preserved. The existing graph embedding meth-
ods cannot preserve the asymmetric transitivity well, which
is a critical property of directed graphs. Asymmetric transi-
tivity depicts the correlation among directed edges, that is,
if there is a directed path from u to v, then there is likely a
directed edge from u to v. Asymmetric transitivity can help
in capturing structures of graphs and recovering from par-
tially observed graphs. To tackle this challenge, we propose
the idea of preserving asymmetric transitivity by approxi-
mating high-order proximity which are based on asymmetric
transitivity. In particular, we develop a novel graph embed-
ding algorithm, High-Order Proximity preserved Embedding
(HOPE for short), which is scalable to preserve high-order
proximities of large scale graphs and capable of capturing
the asymmetric transitivity. More specifically, we first de-
rive a general formulation that cover multiple popular high-
order proximity measurements, then propose a scalable em-
bedding algorithm to approximate the high-order proximity
measurements based on their general formulation. More-
over, we provide a theoretical upper bound on the RMSE
(Root Mean Squared Error) of the approximation. Our em-
pirical experiments on a synthetic dataset and three real-
world datasets demonstrate that HOPFE can approximate the
high-order proximities significantly better than the state-of-
art algorithms and outperform the state-of-art algorithms
in tasks of reconstruction, link prediction and vertex recom-
mendation.

Categories and Subject Descriptors
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D.2.8 [Software Engineering]: Metrics—complezity mea-
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Figure 1: Asymmetric Transitivity in Real Data.
Given a pair of vertexes (u,v), the horizontal axis
is the Number of 2-hop paths from u to v. For the
red (or black) curve with circle (or star) marker, the
vertical axis represents the cumulative forward (or
backward) transiting probability, that is the connec-
tion probability from u (or v) to v (or u), when the
number of 2-hop paths is less than corresponding
horizontal axis value. The left figure is the statistics
from the social network of Tencent Weibo, and the
right figure is the statistics from the social network
of Twitter. As the two red curves increases mono-
tonically, we can claim that the more paths from u to
v there are, the more probable it is that there exists
an edge from u to v, which reflects the transitivity
assumption. The forward connection probability is
much larger than the backward connection proba-
bility, which reflects the asymmetry assumption. In
summary, asymmetric transitivity can be widely ob-
served in real datasets.
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1. INTRODUCTION

Nowadays, more and more applications are based on larger
and larger networks and graphs. It is well recognized that
graph data is sophisticated and challenging. To process
graph data effectively, the first critical challenge is graph
data representation, that is, how to represent graphs prop-
erly so that advanced analytic tasks, such as pattern discov-
ery, analysis, and prediction, can be conducted efficiently
in both time and space. However, graph representation in
general remains an open problem.

Recently, the graph embedding paradigm [35] is proposed
to represent vertices of a graph in a low-dimensional vector
space while the structures (i.e. edges and other high-order
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Figure 2: Framework of Asymmetric Transitivity Preserving Graph Embedding. The left is a input directed
graph, and the right is the embedding vector space of the left graph, which is learned by our algorithm.
In the left directed graph, the solid arrows represent observed directed edges and the numbers along with
the solid arrows are the edge weights. The numbers along with the dashed arrows is the Katz proximity,
which is highly correlated with asymmetric transitivity. For example, according to asymmetric transitivity,
the two paths, vi — v3 — vs and vi — v4 — v, suggest that there may exist v1 — vs. Then, the Katz proximity
from v; to vg is relatively large, i.e. 0.18. On the other hand, because v¢ — v1 is in the opposite direction,
v1 — v3 — ve and v — v4 — ve do not suggest vg — vi. Then, the Katz proximity from vs to v; is small, i.e. 0.
In the embedding space, the arrows represent the embedding vectors of vertices, where row vectors uf and u’
represent the source vector and target vector of v; respectively. We use the inner product between u; and u§~
(i.e. ujf -uj-T) as the approximated proximity from v; to v;. Note that u!, u}, ui and uj are all zero vectors. We
can find that the approximated proximity perfectly preserve the Katz proximity. For example, with respect
to source vector uj, the inner product with target vector u} is larger than with uf, which preserves the rank

order of corresponding Katz proximities.

structures) of the graph can be reconstructed in the vec-
tor space. With proper graph embedding, we can easily
apply classic vector-based machine learning techniques to
process graph data. Meanwhile, it effectively facilitates the
parallelization of graph analysis by decoupling highly corre-
lated vertices into independent vectors. However, most of
the existing graph embedding methods target on undirected
graphs. Directed graphs, a natural and popularly used rep-
resentation of data in many applications, such as social net-
works and webpage networks, are largely untouched.

Can we straightforwardly apply undirected graph embed-
ding methods on directed graphs? The answer is no due to
a fundamentally different characteristic of directed graphs:
asymmetric transitivity.

Transitivity is a common characteristic of undirected and
directed graphs [29] (see Figure 1). In undirected graphs,
if there is an edge between vertices v and w, and one be-
tween w and v, then it is likely that v and v are connected
by an edge. Transitivity plays a key role in graph inference
and analysis tasks, such as calculating similarities between
nodes [16, 14] and measuring the importance of nodes. Tran-
sitivity is symmetric in undirected graphs. However, transi-
tivity is asymmetric in directed graphs. If there is a directed
link from u to w and a directed link from w to v, there is
likely a directed link from v to v, but not from v to u. More
generally, If there is a directed path from w to v, there is
likely a directed link from w to v, but not from v to .

Preserving the symmetric transitivity in undirected graphs

in an embedding space is natural and straightforward, as
most of the distance metrics defined in the vector space pos-
sess the property of symmetric transitivity. However, how
to preserve the asymmetric transitivity of directed graphs in
a vector space is much more challenging.

Recently, a paucity of studies [37, 20, 3, 2, 24] focus on di-
rected graph embedding. In order to reflect the asymmetric
property in vector space, these methods design asymmet-
ric metrics on the embedding vectors. Unfortunately, those
asymmetric metrics are not fully transitive, which severely
limit the capability of the learned embedding space in re-
flecting the structure of graphs as well as supporting graph
inference and analysis.

In this paper, we tackle the challenging problem of asym-
metric transitivity preserving graph embedding. Our major
idea is that we learn two embedding vectors, source vec-
tor and target vector, for each node to capture asymmetric
edges, as illustrated in Figure 2. Then, for a directed link
from v1 to ve without the reverse link from vz to v1, we can
assign similar values to v1’s source vector and wv2’s target
vector, and assign very different values to v1’s target vector
and v2’s source vector. In this way, the feasibility of asym-
metry transitivity is preserved. The key challenge is how
well the asymmetric transitivity of directed graphs can be
preserved in the embedding learning.

From the learning perspective, a good way is to let the
learned embedding vectors directly approximate a target
measure reflecting asymmetric transitivity of graphs. From



the graph embedding pserspective, the property of asym-
metric transitivity leads to the assumption that the more
and the shorter paths from v; to v;, the more similar should
be v;’s source vector and v;’s target vector. This assump-
tion coincides with high-order proximities of nodes in graphs,
such as Katz [16] and rooted pagerank [30]. What is more,
these high-order proximities are defined to be asymmetric in
directed graphs. Thus, in its place, we propose to use high-
order proximities of nodes as the target measure, resulting
in a novel directed graph embedding algorithm, High Order
Proximity preserved Embedding (HOPE).

In this model, we theoretically derive a general form cov-
ering multiple high-order proximities. Interestingly, the gen-
eral form is consistent with the formulation of generalized
SVD. Based on this, we propose a scalable embedding algo-
rithm for large-scale graphs by avoiding the time-consuming
computation of high-order proximities. Moreover, we derive
a theoretical upper bound on the approximation error of
HOPE, which is used to estimate the embedding quality in
theory and determine embedding dimensions automatically.

To verify the advantages of our algorithm, we conduct ex-
periments on both synthetic data and 3 real datasets. The
experiments show that our method consistently and signif-
icantly outperforms the state-of-the-art baselines in several
tasks, including high-order proximity approximation, graph
reconstruction, link prediction and vertex recommendation.

The main contributions of this paper are as follows:

e We propose a high-order proximity preserved embed-
ding (HOPE) method to solve the challenging problem
of asymmetric transitivity in directed graph embed-
ding.

e We derive a general form covering multiple commonly
used high-order proximities, enabling the scalable so-
lution of HOPE with generalized SVD.

e We provide an upper bound on the approximation er-
ror of HOPE.

e Extensive experiments are conducted to verify the use-
fulness and generality of the learned embedding in var-
ious applications.

The rest of the paper is organized as follows. In Section 2,
we review the related work. We develop our method in Sec-
tion 3 and report the experimental results in Section 4. We
conclude the paper in Section 5.

2. RELATED WORK

2.1 Graph Embedding

Graph embedding technology has been widely studied in
the fields of dimensionality reduction [15, 27, 33, 1, 8], nat-
ural language processing [18], network analysis [11] and so
on.

For dimensionality reduction, adjacency matrices of graphs
are constructed from the feature similarity (distance) be-
tween samples [35]. And the graph embedding algorithms
aim to preserve the feature similarity in the embedded la-
tent space. For example, Laplacian Eigenmaps (LE) [1] aims
to learn the low-dimensional representation to expand the
manifold where data lie. Locality Preserving Projections
(LPP) [8] is a linearization variant of LE which learns a

linear projection from feature space to embedding space.
Besides, there are many other graph embedding algorithms
for dimensionality reduction, including non-linear [33, 27],
linear [15, 6], kernlized [28] and tensorized [36] algorithms.
All of these algorithms are based on undirected graphs de-
rived from symmetric similarities. Thus, they cannot pre-
serve asymmetric transitivity.

In the field of natural language processing, the graph of
words is often used to learn the representation of words [19,
18, 23]. Mikolov et. al. [19] propose to ultilize the context of
words to learn representation, which has been proved equiv-
alent to factorizing word-context matrix [18]. Pennington
et. al. [23] exploit a word-word co-occurrance matrix.

In network analysis, Hoff et. al. [11] first propose to learn
latent space representation of vertexes in graph and the
probability of a relation depends on the distance between
vertexes in the latent space, and they apply it to link pre-
diction problem [10]. Handcock et. al. [7] propose to apply
the latent space approach to clustering in graph. And Zhu
et. al. [37] propose to address the classification problem in
graph with graph embedding model. While early graph em-
bedding works focus on modeling the observed first-order
relationship (i.e. edges in graph) between vertexes, some re-
cent works try to model the directed higher order relation-
ships between vertexes in sparse graphs [24, 2]. GraRep [2]
is related to our work. But, it cannot fully capture transi-
tivity. Moreover, it is not scalable for large-scale graph.

2.2 Directed Graph

Theoretically, any type (undirected and directed) of graph
can be represented as directed graph. So, modeling directed
graph is a critical problem for graph analysis. Holland et.
al. [12] propose the p1 distribution model to capture the
structural properties in directed graph, including the atrrac-
tiveness and expansiveness of vertexes and the reciprocation
of edges. Besides these properties, Wang et. al. [34] take
the group information of vertexes into consideration. Re-
cently, some works adopt graph embedding [4, 26, 25, 21] to
model directed graphs. Chen et. al. [4] learn the embedding
vectors in Euclidean space with locality property preserved.
Perrault-Joncas et. al. [26, 25] and Mousazadeh et. al. [21]
learn the embedding vectors based on Laplacian type op-
erators and preserve the asymmetry property of edges in a
vector field. However, all of these methods cannot preserve
asymmetry property in embedding vector space.

3. HIGH-ORDER PROXIMITY PRESERVED
EMBEDDING

In this section, we will derive how to preserve high-order
proximities in the embedding space. Before introducing the
detailed derivation, we will clarify the symbols and definition
that will be used.

3.1 Notations

We define a directed graph as G = {V,E}. V is the ver-
tex set. Let V.= {v1, -+ ,v;, -+ ,on} where N is the num-
ber of vertexes. E is the directed edge set. e;; = (vi,v;) € E
represents a directed edge from v; to v;. The adjacency
matrix is denoted as A. We define a high-order proximity
matrix as S, where S;; is the proximity between v; and v;.
And U = [U®, U'] is the embedding matrix, where the i-th
row, u;, is the embedding vector of v;. U*, U € RV*K are



Table 1: General Formulation for High-order Prox-
imity Measurements

Proximity Measurement M, M,
Katz I-8-A B-A
Personalized Pagerank I-aP |(1—-a)-1
Common neighbors I A’
Adamic-Adar 1 A-D-A

the source embedding vectors and target embedding vectors
respectively, where K is the embedding dimensions. For any
matrix B, the lowercase symbol b; represents the i-th row
of B, and B;; represents the element at i-th row and j-th
column.

3.2 Problem Definition

In this paper, we focus on the directed graph embedding
problem. It aims to represent the vertexes in the numerical
vector space, where asymmetric transitivity is preserved. As
high-order proximities are derived from asymmetric transi-
tivity, we propose to preserve the asymmetric transitivity
by approximating high-order proximity. Formally, we adopt
the L2-norm below as the loss function which need to be
minimized:

min ||S — U*-U' " ||2 (1)

As Figure 2 shows, the embedding vectors can well pre-
serve the asymmetric transitivity.

3.3 High order proximities

Many high-order proximity measurements in graph can re-
flect the asymmetric transitivity. Moreover, we found that
many of them share a general formulation which will facili-
tate the approximation of these proximities, that is:

S=M," M, 2)

, where My and M; are both polynomial of matrices. Below,
we will introduce some popular proximity measurements and
transform them into this formulation.

Katz Index [16]. This index is an ensemble of all paths,
which is a weighted summation over the path set between
two vertexes. The weight of a path is a exponential function
of its length. Actually, the formula of Katz index can also
be written as a recurrent formula:

SKatz:Zﬂ.Al:ﬂ.A.SKatz+ﬂ-A (3)
=1

, where [ is a decay parameter. It determines how fast
the weight of a path decay when the length of path grows.
[ should be properly set to preserve the series converging.
Actually, 8 must be smaller than the spectral radius of ad-
jacency matrix.

Then, we can get that:

st = (1-8-A)"-B-A (4)

, where I is a identity matrix.
For Katz index,

Rooted PageRank (RPR). SﬁpR is the probability
that a random walk from node v; will locate at v; in the
steady state. Consider one step of a random walk from v;,
the random walker randomly jumps to one of the neighbor
of current node with probability «, and jumps back to v;
with probability «. The fomula is:

SRPR:Q-SZPR'P"FO_O‘)'I (7)

, where a € [0, 1) is the probability to randomly walk to a
neighbor, and P is the probability transition matrix satisfy-
ing that Zf\;l Pij=1.

Then, we can get:

SR —(1-a)-(I-aP)! (8)

So, for rooted PageRank,
My, =1I-aP 9)
M =(1-a) I (10)

Common Neighbors (CN). S{V counts the number of
vertexes connecting to both v; and v;. For directed graph,
S%N is the number of vertexes which is the target of an edge
from v; and the source of an edge to v;. Formally,

SN = A2 (11)
So, for common neighbors,

M, =1 (12)

M; = A* (13)

Adamic-Adar (AA). Adamic-Adar is a variant of com-
mon neighbors. Unlike common neighbors, Adamic-Adar
assigns each neighbor a weight, that is the reciprocal of the
degree of the neighbor. This means that the more vertexes
one vertex connected to, the less important it is on evaluat-
ing the proximity between a pair of vertex. Formally,

S“=A.-D-A (14)

, where D is a diagonal matrix,

So, for Adamic-Adar,
M, =1I (16)
M, =A-D-A v

We list the corresponding formula of My and M; of each
proximity measurement in Table 1. Note that My and M,
are both the polynomial of adjacency matrix or its variants.
The above proximity measurements can be classified into
two types, i.e. global proximity and local proximity. Global
proximities, i.e. Katz index and rooted PageRank, are de-
rived from a recurrent formula, which make the proximity
can preserve global asymmetric transitivity. And local prox-
imities, i.e. common neighbors and Adamic-Adar, have no
recurrent structure and just preserve the asymmetric transi-
tivity in the local structure, which we call it local asymmet-
ric transitivity. Intuitively, My is highly related to global
asymmetric transitivity. My has a formulation like I —a- B,
where « is a parameter and B is a transition matrix. The
larger the alpha is, the easier the observed relationship (the
edges of the graph) is to be transited in the graph. When



a = 0, the observed relationship can just transit in a sub-
graph whose range is limited by the order of M;.

3.4 Approximation of High-Order Proximity

The objective in Equation (1) aims to find an optimal
rank-K approximation of the proximity matrix S. Accord-
ing to [13], the solution is to perform SVD (Singular Value
Decomposition) on S and use the largest K singular value
and corresponding singular vectors to construct the optimal
embedding vectors. Formally, if

N
S = ZaivaﬁT (18)
i=1

, where {01,092, ,on} is the singular values sorted in de-
creasing order, vi and v! are corresponding singular vectors
of oy,

then, we can get the optimal embedding vectors as:

U
U’ =[Vor1 Vi, /oK - V] (20)

However, this solution need to calculate the proximity ma-
trix S. Even for sparse adjacency matrix, the time com-
plexity of matrix inversion is up to O(N?). And the matrix
polynomial operation on adjacency matrix will make S much
denser than adjacency matrix A which will also make the
SVD on S very expensive. Thus, the solution is not feasible
for large scale graphs.

As the calculation of S is the efficiency bottleneck and S
is just the intermediate product in our problem, we propose
a novel algorithm to avoid the calculation of S and learn
the embedding vectors directly. As many proximity mea-
surements have the general formulation in Equation (2), we
transform the original SVD problem into a generalized SVD
problem [22] for proximity measurements with the general
formulation.

According to [22], it is easy to derive the following theo-
rem:

THEOREM 1. If we have the singular value decomposition
of the general formulation

M, M, = VLV’
, where V' and V* are two orthogonal matrices,
Y =diag(o1,02, - ,0N)
Then, there exists a nonsingular matriz X and two diag-
onal matrices, i.e. ©' and X9, satisfying that
viM X =3
ViTM, X =7

, where
1 . 1ol 1
)y :dzag(a—17o—27"' 7ON)
¢ :diag(gi]7o-gv"' 70-?\1)
o1 >0p> > 0K >0

and

g; =

(21)

s

Algorithm 1 High-order Proximity preserved Embedding
Require: adjacency matrix A, embedding dimension K,
parameters of high-order proximity measurementf.
Ensure: embedding source vectors U® and target vectors

U,
1: calculate My and M;.
2: perform JDGSVD with M, and M;, and obtain the gen-

eralized singular values {01, -+ ,0%} and {o¥,--- 0%},
and the corresponding singular vectors, {v{,---,vi}
t t
and {v17 e avK}'
3: calculate singular values {o1,---,0x} according to

Equation (21).
4: calculate embedding matrices U® and U’ according to
Equation (19) and (20).

As the generalized SVD can also derive the results of SVD,
we can still use Equation (19) (20) to get the embedding
vectors.

Complete generalized SVD will also achieve O(N®) time
complexity, which is not feasible for large scale graphs. As
we only need the largest K singular values and correspond-
ing singular vectors, we adopt a partial generalized SVD
algorithm [9], which we call it JDGSVD. This is an iterative
Jacobi-Davidson type algorithm which is very scalable when
K <« N. Algorithm 1 lists the steps of our algorithm.

3.4.1 Complexity Analysis

In this algorithm, we do not explicitly perform the poly-
nomial operation on adjacency matrix in M; and M, whose
time complexity is up to O(N?). Because, in JDGSVD, we
only need to multiply My and M; with some thin matrices
whose size is N x K. If we change the multiplication order,
and first perform multiplication between adjacency matrix
and thin matrix, the time complexity of this operation will
reduce to O(m - K), where m is the number of non-zero ele-
ments in adjacency matrix (i.e. the number of edges in the
graph) and much smaller than N? in sparse graph. And, the
total time complexity of JDGSVD is O(m - K?- L), where L
is the iteration number. We can see that the time complex-
ity is just linear with respect to the volumn of data (i.e. the
number of edges), which means that it is scalable for large
scale graphs.

3.4.2 Approximation Error
Finally, we give the error bound of our algorithm:
THEOREM 2. Given the prozimily matriz, S, of a directed

graph, and the embedding vectors, U* and U*, learned by
HOPPE. Then the approximation error is

N
I[S-U*-U' 2= Y o
i=K+1

, and the relative approrimation error is:
£12 N 2
[S-U*- U} _ Xk 0

- (22)
HE SN, o




where {o;} are the singular values of S in descend order.

Prove:

N K
IS—U U E = 1> o vivi =S oy vivh |3
i=1 j=1

al T
= > aivivi %

i=K+1

N
z : 2
= o;

i=K+1

and we have:
N . N
ISI=1>oi-vivi |=> of
i=1 =1

So, the relative approximation error is:

s N 2
IS-U U3 _ SN0
ISI1% i, o?
If S is low-rank, then the singular values {ox 41, - ,0n}

will be close to zero and the error will be very small. That
is, the lower the rank of S is, the smaller the error is.

4. EXPERIMENTS

We conduct experiments on a synthetic data and three
real-world datasets. We will first introduce the experiment
setting, then show the results and analysis on the two types
of datasets respectively.

4.1 Experiment Setting
4.1.1 Datasets

We use four datasets, whose statistics are summarized in
Table 2.

Table 2: Statistics of datasets. |V| denotes the num-
ber of vertexes and |F| denotes the number of edges.

Syn Cora | SN-Twitter | SN-TWeibo
[V| | 10,000 | 23166 465,017 1,944,589
[E[ | 144,555 | 91500 | 834,797 50,655,143

e Synthetic Data (Syn): We generate the synthetic data
by the forest fire model [17]. The model can generate
powerlaw graphs. We can observe asymmetric tran-
sitivity in the generated graphs. As the time com-
plexity of computation of some high-order proximities
(e.g. Katz, RPR) is too high, we generate small-scaled
synthetic data to allow for the computation of high-
order proximities, so that we can evaluate the accuracy
of high-order proximity approximation. We randomly
generate ten synthetic datasets.

e Cora' [31]: This is a citation network of academic pa-
pers. The vertexes are academic papers and the di-
rected edges are the citation relationship between pa-
pers.

"http:/ /konect.uni-koblenz.de/networks/subelj_cora

o Twitter Social Network? (SN-Twitter) [5]: This dataset
is a subnetwork of Twitter. The vertexes are users of
Twitter, and the directed edges are following relation-
ships between users.

e Tencent Weibo Social Network® (SN-TWeibo): This
dataset contains a subnetwork of the social network
in Tencent Weibo?, a Twitter-style social platform in
China. The vertexes are users and the directed edges
are following relationship between users.

Due to high time complexity of calculating high-order
proximity measurements, we first evaluate the high-order
proximity approximation error on two small datasets, i.e.
Synthetic Data and Cora, where it is feasible to calculate
high-order proximity. Furthermore, we conduct other appli-
cation experiments on two large datasets, i.e. SN-Twitter
and SN-TWeibo, to evaluate the performance of our algo-
rithm in real large-scale graphs. For Synthetic Data and
Cora, the graph in each dataset is randomly separated into
training set and testing set, and training set contains 80%
edges. All the reported performances are the average value
on these ten datasets. For SN-Twitter and SN-TWeibo, we
generate three datasets by randomly separated the graph
into training graph and testing graph, where training graph
contains 80% edges and testing graph contains the rest edges.

4.1.2 Baseline Methods

e LINE [32]: This algorithm preserves the first-order and
second-order proximity between vertexes. but it only
can preserve symmetric second-order proximity when
applied to directed graph. We use vertex vectors as
source vectors and context vectors as target vectors.
We use LINEL1 to represent LINE preserving first-order
proximity and LINE2 to represent LINE preserving
second-order proximity.

e DeepWalk [24]: this algorithm first randomly walks on
the graph, and assumes a pair of vertexes similar if
they are close in the random path. Then, the embed-
ding is learned to preserve these pairwise similarities
in the embedding.

e PPE (Partial Proximity Embedding) [30]: This algo-
rithm first selects a small subset of vertexes as land-
marks, and learns the embedding by approximating
the proximity between vertexes and landmarks.

e Common Neighbors: We rank the links by the number
of common neighbors. We use it for link prediction
and vertex recommendation.

e Adamic-Adar: We rank the links by the Adamic-Adar
values. We use it for link prediction and vertex recom-
mendation.

In graph reconstruction, link prediction and vertex rec-
ommendation experiments, we adopt Katz as the target
high-order proximity for HOPE and PPE methods, as Katz
has shown superior performance in related tasks in previ-
ous works, to approximate for HOPE and PPE. For PPE,
we sample 1000 landmarks. For LINE and DeepWalk, we
search the parameters grid search.

http://konect.uni-koblenz.de/networks /munmun_twitter_social

3http:/ /www.kddcup2012.org/c/kddcup2012-track1/data
“http://t.qq.com/
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Figure 3: Error of proximity approximation. We evaluate the errors of HOPE and PPE in approximating
four proximity measurements, including Katz, RPR, Common Neighbors and Adamic-Adar. First row is the
results on Synthetic Data, and second row is the results on Cora. For Katz, § = 0.1; for RPR, o = 0.5.

4.1.3 Evaluation Metrics

In the experiments, we adopt RMSE, Precision@k and
MAP (Mean Average Precision) as the evaluation metrics.

RMSE is used to evaluate the approximation error of the
proximity approximation algorithms, including HOPE and
PPE. The formula of RMSE in our problem is:
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NRMSE (Normalized RMSE) is used to evaluate the rel-
ative error of the proximity approximation algorithms. The
formula of NRMSE in our problem is:

RMSE =

Is - U U
IS-UU_ |Ir —
NRMSE = ol :,/”S_U Ul
S|% ISl
N2

Precision@k is used to evaluate the performance of link
prediction, which measures the prediction precision of top k
links. The formula of Precision@k is:

{51, 5) € By NEo}

PrecisionQk =
|Es|

where E,, is the set of top k predicted links, E, is the set of
observed links and | - | represents the size of set.

MAP is used to evaluate the performance of vertex rec-
ommendation, which measures the rank accuracy of recom-
mended vertex list. The formula of MAP@QXk is:
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4.2 High-order Proximity Approximation

As we preserve asymmetric transitivity by approximating

high-order proximity, the error of approximation can evalu-
ate how well we preserve asymmetric transitivity.

We evaluate the approximation error on Synthetic Data
and Cora. Besides our algorithms, PPE can also approxi-
mate high-order proximity. Here, we compare HOPE with
PPE on four proximity measurements, including Katz, RPR,
Common Neighbors and Adamic-Adar. Figure 3 shows the
RMSE with different number of embedding dimensions. When
the number of embedding dimensions grows, the approxi-
mation error, RMSE, will decrease. We can see that HOPE
achieves much lower RMSE than PPE on all the proximity
measurements, which is stable in the ten randomly selected
datasets. Especially on Katz, the error of HOPE is one order
of magnitude smaller than the error of PPE. With the num-
ber of embedding dimensions growing, the error of both al-
gorithms decreases but the margin between HOPE and PPE
becomes larger. Although more embedding dimensions can
make these two methods be able to incorporate more prox-
imity information, PPE can only approximate a sub-block
of the proximity matrix, while HOPE can approximate the
whole proximity matrix. Thus HOPE can take more advan-
tage of the increased embedding dimension.

Furthermore, we evaluate how the rank (more precisely,
the condition number) of proximity matrix will influence
the approximation error. In section 3.4.2, we have theoreti-
cally proven that the approximation error of our method is
related to the rank of the promixity matrix. Here, we take
Rooted PageRank as an example to empirically demonstrate
the claim. The parameter o of RPR is highly related to the
rank of RPR matrix (i.e. S®7%). When o = 0, S =1,
which is full rank. When o = 1, all the rows of S®FF are
the stationary distribution of transition matrix P, and the
rank of SEFE is 1. Intuitively, the larger « is, the lower
the rank of S®FE tends to be. We use NRMSE to evaluate
the relative error of RPR approximation. Figure 4 shows
the NRMSE of HOPE with different . The larger « is,
the smaller the NRMSE is. This suggests that HOPE can
achieve better performance on lower-rank proximity matrix.
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Figure 4: Correlation between relative approxima-
tion error and the rank of proximity matrix. The
parameter o of Rooted PageRank is highly related
to the rank of proximity matrix. Here, we use a to
simulate the rank of proximity matrix. The embed-
ding dimension is 100.

4.3 Graph Reconstruction
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Figure 5: Precision@k of graph reconstruction on
SN-TWeibo and SN-Twitter. We rank pairs of ver-
texes according to their reconstructed proximity and
evaluate the reconstruction precision in top k pairs
of vertexes.

As the representation of a graph, embedding vectors are
expected to well reconstruct the graph. We evaluate the re-
construction ability on training sets of SN-TWeibo and SN-
Twitter. We reconstruct the graph edges based on the recon-

structed proximity between vertexes. For graph embedding
algorithms (i.e. HOPE, PPE, Line and DeepWalk), we use
the inner product between embedding vectors to reconstruct
the proximity matrix. For Common Neighbors and Adamic-
Adar, we directly calculate the proximity matrix. We rank
the pairs of vertexes according to their corresponding recon-
structed proximity. Then, we calculate the ratio of real links
in top k pairs of vertexes as the reconstruction precision. As
the number of possible pairs of vertexes (N - (N — 1)) is too
large in SN-TWeibo and SN-Twitter, we randomly sample
about 0.1% pairs of vertexes for evaluation.

Figure 5 shows the Precision@k with different k. HOPE
significantly outperforms baselines. As mentioned above,
PPE just approximates a sub-block of proximity matrix. So,
it works poorer than HOPE. Comparing with Line2 which
directly reconstructs the directed links, HOPE still achieves
much better performance. It may because HOPE uses high-
order proximity as weight of directed edges, but LINE2 as-
signs equivalent weight for each directed edges. The edges in
densely connected vertex clusters will obtain higher weights.
Thus, these edges will be preserved first. Moreover, the num-
ber of these edges is larger than that in sparsely connected
vertex clusters. Thus, HOPE may reconstruct more edges
than Line2.

4.4 Link Prediction

As asymmetric transitivity captures the correlation among
edges, we can use it to predict missing edges in graphs. On
the other hand, the performance of HOPE on link prediction
can also reflect how well the asymmetric transitivity is pre-
served. This experiment is conducted on SN-TWeibo and
SN-TWitter. We train the embedding vectors on training
graphs, and evaluate the prediction performance on testing
graphs. We randomly sample about 0.1% pairs of vertexes
for evaluation. Then, we rank them according to the in-
ner product between embedding vectors (for HOPE, LINE],
LINE2 and PPE) or the calculated proximity (for Common
Neighbors and Adamic-Adar), and evaluate the prediction
precision in top k pairs of vertexes.

Figure 6 shows the precision@k of link prediction with dif-
ferent k. Our algorithm, HOPE, outperforms the baselines
significantly. Compared to Section 4.3, the performance
of PPE significantly decreases in prediction task. This is
mainly because PPE only trains on partial proximity ma-
trix, which is easy to overfit. Besides, we can see that all
the curves converges to a point when k is large. This is be-
cause almost all the real edges have been correctly predicted
by all the algorithms.

4.5 Vertex Recommendation

The setting of training procedure in this experiment is
the same as link prediction. But, we evaluate the per-
formance of algorithms from the vertex view, i.e. vertex
recommendation performance. We randomly sample 1000
vertexes. For each vertex v;, we randomly hide 20% out-
going links as groundtruth. Then we derive the top 100
vertexes with the highest proximity with v; as the candi-
dates that v; will possible point to. After that, we use
MAP@10, MAP@50 and MAP@100 to evaluate the qual-
ity of recommendation. Table 3 shows the MAPs of differ-
ent algorithms. HOPE outperforms the baseline algorithms.
Especially, the MAP@10 of HOPE achieves at least 88.5%
improvement and the MAP@Q50 of HOPE achieves at least



Table 3: MAP of vertex recommendation on SN-TWeibo and SN-Twitter. For each vertex, the recommended
vertex list is ranked according to the predicted proximity between vertexes. For embedding algorithms, we
calculate the predicted proximity by performing inner product between embedding vectors.

Method SN-T'Webio SN-Twitter
MAPQ@10 | MAP@50 | MAPQ100 | MAP@I10 | MAPQ50 | MAP@100
HOPE 0.2295 0.1869 0.169 0.1000 0.0881 0.0766
PPE 0.0928 0.0845 0.077 0.0061 0.0077 0.0081
LINE1 0 0 0.005 0.0209 0.0221 0.0221
LINE2 0.051 0.051 0.048 0.0044 0.0043 0.0035
DeepWalk 0.0635 0.0583 0.004 0.0006 0.0008 0.001
Common Neighbors 0.1217 0.1031 0.155 0.0394 0.0379 0.0369
Adamic-Adar 0.1173 0.0990 0.156 0.0455 0.0442 0.0423
SN-TWeibo In this paper, we aim to preserve asymmetric transitiv-
1 ‘ ity in directed graphs, and propose to preserve asymmetric
© HOPPE transitivity by approximating high-order proximities. We
0.9 * PPE i propose a scalable approximation algorithm , called High-
« t::g; Order Proximity preserved Embedding (HOPE). In this al-
® 06 A Deepwalk | gorithm, we first derive a general formulation of a class of
c - ¢ Common Neighbors high-order proximity measurements, then apply generalized
-% } Adamic-Adar SVD to the general formulation, whose time complexity is
'8 0.4 1 linear with the size of graph. The empirical study demon-
a { strates the superiority of asymmetric transitivity and our
02 i proposed algorithm, HOPE. Our future direction is to de-
‘ velop a nonlinear model to better capture the complex struc-
e ture of directed graphs.
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