
Learning Disentangled Representations for
Recommendation

Jianxin Ma1∗, Chang Zhou2∗, Peng Cui1, Hongxia Yang2, Wenwu Zhu1

1Tsinghua University, 2Alibaba Group
majx13fromthu@gmail.com, ericzhou.zc@alibaba-inc.com,

cuip@tsinghua.edu.cn, yang.yhx@alibaba-inc.com, wwzhu@tsinghua.edu.cn

Abstract

User behavior data in recommender systems are driven by the complex interactions
of many latent factors behind the users’ decision making processes. The factors are
highly entangled, and may range from high-level ones that govern user intentions,
to low-level ones that characterize a user’s preference when executing an intention.
Learning representations that uncover and disentangle these latent factors can bring
enhanced robustness, interpretability, and controllability. However, learning such
disentangled representations from user behavior is challenging, and remains largely
neglected by the existing literature. In this paper, we present the MACRo-mIcro
Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled
representations from user behavior. Our approach achieves macro disentanglement
by inferring the high-level concepts associated with user intentions (e.g., to buy
a shirt or a cellphone), while capturing the preference of a user regarding the
different concepts separately. A micro-disentanglement regularizer, stemming
from an information-theoretic interpretation of VAEs, then forces each dimension
of the representations to independently reflect an isolated low-level factor (e.g.,
the size or the color of a shirt). Empirical results show that our approach can
achieve substantial improvement over the state-of-the-art baselines. We further
demonstrate that the learned representations are interpretable and controllable,
which can potentially lead to a new paradigm for recommendation where users are
given fine-grained control over targeted aspects of the recommendation lists.

1 Introduction

Learning representations that reflect users’ preference, based chiefly on user behavior, has been a
central theme of research on recommender systems. Despite their notable success, the existing user
behavior-based representation learning methods, such as the recent deep approaches [49, 32, 31, 52,
11, 18], generally neglect the complex interaction among the latent factors behind the users’ decision
making processes. In particular, the latent factors can be highly entangled, and range from macro
ones that govern the intention of a user during a session, to micro ones that describe at a granular level
a user’s preference when implementing a specific intention. The existing methods fail to disentangle
the latent factors, and the learned representations are consequently prone to mistakenly preserve the
confounding of the factors, leading to non-robustness and low interpretability.

Disentangled representation learning, which aims to learn factorized representations that uncover
and disentangle the latent explanatory factors hidden in the observed data [3], has recently gained
much attention. Not only can disentangled representations be more robust, i.e., less sensitive to the
misleading correlations presented in the limited training data, the enhanced interpretability also finds

∗Equal contribution. Work done at Alibaba.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Encoder
6

2

1

4

7 7

3

2

5

17

2
6

4

3

5

3

5

4

6

1

µ(3)

µ(2)

�(1)

�(2)

�(3)

z(1)µ(1)

z(3)

N (µ(1),�(1))

N (µ(3),�(3))

z(2)

N (µ(2),�(2))

N (0,�2
0I)

N (0,�2
0I)

N (0,�2
0I)

�DKL

�DKL

�DKL

Reconstruction
 LossEncoder

Encoder

Decoder

Decoder

Decoder

Prototype

y

y

 Positive
 Item

Negative
Item

Not
Encoded

Figure 1: Our framework. Macro disentanglement is achieved by learning a set of prototypes, based
on which the user intention related with each item is inferred, and then capturing the preference of a
user about the different intentions separately. Micro disentanglement is achieved by magnifying the
KL divergence, from which a term that penalizes total correlation can be separated, with a factor of β.

direct application in recommendation-related tasks, such as transparent advertising [33], customer-
relationship management, and explainable recommendation [51, 17]. Moreover, the controllability
exhibited by many disentangled representations [19, 14, 10, 8, 9, 25] can potentially bring a new
paradigm for recommendation, by giving users explicit control over the recommendation results and
providing a more interactive experience. However, the existing efforts on disentangled representation
learning are mainly from the field of computer vision [28, 15, 20, 30, 53, 14, 10, 39, 19].

Learning disentangled representations based on user behavior data, a kind of discrete relational
data that is fundamentally different from the well-researched image data, is challenging and largely
unexplored. Specifically, it poses two challenges. First, the co-existence of macro and micro factors
requires us to to separate the two levels when performing disentanglement, in a way that preserves
the hierarchical relationships between an intention and the preference about the intention. Second,
the observed user behavior data, e.g., user-item interactions, are discrete and sparse in nature, while
the learned representations are continuous. This implies that the majority of the points in the high-
dimensional representation space will not be associated with any behavior, which is especially
problematic when one attempts to investigate the interpretability of an isolated dimension by varying
the value of the dimension while keeping the other dimensions fixed.

In this paper, we propose the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE)
for learning disentangled representations based on user behavior. Our approach explicitly models
the separation of macro and micro factors, and performs disentanglement at each level. Macro
disentanglement is achieved by identifying the high-level concepts associated with user intentions,
and separately learning the preference of a user regarding the different concepts. A regularizer
for micro disentanglement, derived by interpreting VAEs [27, 44] from an information-theoretic
perspective, is then strengthened so as to force each individual dimension to reflect an independent
micro factor. A beam-search strategy, which handles the conflict between sparse discrete observations
and dense continuous representations by finding a smooth trajectory, is then proposed for investi-
gating the interpretability of each isolated dimension. Empirical results show that our approach can
achieve substantial improvement over the state-of-the-art baselines. And the learned disentangled
representations are demonstrated to be interpretable and controllable.

2 Method

In this section, we present our approach for learning disentangled representations from user behaivor.

2.1 Notations and Problem Formulation

A user behavior dataset D consists of the interactions between N users and M items. The interaction
between the uth user and the ith item is denoted by xu,i ∈ {0, 1}, where xu,i = 1 indicates that user
u explicitly adopts item i, whereas xu,i = 0 means there is no recorded interaction between the two.
For convenience, we use xu = {xu,i : xu,i = 1} to represent the items adopted by user u. The goal
is to learn user representations {zu}Nu=1 that achieves both macro and micro disentanglement. We
use θ to denote the set that contains all the trainable parameters of our model.

2

Macro disentanglement Users may have very diverse interests, and interact with items that belong
to many high-level concepts, e.g., product categories. We aim to achieve macro disentanglement,
by learning a factorized representation of user u, namely zu = [z

(1)
u ; z

(2)
u ; . . . ; z

(K)
u] ∈ Rd′ , where

d′ = Kd, assuming that there are K high-level concepts. The kth component z(k)u ∈ Rd is for
capturing the user’s preference regarding the kth concept. Additionally, we infer a set of one-hot
vectors C = {ci}Mi=1 for the items, where ci = [ci,1; ci,2; . . . ; ci,K]. If item i belongs to concept k,
then ci,k = 1 and ci,k′ = 0 for any k′ 6= k. We jointly infer {zu}Nu=1 and C unsupervisedly.

Micro disentanglement High-level concepts correspond to the intentions of a user, e.g., to buy
clothes or a cellphone. We are also interested in disentangling a user’s preference at a more granular
level regarding the various aspects of an item. For example, we would like the different dimensions
of z(k)u to individually capture the user’s preferred sizes, colors, etc., if concept k is clothing.

2.2 Model

We start by proposing a generative model that encourages macro disentanglement. For a user u, our
generative model assumes that the observed data are generated from the following distribution:

pθ(xu) = Epθ(C)

[∫
pθ (xu | zu,C) pθ(zu) dzu

]
, (1)

pθ (xu | zu,C) =
∏

xu,i∈xu

pθ(xu,i | zu,C). (2)

The meanings of xu, zu,C are described in the previous subsection. We have assumed pθ(zu) =
pθ(zu | C) in the first equation, i.e., zu and C are generated by two independent sources. Note that
ci = [ci,1; ci,2; . . . ; ci,K] is one-hot, since we assume that item i belongs to exactly one concept. And
pθ(xu,i | zu,C) = Z−1u ·

∑K
k=1 ci,k · g

(i)
θ (z

(k)
u) is a categorical distribution over the M items, where

Zu =
∑M
i=1

∑K
k=1 ci,k · g

(i)
θ (z

(k)
u) and g(i)θ : Rd → R+ is a shallow neural network that estimates

how much a user with a given preference is interested in item i. We use sampeld softmax [23] to
estimate Zu based on a few sampled items when M is very large.

Macro disentanglement We assume above that the user representation zu is sufficient for predict-
ing how the user will interact with the items. And we further assume that using the kth component
z
(k)
u alone is already sufficient if the prediction is about an item from concept k. This design explicitly

encourages z(k)u to capture preference regarding only the kth concept, as long as the inferred concept
assignment matrix C is meaningful. We will describe later the implementation details of pθ(C),
pθ(zu) and g(i)θ (z

(k)
u). Nevertheless, we note that pθ(C) requires careful design to prevent mode

collapse, i.e., the degenerate case where almost all items are assigned to a single concept.

Variational inference We follow the variational auto-encoder (VAE) paradigm [27, 44], and
optimize θ by maximizing a lower bound of

∑
u ln pθ(xu), where ln pθ(xu) is bounded as follows:

ln pθ(xu) ≥ Epθ(C)

[
Eqθ(zu|xu,C)[ln pθ(xu | zu,C)]−DKL(qθ(zu | xu,C)‖pθ(zu))

]
. (3)

See the supplementary material for the derivation of the lower bound. Here we have introduced
a variational distribution qθ(zu | xu,C), whose implementation also encourages macro disentan-
glement and will be presented later. The two expectations, i.e., Epθ(C)[·] and Eqθ(zu|xu,C)[·], are
intractable, and are therefore estimated using the Gumbel-Softmax trick [22, 41] and the Gaussian
re-parameterization trick [27], respectively. Once the training procedure is finished, we use the mode
of pθ(C) as C, and the mode of qθ(zu | xu,C) as the representation of user u.

Micro disentanglement A natural strategy to encourage micro disentanglement is to force statisti-
cal independence between the dimensions, i.e., to force qθ(z

(k)
u | C) ≈∏d

j=1 qθ(z
(k)
u,j | C), so that

each dimension describes an isolated factor. Here qθ(zu | C) =
∫
qθ(zu | xu,C)pdata(xu) dxu.

Fortunately, the Kullback–Leibler (KL) divergence term in the lower bound above does provide a
way to encourage independence. Specifically, the KL term of our model can be rewritten as:

Epdata(xu) [DKL(qθ(zu | xu,C)‖pθ(zu))] = Iq(xu; zu) +DKL(qθ(zu | C)‖pθ(zu)). (4)

3

See the supplementary material for the proof. Similar decomposition of the KL term has been
noted for the original VAEs previously [1, 25, 9]. Penalizing the latter KL term would encourage
independence between the dimensions, if we choose a prior that satisfies pθ(zu) =

∏d′

j=1 pθ(zu,j).
On the other hand, the former term Iq(xu; zu) is the mutual information between xu and zu under
qθ(zu | xu,C)·pdata(xu). Penalizing Iq(xu; zu) is equivalent to applying the information bottleneck
principle [47, 2], which encourages zu to ignore as much noise in the input as it can and to focus
on merely the essential information. We therefore follow β-VAE [19], and strengthen these two
regularization terms by a factor of β � 1, which brings us to the following training objective:

Epθ(C)

[
Eqθ(zu|xu,C)[ln pθ(xu | zu,C)]− β ·DKL(qθ(zu | xu,C)‖pθ(zu))

]
. (5)

2.3 Implementation

In this section, we describe the implementation of pθ(C), pθ(xu,i | zu,C) (the decoder), pθ(zu)
(the prior), qθ(zu | xu,C) (the encoder), and propose an efficient strategy to combat mode collapse.
The parameters θ of our implementation include: K concept prototypes {mk}Kk=1 ∈ RK×d, M item
representations {hi}Mi=1 ∈ RM×d used by the decoder, M context representations {ti}Mi=1 ∈ RM×d
used by the encoder, and the parameters of a neural network fnn : Rd → R2d. We optimize θ to
maximize the training objective (see Equation 5) using Adam [26].

Prototype-based concept assignment A straightforward approach would be to assume pθ(C) =∏M
i=1 p(ci) and parameterize each categorical distribution p(ci) with its own set of K−1 parameters.

This approach, however, would result in over-parameterization and low sample efficiency. We instead
propose a prototype-based implementation. To be specific, we introduce K concept prototypes
{mk}Kk=1 and reuse the item representations {hi}Mi=1 from the decoder. We then assume ci is a
one-hot vector drawn from the following categorical distribution pθ(ci):

ci ∼ CATEGORICAL (SOFTMAX([si,1; si,2; . . . ; si,K])) , si,k = COSINE(hi,mk)/τ, (6)

where COSINE(a,b) = a>b/(‖a‖2 ‖b‖2) is the cosine similarity, and τ is a hyper-parameter that
scales the similarity from [−1, 1] to [− 1

τ ,
1
τ]. We set τ = 0.1 to obtain a more skewed distribution.

Preventing mode collapse We use cosine similarity, instead of the inner product similarity adopted
by most existing deep learning methods [32, 31, 18]. This choice is crucial for preventing mode
collapse. In fact, with inner product, the majority of the items are highly likely to be assigned
to a single concept mk′ that has an extremely large norm, i.e., ‖mk′‖2 → ∞, even when the
items {hi}Mi=1 correctly form K clusters in the high-dimensional Euclidean space. And we observe
empirically that this phenomenon does occur frequently with inner product (see Figure 2e). In
contrast, cosine similarity avoids this degenerate case due to the normalization. Moreover, cosine
similarity is related with the Euclidean distance on the unit hypersphere, and the Euclidean distance
is a proper metric that is more suitable for inferring the cluster structure, compared to inner product.

Decoder The decoder predicts which item out of theM ones is mostly likely to be clicked by a user,
when given the user’s representation zu = [z

(1)
u ; z

(2)
u ; . . . ; z

(K)
u] and the one-hot concept assignments

{ci}Mi=1. We assume that pθ(xu,i | zu,C) ∝∑K
k=1 ci,k · g

(i)
θ (z

(k)
u) is a categorical distribution over

the M items, and define g(i)θ (z
(k)
u) = exp(COSINE(z

(k)
u ,hi)/τ). This design implies that {hi}Mi=1

will be micro-disentangled if {z(k)u }Nu=1 is micro-disentangled, as the two’s dimensions are aligned.

Prior & Encoder The prior pθ(zu) needs to be factorized in order to achieve micro disentan-
glement. We therefore set pθ(zu) to N (0, σ2

0I). The encoder qθ(zu | xu,C) is for comput-
ing the representation of a user when given the user’s behavior data xu. The encoder main-
tains an additional set of context representations {ti}Mi=1, rather than reusing the item represen-
tations {hi}Mi=1 from the decoder, which is a common practice in the literature [32]. We assume
qθ(zu | xu,C) =

∏K
k=1 qθ(z

(k)
u | xu,C), and represent each qθ(z

(k)
u | xu,C) as a multivariate

normal distribution with a diagonal covariance matrix N (µ
(k)
u , [diag(σ

(k)
u)]2), where the mean and

4

the standard deviation are parameterized by a neural network fnn : Rd → R2d:

(a(k)u ,b(k)
u) = fnn

∑i:xu,i=+1 ci,k · ti√∑
i:xu,i=+1 c

2
i,k

 , µ(k)
u =

a
(k)
u

‖a(k)u ‖2
, σ(k)

u ← σ0 · exp
(
−1

2
b(k)
u

)
. (7)

The neural network fnn(·) captures nonlinearity, and is shared across the K components. We
normalize the mean, so as to be consistent with the use of cosine similarity which projects the
representations onto a unit hypersphere. Note that σ0 should be set to a small value, e.g., around 0.1,
since the learned representations are now normalized.

2.4 User-Controllable Recommendation

The controllability enabled by the disentangled representations can bring a new paradigm for recom-
mendation. It allows a user to interactively search for items that are similar to an initial item except for
some controlled aspects, or to explicitly adjust the disentangeld representation of his/her preference,
learned by the system from his/her past behaviors, to actually match the current preference. Here we
formalize the task of user-controllable recommendation, and illustrate a possible solution.

Task definition Let h∗ ∈ Rd be the representation to be altered, which can be initialized as either
an item representation or a component of a user representation. The task is to gradually alter its jth
dimension h∗,j , while retrieving items whose representations are similar to the altered representation.
This task is nontrivial, since usually no item will have exactly the same representation as the altered
one, especially when we want the transition to be smooth, monotonic, and thus human-understandable.

Solution Here we illustrate our approach to this task. We first probe the suitable range (a, b) for
h∗,j . Let us assume that prototype k∗ is the prototype closest to h∗. The range (a, b) is decided such
that: prototype k∗ remains the prototype closest to h∗ if and only if h∗,j ∈ (a, b). We can decide each
endpoint of the range using binary search. We then divide the range (a, b) intoB subranges, a = a0 <
a1 < a2 . . . < aB = b. We ensure that the subranges contain roughly the same number of items from
concept k∗ when dividing (a, b) . Finally, we aim to retrieve B items {it}Bt=1 ∈ {1, 2, . . . ,M}B
that belong to concept k∗, each from one of the B subranges, i.e., hit,j ∈ (at−1, at]. We thus

decide theB items by maximizing
∑

1≤t≤B e
COSINE(hit,−j ,h∗,−j)

τ +γ ·∑1≤t<t′≤B e
COSINE(hit,−j ,hit′ ,−j

)

τ ,

where hi,−j = [hi,1;hi,2; . . . ;hi,j−1;hi,j+1; . . . ;hi,d] ∈ Rd−1 and γ is a hyper-parameter. We
approximately solve this maximization problem sequentially using beam search [36].

Intuitively, selecting items from the B subranges ensures that the items change monotonously in
terms of the jth dimension. On the other hand, the first term in the maximization problem forces the
retrieved items to be similar with the initial item in terms of the dimensions other than j, while the
second term encourages any two retrieved items to be similar in terms of the dimensions other than j.

3 Empirical Results

3.1 Experimental Setup

Datasets We conduct our experiments on five real-world datasets. Specifically, we use the large-
scale Netflix Prize dataset [4], and three MovieLens datasets of different scales (i.e., ML-100k,
ML-1M, and ML-20M) [16]. We follow MultVAE [32], and binarize these four datasets by keeping
ratings of four or higher while only keeping users who have watched at least five movies. We
additionally collect a dataset, named AliShop-7C 2, from Alibaba’s e-commerce platform Taobao.
AliShop-7C contains user-item interactions associated with items from seven categories, as well as
item attributes such as titles and images. Every user in this dataset clicks items from at least two
categories. The category labels are used for evaluation only, and not for training.

Baselines We compare our approach with MultDAE [32] and β-MultVAE [32], the two state-of-
the-art methods for collaborative filtering. In particular, β-MultVAE is similar to β-VAE [19], and
has a hyper-parameter β that controls the strength of disentanglement. However, β-MultVAE does
not learn disentangled representations, because it requires β � 1 to perform well.

2The dataset and our code are at https://jianxinma.github.io/disentangle-recsys.html.

5

https://jianxinma.github.io/disentangle-recsys.html

Table 1: Collaborative filtering. All methods are constrained to have around 2Md parameters, where
M is the number of items and d is the dimension of each item representation. We set d = 100.

Metrics

Dataset Method NDCG@100 Recall@20 Recall@50

AliShop-7C MultDAE 0.23923 (±0.00380) 0.15242 (±0.00305) 0.24892 (±0.00391)
β-MultVAE 0.23875 (±0.00379) 0.15040 (±0.00302) 0.24589 (±0.00387)

Ours 0.29148 (±0.00380) 0.18616 (±0.00317) 0.30256 (±0.00397)

ML-100k MultDAE 0.24487 (±0.02738) 0.23794 (±0.03605) 0.32279 (±0.04070)
β-MultVAE 0.27484 (±0.02883) 0.24838 (±0.03294) 0.35270 (±0.03927)

Ours 0.28895 (±0.02739) 0.30951 (±0.03808) 0.41309 (±0.04503)

ML-1M MultDAE 0.40453 (±0.00799) 0.34382 (±0.00961) 0.46781 (±0.01032)
β-MultVAE 0.40555 (±0.00809) 0.33960 (±0.00919) 0.45825 (±0.01039)

Ours 0.42740 (±0.00789) 0.36046 (±0.00947) 0.49039 (±0.01029)

ML-20M MultDAE 0.41900 (±0.00209) 0.39169 (±0.00271) 0.53054 (±0.00285)
β-MultVAE 0.41113 (±0.00212) 0.38263 (±0.00273) 0.51975 (±0.00289)

Ours 0.42496 (±0.00212) 0.39649 (±0.00271) 0.52901 (±0.00284)

Netflix MultDAE 0.37450 (±0.00095) 0.33982 (±0.00123) 0.43247 (±0.00126)
β-MultVAE 0.36291 (±0.00094) 0.32792 (±0.00122) 0.41960 (±0.00125)

Ours 0.37987 (±0.00096) 0.34587 (±0.00124) 0.43478 (±0.00125)

Hyper-parameters We constrain the number of learnable parameters to be around 2Md for each
method so as to ensure fair comparison, which is equivalent to using d-dimensional representations
for the M items. Note that all the methods under investigation use two sets of item representations,
and we do not constrain the dimension of user representations since they are not parameters. We set
d = 100 unless otherwise specified. We fix τ to 0.1. We tune the other hyper-parameters of both our
approach’s and our baselines’ automatically using the TPE method [6] implemented by Hyepropt [5].

3.2 Recommendation Performance

We evaluate the performance of our approach on the task of collaborative filtering for implicit feedback
datasets [21], one of the most common settings for recommendation. We follow the experiment
protocol established by the previous work [32] strictly, and use the same preprocessing procedure as
well as evaluation metrics. The results on the five datasets are listed in Table 1.

We observe that our approach outperforms the baselines significantly, especially on small, sparse
datasets. The improvement is likely due to two desirable properties of our approach. Firstly, macro
disentanglement not only allows us to accurately represent the diverse interests of a user using
the different components, but also alleviates data sparsity by allowing a rarely visited item to
borrow information from other items of the same category, which is the motivation behind many
hierarchical methods [50, 38]. Secondly, as we will show in Section 3.4, the dimensions of the
representations learned by our approach are highly disentangled, i.e., independent, thanks to the
micro disentanglement regularizer, which leads to more robust performance.

3.3 Macro Disentanglement

We visualize the high-dimensional representations learned by our approach on AliShop-7C in order to
qualitatively examine to which degree our approach can achieve macro disentanglement. Specifically,
we set K to seven, i.e., the number of ground-truth categories, when training our model. We visualize
the item representations and the user representations together using t-SNE [40], where we treat the
K components of a user as K individual points and keep only the two components that have the
highest confidence levels. The confidence of component k is defined as

∑
i:xu,i>0 ci,k, where ci,k is

the value inferred by our model, rather than the ground-truth. The results are shown in Figure 2.

Interpretability Figure 2c, which shows the clusters inferred based on the prototypes, is rather
similar to Figure 2d that shows the ground-truth categories, despite the fact that our model is trained

6

(a) Items and users. Item i is colored according to argmaxk ci,k,
i.e., the inferred category. Each component of a user is treated as an
individual point, and the kth component is colored according to k.

(b) Users only, colored in the
same way as Figure 2a.

(c) Items only, colored in the same
way as Figure 2a.

(d) Items only, colored according
to their ground-truth categories.

(e) Items, obtained by training a
new model that uses inner product
instead of cosine, colored accord-
ing to the value of argmaxk ci,k.

Figure 2: The discovered clusters of items (see Figure 2c), learned unsupervisedly, align well with
the ground-truth categories (see Figure 2d, where the color order is chosen such that the connections
between the ground-truth categories and the learned clusters are easy to verify). Figure 2e highlights
the importance of using cosine similarity, rather than inner product, to combat mode collapse.

(a) Bag size. (b) Bag color. (c) Styles of phone cases.

(d) Bag size. The same dimension
as Figure 3a.

(e) Bag color. The same dimension
as Figure 3b.

(f) Chicken → beef → mutton →
seafood.

Figure 3: Starting from an item representation, we gradually alter the value of a target dimension,
and list the items that have representations similar to the altered representations (see Subsection 2.4).

without the ground-truth category labels. This demonstrates that our approach is able to discover and
disentangle the macro structures underlying the user behavior data in an interpretable way. Moreover,
the components of the user representations are near the correct cluster centers (see Figure 2a and
Figure 2b), and are hence likely capturing the users’ separate preferences for different categories.

Cosine vs. inner product To highlight the necessity of using cosine similarity instead of the more
commonly used inner product similarity, we additionally train a new model that uses inner product
in place of cosine, and visualize the learned item representations in Figure 2e. With inner product,
the majority of the items are assigned to the same prototype (see Figure 2e). In comparison, all
seven prototypes learned by the cosine-based model are assigned a significant number of items (see
Figure 2c). This finding supports our claim that a proper metric space, such as the one implied by the
cosine similarity, is important for preventing mode collapse.

3.4 Micro Disentanglement

Independence We vary the hyper-parameters related with micro disentanglement (β and σ0 for our
approach, β for β-MultVAE), and plot in Figure 4 the relationship between the level of independence
achieved and the recommendation performance. Each method is evaluated with 2,000 randomly

7

0.14 0.16 0.18 0.20 0.22 0.24 0.26
Performance (Recall@20)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

en
ta

ng
le

m
en

t (
U

nc
or

re
la

te
dn

es
s) Representations = Items'

0.14 0.16 0.18 0.20 0.22 0.24 0.26
Performance (Recall@20)

Representations = Users'

Method
Ours(100,700)
Ours(100,100)
beta-MultVAE(100,700)
beta-MultVAE(100,100)

Figure 4: Micro disentanglement vs. recommendation performance. (d, d′) indicates d-dimensional
item representations and d′-dimensional user representations. Note that d′ = Kd. We observe that
(1) our approach outperforms the baselines in terms of both performance and micro disentanglement,
and (2) macro disentanglement benefits micro disentanglement, as K = 7 is better than K = 1.

sampled configurations on ML-100k. We quantify the level of independence achieved by a set of
d-dimensional representations using 1− 2

d(d−1)
∑

1≤i<j≤d |corri,j |, where corri,j is the correlation
between dimension i and j. Figure 4 suggests that high performance is in general associated with a
relatively high level of independence. And our approach achieves a much higher level of independence
than β-MultVAE. In addition, the improvement brought by using K = 7 instead of K = 1 reveals
that macro disentanglement can possibly help improve micro disentanglement.

Interpretability We train our model with K = 7, d = 10, β = 50 and σ0 = 0.3, on AliShop-7C,
and investigate the interpretability of the dimensions using the approach illustrated in Subsection 2.4.
In Figure 3, we list some representative dimensions that have human-understandable semantics.
These examples suggest that our approach has the potential to give users fine-grained control over
targeted aspects of the recommendation lists. However, we note that not all dimensions are human-
understandable. In addition, as pointed out by Locatello et al. [34], well-trained interpretable models
can only be reliably identified with the help of external knowledge, e.g., item attributes. We thus
encourage future efforts to focus more on (semi-)supervised methods [35].

4 Related Work

Learning representations from user behavior Learning from user behavior has been a central
task of recommender systems since the advent of collaborative filtering [43, 42, 46, 12, 21]. Early
attempts apply matrix factorization [29, 45], while the more recent deep learning methods [49, 32,
31, 52, 11, 18] achieve massive improvement by learning highly informative representations. The
entanglement of the latent factors behind user behavior, however, is mostly neglected by the black-box
representation learning process adopted by the majority of the existing methods. To the extent of our
knowledge, we are the first to study disentangled representation learning on user behavior data.

Disentangled representation learning Disentangled representation learning aims to identify and
disentangle the underlying explanatory factors [3]. β-VAE [19] demonstrates that disentanglement
can emerge once the KL divergence term in the VAE [27] objective is aggressively penalized. Later
approaches separate the information bottleneck term [48, 47] and the total correlation term, and
achieve a greater level of disentanglement [9, 25, 8]. Though a few existing approaches [14, 10, 7,
13, 24] do notice that a dataset can contain samples from different concepts, i.e., follow a mixture
distribution, their settings are fundamentally different from ours. To be specific, these existing
approaches assume that each instance is from a concept, while we assume that each instance interacts
with objects from different concepts. The majority of the existing efforts are from the field of computer
vision [28, 15, 20, 30, 53, 14, 10, 39, 19]. Disentangled representation learning on relational data,
such as graph-structured data, was not explored until recently [37]. This work focus on disentangling
user behavior, another kind of relational data commonly seen in recommender systems.

5 Conclusions

In this paper, we studied the problem of learning disentangled representations from user behavior,
and presented our approach that performs disentanglement at both a macro and a micro level. An
interesting direction for future research is to explore novel applications that can be enabled by the
interpretability and controllability brought by the disentangled representations.

8

Acknowledgments

The authors from Tsinghua University are supported in part by National Program on Key Basic
Research Project (No. 2015CB352300), National Key Research and Development Project (No.
2018AAA0102004), National Natural Science Foundation of China (No. 61772304, No. 61521002,
No. 61531006, No. U1611461), Beijing Academy of Artificial Intelligence (BAAI), and the Young
Elite Scientist Sponsorship Program by CAST. All opinions, findings, and conclusions in this paper
are those of the authors and do not necessarily reflect the views of the funding agencies.

References
[1] Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations

through noisy computation. IEEE transactions on pattern analysis and machine intelligence,
40(12):2897–2905, 2018.

[2] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational
information bottleneck. In International Conference for Learning Representations, 2015.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

[4] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD Cup and Workshop
2007, 2007.

[5] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in science
conference, pages 13–20. Citeseer, 2013.

[6] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in neural information processing systems, pages 2546–
2554, 2011.

[7] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoen-
coder: Learning disentangled representations from grouped observations. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[8] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

[9] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. In Advances in Neural Information Processing
Systems, pages 2610–2620, 2018.

[10] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pages 2172–2180, 2016.

[11] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191–198.
ACM, 2016.

[12] Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[13] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni,
Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture
variational autoencoders. arXiv preprint arXiv:1611.02648, 2016.

[14] Emilien Dupont. Learning disentangled joint continuous and discrete representations. In
Advances in Neural Information Processing Systems, pages 710–720, 2018.

9

[15] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al. Neural scene
representation and rendering. Science, 360(6394):1204–1210, 2018.

[16] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):19, 2016.

[17] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 1661–1670. ACM, 2015.

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
pages 173–182, 2017.

[19] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
volume 3, 2017.

[20] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. Learning
to decompose and disentangle representations for video prediction. In Advances in Neural
Information Processing Systems, pages 517–526, 2018.

[21] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In ICDM, volume 8, pages 263–272. Citeseer, 2008.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[23] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large
target vocabulary for neural machine translation. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL 2015), 2015.

[24] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: an unsupervised and generative approach to clustering. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pages 1965–1972. AAAI Press, 2017.

[25] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pages 2654–2663, 2018.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference for Learning Representations, 2014.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[28] Nikos Komodakis and Spyros Gidaris. Unsupervised representation learning by predicting
image rotations. In International Conference on Learning Representations (ICLR), 2018.

[29] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[30] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer,
repeat: Generative modelling of moving objects. In Advances in Neural Information Processing
Systems, pages 8606–8616, 2018.

[31] Xiaopeng Li and James She. Collaborative variational autoencoder for recommender systems.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 305–314. ACM, 2017.

[32] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoen-
coders for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, pages 689–698, 2018.

10

[33] Bin Liu, Anmol Sheth, Udi Weinsberg, Jaideep Chandrashekar, and Ramesh Govindan. Adre-
veal: Improving transparency into online targeted advertising. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, 2013.

[34] Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and
Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled
representations. In Proceedings of the 36th International Conference on Machine Learning
(ICML 2019), 2019.

[35] Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf,
and Olivier Bachem. Disentangling factors of variation using few labels. arXiv preprint
arXiv:1905.01258, 2019.

[36] B LOWERE. The harpy speech recognition system. PhD thesis, Carnegie Mellon University,
1976.

[37] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolu-
tional networks. In Proceedings of the 36th International Conference on Machine Learning
(ICML 2019), 2019.

[38] Jianxin Ma, Peng Cui, Xiao Wang, and Wenwu Zhu. Hierarchical taxonomy aware network
embedding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2018.

[39] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt Schiele, and Mario Fritz.
Disentangled person image generation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 99–108, 2018.

[40] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[41] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[42] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

[43] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work, pages 175–186. ACM, 1994.

[44] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st International
Conference on International Conference on Machine Learning-Volume 32, pages II–1278.
JMLR. org, 2014.

[45] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In NIPS, volume 20,
pages 1–8, 2011.

[46] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web, pages 285–295. ACM, 2001.

[47] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[48] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.

[49] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1235–1244. ACM, 2015.

11

[50] Yi Zhang and Jonathan Koren. Efficient bayesian hierarchical user modeling for recommen-
dation system. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, 2007.

[51] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. Explicit
factor models for explainable recommendation based on phrase-level sentiment analysis. In
Proceedings of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 83–92. ACM, 2014.

[52] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun
Gao. Atrank: An attention-based user behavior modeling framework for recommendation. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[53] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenen-
baum, and Bill Freeman. Visual object networks: Image generation with disentangled 3d
representations. In Advances in Neural Information Processing Systems, pages 118–129, 2018.

12

A Supplementary Material

A.1 Proofs

Evidence lower bound (ELBO)

ln pθ(xu) ≥ Epθ(C)

[
Eqθ(zu|xu,C)[ln pθ(xu | zu,C)]−DKL(qθ(zu | xu,C)‖pθ(zu))

]
.

Proof. Let qθ(zu,C | xu) = qθ(zu | xu,C)pθ(C), then

ln pθ(xu)

= Eqθ(zu,C|xu) [ln pθ(xu)]

= Eqθ(zu,C|xu)
[
ln

pθ(xu, zu,C)

pθ(zu,C | xu)

]
= Eqθ(zu,C|xu)

[
ln
qθ(zu,C | xu)
pθ(zu,C | xu)

]
+ Eqθ(zu,C|xu)

[
ln
pθ(xu, zu, ,C)

qθ(zu,C | xu)

]
= Eqθ(zu,C|xu)

[
ln
qθ(zu,C | xu)
pθ(zu,C | xu)

]
+ Eqθ(zu,C|xu) [ln pθ(xu | zu,C)] + Eqθ(zu,C|xu)

[
ln

pθ(zu,C)

qθ(zu,C | xu)

]
= DKL(qθ(zu,C | xu)‖pθ(zu,C | xu))
+ Eqθ(zu,C|xu) [ln pθ(xu | zu,C)]−DKL(qθ(zu,C | xu)‖pθ(zu,C))

≥ Eqθ(zu,C|xu) [ln pθ(xu | zu,C)]−DKL(qθ(zu,C | xu)‖pθ(zu,C))

= Epθ(C)

[
Eqθ(zu|xu,C)[ln pθ(xu | zu,C)]−DKL(qθ(zu | xu,C)‖pθ(zu))

]
.

Note that in the last line above, we have used

DKL(qθ(zu,C | xu)‖pθ(zu,C))

= DKL(qθ(zu | xu,C)pθ(C)‖pθ(zu)pθ(C))

= Epθ(C) [DKL(qθ(zu | xu,C)‖pθ(zu))] .

Information bottleneck (IB) and total correlation (TC)

Epdata(xu) [DKL(qθ(zu | xu,C)‖pθ(zu))] = Iq(xu; zu) +DKL(qθ(zu | C)‖pθ(zu)).

Proof.

Epdata(xu) [DKL(qθ(zu | xu,C)‖pθ(zu))]

= Epdata(xu)

[
Eqθ(zu|xu,C)

[
ln
qθ(zu | xu,C)

pθ(zu)

]]
= Epdata(xu)

[
Eqθ(zu|xu,C)

[
ln
qθ(zu | xu,C)

qθ(zu | C)

qθ(zu | C)

pθ(zu)

]]
= Epdata(xu)

[
Eqθ(zu|xu,C)

[
ln
qθ(zu | xu,C)

qθ(zu | C)
+ ln

qθ(zu | C)

pθ(zu)

]]
= Epdata(xu) [DKL(qθ(zu | xu,C)‖qθ(zu | C))] + Eqθ(zu|xu,C)pdata(xu)

[
ln
qθ(zu | C)

pθ(zu)

]
= Iq(xu; zu) + Eqθ(zu|C)

[
ln
qθ(zu | C)

pθ(zu)

]
= Iq(xu; zu) +DKL(qθ(zu | C)‖pθ(zu)).

Note that pdata(xu | C) = pdata(xu), and the mutual information Iq(xu; zu) is under the joint
distribution qθ(zu,xu | C) = qθ(zu | xu,C)pdata(xu | C) = qθ(zu | xu,C)pdata(xu).

13

Table 2: Dataset statistics.
AliShop-7C ML-100k ML-1M ML-20M Netflix

of users 10,668 603 6,038 136,677 463,435
of items 20,591 569,7 3,605 20,108 17,769
of interactions 767,493 47,922 836,452 9,990,030 56,880,037
of held-out users 4,000 50 500 10,000 40,000

A.2 Experimental Details

Datasets Datasets are preprocessed using the script provided by β-MultVAE. Half of the held-out
users are used for validation, while the other half of the held-out users are for testing.

Infrastructure We implement our model with Tensorflow, and conduct our experiments with:

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.
• RAM: DDR4 1TB.
• GPU: 8x GeForce GTX 1080 Ti.
• Operating system: Ubuntu 18.04 LTS.
• Software: Python 3.6; NumPy 1.15.4; SciPy 1.2.0; scikit-learn 0.20.0; TensorFlow 1.12.

Hyper-parameter search We treat K as a hyper-parameter to be tuned and do not directly set
K to the ground truth when evaluating its performance on recommendation tasks, so as to ensure
a fair comparison with the baselines. We set d = 100. We fix τ to 0.1. The neural network
fnn(·) in our model is a multilayer perceptron (MLP), whose input and output are constrained to
be d-dimensional and 2d-dimensional, respectively. We use the tanh activation function. We apply
dropout before every layers, except the last layer. The model is trained using Adam. We then tune
the other hyper-parameters of both our approach’s and our baselines’ automatically using the TPE
method implemented by Hyepropt. We let Hyperopt conduct 200 trials to search for the optimal
hyper-parameter configuration for each method on the validation of each dataset. The hyper-parameter
search space is specified as follows:

• The standard deviation of the prior σ0 ∈ [0.075, 0.5].
• The strength of micro disentanglement β ∈ [0, 100].
• The number of macro factors K ∈ {1, 2, 3, . . . , 20}.
• The learning rate ∈ [10−8, 1].

• L2 regularization ∈ [10−12, 1].
• Dropout rate ∈ [0.05, 1].
• The number of hidden layers in a neural network ∈ {0, 1, 2, 3}.
• The number of neurons in a hidden layer ∈ {50, 100, 150, . . . , 700}.

The number of macro factors Our initial implementation adaptively adjusts the number of macro
factors K during training. To be specific, we set K as a sufficiently large value at the beginning
and shrink its value after every training epoch if the Jensen–Shannon (JS) divergence between
{pi|k}Mi=1

and {pi|k′}Mi=1
for some k 6= k′ is negligible compared to a predefined threshold, where

pi|k := pθ(ci,k = 1)/
∑
i′ pθ(ci′,k = 1). We, however, do not find this adaptive strategy to be

significantly better than the naïve strategy that treats K as a hyper-parameter to be tuned by Hyperopt,
since the adaptive strategy introduces extra computational cost as well as a new hyper-parameter.

A.3 Implementation Details

See Algorithm 1.

14

Algorithm 1 The training procedure. We add 10−8 to prevent division-by-zero wherever appropriate.

1: input: xu = {xu,i : user u clicks item i, i.e., xu,i = 1}.
2: parameters: Concept prototypes mk ∈ Rd for k = 1, 2, . . . ,K; Item representations hi ∈ Rd

for i = 1, 2, . . . ,M ; Context representations ti ∈ Rd for i = 1, 2, . . . ,M ; Parameters of a
neural network fnn : Rd → R2d. . All these parameters are referred to collectively as θ.

3: function PROTOTYPECLUSTERING
4: for i = 1, 2, . . . ,M do
5: si,k ← h>i mk/(τ · ‖hi‖2 · ‖mk‖2), k = 1, 2, . . . ,K.
6: ci ∼GUMBEL-SOFTMAX([si,1; si,2; . . . ; si,K]). . At test time, ci is set to the mode.
7: return {ci}Mi=1

8: function ENCODER(xu, {ci}Mi=1)
9: for k = 1, 2, . . . ,K do

10: (ak,bk)← fnn

(∑
i:xu,i=+1 ci,k·ti√∑
i:xu,i=+1 c

2
i,k

)
, µ(k) ← ak/‖ak‖2, σ(k) ← σ0 · exp

(
− 1

2bk
)
.

11: µu ← [µ(1);µ(2); . . . ;µ(K)], σu ← [σ(1);σ(2); . . . ;σ(K)], ε ∼ N (0, I).
12: zu = µu + ε ◦ σu. . zu is set to µu at test time. “◦” stands for element-wise multiplication.
13: return zu, DKL(N (µu,diag(σu))‖N (0, σ0 · I))
14: function DECODER(zu, {ci}Mi=1)

15: pu,i ←
∑K
k=1 ci,k · exp(z

(k)
u

>
hi/(τ · ‖z(k)u ‖2 · ‖hi‖2)), i = 1, 2, . . . ,M .

16: [pu,1; pu,2; . . . ; pu,M]← SOFTMAX([ln pu,1; ln pu,2; . . . ; ln pu,M]).
17: . We replace the SOFTMAX(·) above with SAMPLED-SOFTMAX(·), and compute pu,i only

if xu,i = 1 or item i is sampled, when M is very large.
18: return {pu,i}Mi=1

19: {ci}Mi=1← PROTOTYPECLUSTERING().
20: zu, DKL← ENCODER(xu, {ci}Mi=1).
21: {pu,i}Mi=1← DECODER(zu, {ci}Mi=1).
22: L = −β ·DKL +

∑
i:xu,i=1 ln pu,i.

23: θ ← Update θ to maximize L, using the gradient ∇θL.

15

	Introduction
	Method
	Notations and Problem Formulation
	Model
	Implementation
	User-Controllable Recommendation

	Empirical Results
	Experimental Setup
	Recommendation Performance
	Macro Disentanglement
	Micro Disentanglement

	Related Work
	Conclusions
	Supplementary Material
	Proofs
	Experimental Details
	Implementation Details

