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Abstract

Problems associated with m-ary trees have been studied by computer
scientists and combinatorialists. It is well known that a simple gener-
alization of the Catalan numbers counts the number of m-ary trees on
n nodes. In this paper we consider τm,n, the number of m-ary search
trees on n keys, a quantity that arises in studying the space of m-ary
search trees under the uniform probability model. We prove an exact
formula for τm,n, both by analytic and by combinatorial means. We
use uniform local approximations for sums of i.i.d. random variables
to study the asymptotic development of τm,n for fixed m as n → ∞.
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1 Introduction and summary

For integer m ≥ 2, the m-ary search tree, or multiway tree, generalizes the
binary search tree. Search trees are fundamental data structures in computer
science. For background we refer the reader to Knuth (1973b), Mahmoud
(1992), and Dobrow and Fill (1996).

An m-ary tree is a rooted tree with at most m “children” for each node
(vertex), each of which is distinguished as one of m possible types. Recur-
sively expressed, an m-ary tree either is empty or is a node (called the root)
with m distinguished subtrees, each of which is an m-ary tree.

An m-ary search tree is an m-ary tree in which each node has the capacity
to contain m− 1 elements of some linearly ordered set, called the set of keys.
In typical implementations, the keys at each node are stored in increasing
order and at each node one has m pointers to the subtrees. By spreading the
input data in m directions instead of only 2, as is the case in a binary search
tree, one seeks to have shorter path lengths and thus quicker search times.

There is an extensive computer science literature on multiway trees.
There is also a large combinatorics literature on m-ary trees. However, as
far as we can determine, existing combinatorial work has dealt almost exclu-
sively with m-ary trees on n nodes, whereas here we shall be concerned with
m-ary search trees on n keys. We consider the space of m-ary search trees
on n keys and for simplicity take the set of keys to be [n] := {1, 2, . . . , n}.

Two common probability models on the space of m-ary search trees are
the uniform model (every tree equally likely) and the random permutation,
or random insertion, model. Dobrow and Fill (1996) treat certain aspects of
the random permutation model; Mahmoud (1992) has much more. In this
paper we consider the most fundamental question for the uniform case: Let
τm,n be the number of m-ary search trees on n keys. How big is τm,n?

This paper is organized as follows. In Section 2, we give an exact formula
for τm,n, proving this result by generating functions and also by a more direct
combinatorial argument. In Section 3 and 4 we analyze the asymptotics of
τm,n as n → ∞ with m constant. In Sections 5 and 6 we give monotonicity
results and large-m asymptotics for τm,n.

2 Exact results

For an ordered r-tuple (k0, . . . , kr−1), write k+ for
∑r−1

i=0 ki.
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Theorem 1 The number of m-ary search trees on n keys is given by

τm,n =
∑(

k+

k0, . . . , km−2

)
[(m/(m − 1))(k+ − 1)]!

[(k+ − 1)/(m − 1)]!k+!
, (1)

where the sum is over all (m − 1)-tuples (k0, . . . , km−2) such that: (i) ki ≥ 0
for 0 ≤ i ≤ m−2, (ii) m−1 divides k+ −1, and (iii)

∑m−2
j=0 (j +1)kj = n+1.

The following alternative form of (1) will be useful later:

τm,n =

b n
m−1c∑

s=

⌈
n−(m−2)

(m−1)2

⌉
∑ (ms)!

s!k0! · · ·km−2!
, (2)

where the inner sum is over all (m − 1)-tuples (k0, . . . , km−2) such that:
(i) ki ≥ 0 for 0 ≤ i ≤ m − 2, (ii) k+ = (m − 1)s + 1, and (iii)

∑m−2
j=0 jkj =

n − (m − 1)s.

Proof Generating function proof: By the recursive definition of m-ary search
trees, for n ≥ m − 1,

τm,n =
∑

τm,k1 · · · · · τm,km, (3)

where the sum is over all m-tuples (k1, . . . , km) such that ki ≥ 0 for 1 ≤ i ≤ m
and k+ = n − (m − 1). Fixing m, let A(z) :=

∑∞
n=0 τm,nzn denote the

corresponding generating function. Then (3) gives

A(z) −
m−2∑

j=0

zj = zm−1Am(z),

or

A(z) = zm−1Am(z) +
1 − zm−1

1 − z
. (4)

Equation (4) can be explicitly solved. [See Exercise 2.3.4.4–33 in Knuth
(1973a).] The solution gives

A(z) =
∑

n1,n2 : (1−m)n1+n2=1

(n1 + n2 − 1)!

n1!n2!
(zm−1)n1

(
1 − zm−1

1 − z

)n2

=
∞∑

s=0

(ms)!

s![(m − 1)s + 1]!
z(m−1)s(1 + z + · · · + zm−2)(m−1)s+1 (5)
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Extracting the coefficient of zn in (5) gives the result.

Combinatorial proof: We use the fact that the generalized Catalan num-
ber

Cm,n :=
(mn)!

n![(m − 1)n + 1]!
=

1

(m − 1)n + 1

(
mn

n

)

gives the number of m-ary trees on n nodes, n ≥ 0. [See Hilton and Pederson
(1991) for much interesting material on generalized Catalan numbers.]

It will be convenient here to consider extended m-ary trees. We extend
a tree by adding to each of its original (now internal) nodes 0, 1, . . . , or m
external nodes to make the outdegree of all internal nodes equal to m. We
state the following well-known fact without proof.

Lemma 2.1 Any m-ary tree with s internal nodes has (m−1)s+1 external
nodes.

From any m-ary tree S with s internal nodes, where

(m − 1)s ≤ n ≤ (m − 1)s + (m − 2)[(m − 1)s + 1] = (m − 1)2s + (m − 2),

i.e., where ⌈
n − (m − 2)

(m − 1)2

⌉
≤ s ≤

⌊
n

m − 1

⌋
,

one can build an m-ary search tree T on n keys whose full nodes are precisely
the internal nodes of S by partially filling the external nodes of S according
to the following two-step procedure:

Step 1. Choose ki, 0 ≤ i ≤ m−2, to be the number of external nodes of S
to be partially filled with i keys. This entails the restrictions on k0, . . . , km−2

as stated for the inner sum in (2).

Step 2. Label the (m − 1)s + 1 external nodes of S in some (arbitrary)
fashion. Then choose ki of these to be partially filled with i keys, 0 ≤ i ≤
m − 2.

The above argument shows that

τm,n =
∑

s

Cm,s

∑(
(m − 1)s + 1

k0, · · · , km−2

)
(6)

=
∑

s

∑ (ms)!

s!k0! · · ·km−2!
,
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in agreement with (2), where in each case the outer sum is over s satisfying

⌈
n − (m − 2)

(m − 1)2

⌉
≤ s ≤

⌊
n

m − 1

⌋

and the inner sum satisfies the restrictions that apply to equation (2).

Table 1 gives values of τm,n for 2 ≤ m ≤ 10 and 0 ≤ n ≤ 10.

Table 1. τm,n

m n
0 1 2 3 4 5 6 7 8 9 10

2 1 1 2 5 14 42 132 429 1,430 4,862 16,796
3 1 1 1 3 6 16 42 114 322 918 2,673
4 1 1 1 1 4 10 20 47 128 340 868
5 1 1 1 1 1 5 15 35 70 146 360
6 1 1 1 1 1 1 6 21 56 126 252
7 1 1 1 1 1 1 1 7 28 84 210
8 1 1 1 1 1 1 1 1 8 36 120
9 1 1 1 1 1 1 1 1 1 9 45

10 1 1 1 1 1 1 1 1 1 1 10

3 Asymptotics

The main result of this section, Theorem 2, gives an asymptotic expression
for τm,n. Our analysis is based on deriving a uniform local approximation for
the distribution of a certain random sum. For completeness we first give an
asymptotic expression for the number of m-ary trees on n nodes. The proof
is straightforward using Stirling’s approximation.

Lemma 3.1 As n → ∞,

Cm,n =
[
1 + O

(
n−1

)] (m

2π

)1/2

[(m − 1)n]−
3
2

[
mm

(m − 1)m−1

]n

(7)

uniformly in m ≥ 2.
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Next we give asymptotics for τm,n. We have not tried for and do not know
a sharp remainder estimate in Theorem 2.

Theorem 2 As n → ∞,

τm,n =
[
1 + O

(
n− 2

5

)] (mα∗

2π

)1/2

m− m
m−1 n− 3

2

(
1

z∗

)n+1

(8)

for fixed m ≥ 2, where z∗ is the unique solution in (0, 1) to

m
m

m−1 (z + z2 + · · ·+ zm−1) = m − 1 (9)

and
α∗ := m −

(
m

m
m−1 − 1

) [
(z∗)−1 − 1

]−1
∈ [1, m − 1]. (10)

Proof For m = 2, the result follows easily since τ2,n = C2,n. Consider (6)
for fixed m ≥ 3. The lead order asymptotics for Cm,s are provided by Lem-
ma 3.1 uniformly in s over the range of summation. Moreover, we can give
a probabilistic interpretation to the inner sum in (6):

∑

k

(
(m − 1)s + 1

k0, . . . , km−2

)
= (m − 1)(m−1)s+1 P




m−2∑

j=0

jKj = n − (m − 1)s


 ,

where

(K0, . . . , Km−2) ∼ Multinomial
(
(m − 1)s + 1;

1

m − 1
, . . . ,

1

m − 1

)
.

Putting M := (m − 1)(m−1)s+1 for abbreviation, observe next that

M P




m−2∑

j=0

jKj = n − (m − 1)s


 = M P

(
S(m−1)s+1 = n − (m − 1)s

)
,

where Sν :=
∑ν

i=1 Xi for ν ≥ 0 and X1, X2, . . . are i.i.d. uniform over the set
{0, 1, . . . , m − 2}. [To understand this in the context of the combinatorial
proof of Theorem 1, note that both sides count the number of ways of par-
tially filling the (m − 1)s + 1 external nodes of S, independently from node
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to node, subject only to the restriction that the total number of keys added
be n − (m − 1)s.] Putting together the pieces of our argument thus far,

τm,n =
[
1 + O

(
n−1

)]
m− m

m−1

[
m

2π(m − 1)

]1/2

(11)

×
b n

m−1c∑

s=

⌈
n−(m−2)

(m−1)2

⌉ s−
3
2

[
m

m
m−1

](m−1)s+1
P
(
S(m−1)s+1 = n − (m − 1)s

)
.

As we show in Section 4,

P (S(m−1)s+1 = n − (m − 1)s) = (m − 1)−[(m−1)s+1], (12)

if

s =
n − (m − 2)

(m − 1)2
or s =

n

m − 1
;

P (S(m−1)s+1 = n − (m − 1)s) ≤ exp {[(m − 1)s + 1][K(θc) − cθc]} , (13)

if
n − (m − 2)

(m − 1)2
< s <

n

m − 1
;

and, for any δ > 0,

P
(
S(m−1)s+1 = n − (m − 1)s

)
(14)

=
[
1 + O

(
n−1

)]
[2π(m − 1)sK ′′(θc)]

−1/2
exp {[(m − 1)s + 1] [K (θc) − cθc]}

uniformly in s satisfying

(1 + δ)
n

(m − 1)2
≤ s ≤ (1 − δ)

n

m − 1
.

In (13) and (14),

c ≡ c(n, m, s) :=
n + 1

(m − 1)s + 1
− 1

satisfies 0 < c < m − 2, θc will be defined shortly, and

K(θ) =

{
log |eθ(m−1) − 1| − log |eθ − 1| − log(m − 1) if θ 6= 0
0 if θ = 0.
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Note that K(θ) increases from − log(m−1) to ∞ as θ increases over (−∞,∞).
Further,

K ′(θ) =





(m − 1)
[
1 − e−θ(m−1)

]−1
−
[
1 − e−θ

]−1
if θ 6= 0

1
2
(m − 2) if θ = 0

increases strictly from 0 to m − 2 for θ ∈ (−∞,∞), and

K ′′(θ) =





e−θ
(
1 − e−θ

)−2
− (m − 1)2e−θ(m−1)

[
1 − e−θ(m−1)

]−2
if θ 6= 0

1
12

[(m − 1)2 − 1] if θ = 0

is strictly positive for all θ ∈ IR. The value θ = θc is defined as the unique
real solution to K ′(θ) = c.

To see which terms contribute most to (11), we seek the value of c ∈
(0, m − 2) maximizing

1

c + 1

[
m

m − 1
log m + K (θc) − cθc

]

= −θc +
1

K ′ (θc) + 1

[
m

m − 1
log m + K (θc) + θc

]
.

It follows from a little calculus that the function

f(θ) := −θ +
1

K ′(θ) + 1

[
m

m − 1
log m + K(θ) + θ

]
(15)

is unimodal and achieves its maximum at θ∗ ∈ IR satisfying

m

m − 1
log m + K (θ∗) + θ∗ = 0.

Note that θ∗ < 0. Writing z∗ = eθ∗ = e−|θ∗| ∈ (0, 1), z∗ is characterized as
the solution of the polynomial equation

mm/(m−1)
(
z + z2 + · · ·+ zm−1

)
= m − 1.

It then follows, omitting a few simple details, that

c∗ := K ′ (θ∗) = (m − 1) −
(
mm/(m−1) − 1

) z∗

1 − z∗
= α∗ − 1 ∈ (0, m − 2).
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It now follows simply from (11), (12), (13), and (14) that, for any ε > 0,

τm,n =
[
1 + O

(
n−1

)]
m− m

m−1

[
m

2π(m − 1)

]1/2

[2π(m − 1)]−1/2

×
b 1+ε

m−1(
n+1
c∗+1

−1)c∑

s=d 1−ε
m−1(

n+1
c∗+1

−1)e
s−2 [K ′′ (θc)]

− 1
2 exp {(n + 1)f(θc)} ,

where the function f is defined at (15).
By expanding f(θc) about θ∗,

f(θc) = f(θ∗) + (θc − θ∗)f ′(θ∗) +
1

2
(θc − θ∗)2f ′′(θ∗) +

1

6
(θc − θ∗)3f ′′′(θ̃)

= |θ∗| + 1

2
(θc − θ∗)2f ′′(θ∗) +

1

6
(θc − θ∗)3f ′′′(θ̃)

where θ̃ is intermediate to θ∗ and θc. Further,

f ′′(θ∗) =
−K ′′(θ∗)

K ′(θ∗) + 1
< 0.

Also, it is clear that f ′′′(θ̃) = O(1) uniformly for s in the range of summation.
Therefore, also using the fact that f is unimodal,

τm,n =
[
1 + O

(
n−1

)]
m− m

m−1

[
m

2π(m − 1)

]1/2

[2π(m − 1)]−1/2

×
∑

s:|θc−θ∗|≤(n+1)−2/5

s−2
(

1

z∗

)n+1

[K ′′ (θc)]
− 1

2

× exp
{
(n + 1)

[
−1

2
(θc − θ∗)2|f ′′(θ∗)| + O(|θc − θ∗|3)

]}

=
[
1 + O

(
n−1

)]
m− m

m−1

[
m

2π(m − 1)

]1/2

[2π(m − 1)]−1/2
(

1

z∗

)n+1

×
∑

s:|θc−θ∗|≤(n+1)−2/5

s−2 [K ′′ (θc)]
− 1

2

[
1 + O

(
n|θc − θ∗|3

)]

× exp
{
−1

2
|f ′′(θ∗)|(n + 1)(θc − θ∗)2

}
.
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Note that the O-estimates in the sums here are uniform over s satisfying
|θc−θ∗| ≤ (n+1)−2/5. Straightforward calculations now show that, uniformly
in such s, we have

s−2 =
(

n + 1

m − 1

)−2

(K ′(θ∗) + 1)
2
[1 + 2|f ′′(θ∗)|(θc − θ∗)]

×
[
1 + O

(
n−1

)
+ O

(
(θc − θ∗)2

)]
.

Also,

[K ′′(θc)]
−1/2

= [K ′′(θ∗)]
−1/2

{
1 − K ′′′(θ∗)

2K ′′(θ∗)
(θc − θ∗) + O

(
(θc − θ∗)2

)}
.

We now have

τm,n =
[
1 + O

(
n−1

)]
m− m

m−1

[
m

2π(m − 1)

]1/2

[2π(m − 1)]−1/2
(

m − 1

n + 1

)2

× (K ′(θ∗) + 1)
2
(z∗)−(n+1)

×
∑

s:|θc−θ∗|≤(n+1)−2/5

[
1 + O

(
n−1

)
+ O

(
(θc − θ∗)2

)
+ O

(
n|θc − θ∗|3

)]

× [K ′′(θ∗)]
−1/2

{
1 − K ′′′(θ∗)

2K ′′(θ∗)
(θc − θ∗) + O

(
(θc − θ∗)2

)}

× [1 + 2|f ′′(θ∗)|(θc − θ∗)] exp
{
−1

2
|f ′′(θ∗)|(n + 1)(θc − θ∗)2

}
. (16)

We next consider the sum

∑

s:|θc−θ∗|≤(n+1)−2/5

exp
{
−1

2
|f ′′(θ∗)|(n + 1)(θc − θ∗)2

}
(17)

appearing in (16). Using the fact that successive values of s give values of θc

separated by

[
1 + O

(
n−2/5

)]
[K ′′(θ∗)]

−1
[K ′(θ∗) + 1]

2 m − 1

n + 1
,

which is of exact order 1/n, and writing

h(n, θ, θ∗) :=
1

2
|f ′′(θ∗)|(n + 1)(θ − θ∗)2
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for brevity, one concludes

expression (17)

=
[
1 + O

(
n−2/5

)]
K ′′(θ∗) [K ′(θ∗) + 1]

−2 n + 1

m − 1

×
θ∗+(n+1)−2/5∫

θ∗−(n+1)−2/5

exp
{
−h(n, θ, θ∗) + O

(
n−1

)
+ O (|θ − θ∗|)

}
dθ

=
[
1 + O

(
n−2/5

)]
K ′′(θ∗) [K ′(θ∗) + 1]

−2 n + 1

m − 1
(n + 1)−1/2|f ′′(θ∗)|−1/2

×
(n+1)1/10 |f ′′(θ∗)|1/2∫

−(n+1)1/10 |f ′′(θ∗)|1/2

[
1 + O

(
n−1/2|u|

)]
exp

{
−1

2
u2
}

du

=
[
1 + O

(
n−2/5

)]
K ′′(θ∗) [K ′(θ∗) + 1]

−2
(m − 1)−1(n + 1)1/2

× |f ′′(θ∗)|−1/2(2π)1/2.

The other terms in (16) are easily managed, leading finally (after some can-
cellation) to

τm,n =
[
1 + O

(
n−2/5

)]
m− m

m−1

(
m

2π

)1/2

n−3/2 (K ′(θ∗) + 1)
1/2
(

1

z∗

)n+1

=
[
1 + O

(
n−2/5

)]
m− m

m−1

(
m

2π

)1/2

n−3/2 (α∗)1/2
(

1

z∗

)n+1

,

as desired.

Examples:

(a) m = 2. Although the proof of this case was handled separately, the
results fit the framework of Theorem 2. We have z∗ = 1/4 and α∗ = 1. Thus

τ2,n =
(
1 + O

(
n−2/5

))( 2

2π

)1/2

2−2n−3/24n+1

=
(
1 + O

(
n−2/5

))
π−1/2n−3/24n.

Note from Lemma 3.1 that O(n−2/5) is even guaranteed to be O(n−1) in this
case. [Numerical computations suggest that when m = 3, the remainder
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O(n−2/5) is again O(n−1); we have not examined this issue at all for larger
values of m.]

(b) m ≥ 2. It is easy to solve for z∗ with a high degree of accuracy
using a computation package like Maple. Having done so, we give explicit
asymptotic formulas for τm,n and Cm,n for selected values of m in Table 2.
The values of w, x, y, z appearing there are given to five significant digits
each.

Table 2.

τm,n ∼ wn−3/2xn Cm,n ∼ yn−3/2zn

m w x = 1/z∗(m) y z = mm/(m − 1)m−1

2 .56419 4 .56419 4
3 .49667 3.3692 .24430 6.75
4 .44883 3.0413 .15355 9.4815
5 .41242 2.8405 .11151 12.207
6 .38355 2.7053 .087404 14.930
7 .36001 2.6085 .071818 17.651
8 .34041 2.5359 .060927 20.372
9 .32380 2.4795 .052893 23.092

10 .30952 2.4346 .046725 25.812
25 .20736 2.1912 .016965 66.593
50 .15135 2.1052 .0082243 134.55

100 .10931 2.0582 .0040500 270.47
250 .070267 2.0265 .0016054 678.21

Although the expansions in Lemma 3.1 and Theorem 2 are for fixed m
as n → ∞, Table 2 graphically reveals the large-m behavior of the constants
in the asymptotic expressions for τm,n and Cm,n. As the table suggests, and
as we will show in Section 6, the ratio 1/z∗(m) for τm,n decreases to 2 as
m → ∞, in sharp contrast to the ratio mm/(m − 1)m−1 for Cm,n, which
increases (linearly) to ∞.

12



4 Uniform local approximation

In this section we use standard large deviation techniques [cf. Lugannani and
Rice (1980) and Daniels (1987)] to approximate P (S(m−1)s+1 = n−(m−1)s),
where

Sν =
ν∑

i=1

Xi

and X1, X2, . . . are i.i.d. Uniform{0, 1, . . . , m − 2}. Put

c ≡ c(n, m, s) :=
n − (m − 1)s

(m − 1)s + 1
=

n + 1

(m − 1)s + 1
− 1.

In order to establish (12) through (14), we need to approximate P (Sν = cν),
where

ν = (m − 1)s + 1 ≥ n − (m − 2)

m − 1
+ 1 =

n + 1

m − 1

is large and c satisfies 0 ≤ c ≤ m − 2. Since we can easily calculate

P (Sν = 0) = (m − 1)−ν = P (Sν = (m − 2)ν), (18)

equation (12) holds and we may assume 0 < c < m − 2. The assertions (13)
and (14) are a consequence of the following result.

Lemma 4.1 (a) For all 0 < c < m − 2 we have

P (Sν = cν) ≤ exp{ν[K(θc) − cθc]}.

(b) As ν → ∞,

P (Sν = cν) =
[
1 + O

(
ν−1

)]
[2πνK ′′(θc)]

−1/2 exp {ν[K(θc) − cθc]} ,

uniformly for c in any compact subinterval of (0, m − 2).

Proof Let X ∼ Uniform{0, 1, . . . , m−2}. The cumulant generating function
(cgf) for X is

K(θ) := log E eθX = log




m−2∑

j=0

eθj


− log(m − 1)

=





log
(
1 − eθ(m−1)

)
− log(1 − eθ) − log(m − 1) if θ < 0

log
(
eθ(m−1) − 1

)
− log(eθ − 1) − log(m − 1) if θ > 0

0 if θ = 0.
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For θ ∈ IR, define the “exponentially tilted” distribution

Pθ(X = j) := eθj−K(θ)P (X = j), j = 0, . . . , m − 2. (19)

This distribution has cgf Kθ(η) = K(θ+η)−K(θ) and so has mean K ′
θ(0) =

K ′(θ) and variance K ′′
θ (0) = K ′′(θ). Simple calculations give

EθX =





1
2
(m − 2) if θ = 0

(m − 1)
[
1 − e−θ(m−1)

]−1
−
(
1 − e−θ

)−1
otherwise

and

VarθX

=





1
12

[(m − 1)2 − 1] if θ = 0

e−θ
(
1 − e−θ

)−2
− (m − 1)2e−θ(m−1)

[
1 − e−θ(m−1)

]−2
otherwise.

We will henceforth assume that m ≥ 3. Note in this case that VarθX > 0.
We are particularly interested in the value of θc ≡ θc(n,m,s) of θ satisfying

K ′(θc) = c. Since K ′(θ) increases (strictly) from 0 at θ = −∞ to m − 2 at
θ = ∞, such θc is well defined and finite. Unfortunately, it does not seem
possible to solve explicitly for θc except in the cases m = 3 and m = 4.

According to (19),

P (Sν = cν) = eν[K(θc)−cθc]Pθc(Sν = cν),

from which part (a) of the lemma follows immediately. To prove part (b), we
continue the calculation using the Fourier inversion formula for integer-valued
random variables:

Pθc(Sν = cν) =
1

2π

π∫

−π

(
Eθce

itSν

)
e−icνt dt

=
1

2π

π∫

−π

[(
Eθce

itX
)
e−ict

]ν
dt.

Now
∣∣∣
(
Eθce

itX
)
e−ict

∣∣∣
2

=
∣∣∣Eθce

itX
∣∣∣
2

= Eθc exp [it (X1 − X2)]

= Eθc cos (t (X1 − X2)) = 1 − 2Eθc sin2
(

1

2
t (X1 − X2)

)

14



≤ 1 − 4 Pθc(X = 0) Pθc(X = 1) sin2
(

1

2
t
)

= 1 − 4 exp (θc)[∑m−2
j=0 exp (θcj)

]2 sin2
(

1

2
t
)

≤ 1 − A sin2
(

1

2
t
)
≤ 1 − Bt2

for positive constants A and B = A/π2, c in a compact subinterval of (0, m−
2), and t ∈ (−π, π). Thus the contribution to Pθc(Sν = cν) from |t| ≥ ν−2/5

is bounded by (
1 − Bν−4/5

)ν/2
≤ exp

(
−1

2
Bν1/5

)

and so is uniformly negligible (even for higher order expansions).
Next, extend K to complex arguments via the definition

K(z) = log




m−2∑

j=0

ejz


− log(m − 1);

using the principal branch of the logarithm function, this gives an analytic
function of those z with imaginary part less than 2π/(m − 1) in absolute
value. What remains of Pθc(Sν = cν) is

1

2π

ν−2/5∫

−ν−2/5

exp [ν {K(θc + it) − K(θc) − c(it)}] dt.

Using Taylor’s theorem, it is not hard to check that

K(θc + it) − K(θc) − c(it) = −1

2
K ′′(θc)t

2 − i

6
K ′′′(θc)t

3 + O(t4),

uniformly for c in a compact subinterval of (0, m − 2) and in |t| ≤ ν−2/5 for
large ν. Let Z be a random variable with the standard normal distribution.
Then, as ν → ∞, we have, with the required uniformity,

1

2π

ν−2/5∫

−ν−2/5

exp [ν {K(θc + it) − K(θc) − c(it)}] dt

15



=
1

2π

ν−2/5∫

−ν−2/5

exp
[
ν
{
−1

2
K ′′(θc)t

2 − i

6
K ′′′(θc)t

3 + O(t4)
}]

dt

=
1

2π

ν−2/5∫

−ν−2/5

[
1 − i

6
K ′′′(θc)νt3 + O(νt4) + O(ν2t6)

]
exp

[
−1

2
K ′′(θc)νt2

]
dt

= [νK ′′(θc)]
−1/2 × 1

2π

×
[νK′′(θc)]1/2ν−2/5∫

−[νK′′(θc)]1/2ν−2/5

[
1 − i

6

K ′′′(θc)

(K ′′(θc))
3/2

ν−1/2u3 + O
(
ν−1(u4 + u6)

)]
e−u2/2 du

= [νK ′′(θc)]
−1/2 × 1

2π

[νK′′(θc)]1/2ν−2/5∫

−[νK′′(θc)]1/2ν−2/5

[
1 + O

(
ν−1(u4 + u6)

)]
e−u2/2 du

= [2πνK ′′(θc)]
−1/2 ×

{
P
(
|Z| ≤ [K ′′(θc)]

1/2ν1/10
)

+ O
(
ν−1

)}

= [2πνK ′′(θc)]
−1/2

[
1 + O

(
ν−1

)]
,

and the result is proved.

Remark: We can show (but omit the details) that

K(θc) − cθc → − log(m − 1)

as c → 0 or c → m−2. In other words, there is a certain amount of continuity
in going from Lemma 4.1 to (18).

5 Monotonicity of τ

In this section we consider monotonicity of τm,n in m and n.
It is intuitively obvious, and easy to show by induction, that both Cm,n

and τm,n are increasing in n ≥ 0 for fixed m. Further, Cm,n is strictly
increasing in n ≥ 1, and τm,n is strictly increasing in n ≥ m − 1.

For fixed n ≥ 2, it is clear that Cm,n increases strictly in m, since an
m-ary tree on n nodes can also be considered an (m+1)-ary tree on n nodes,
but not conversely. In contrast, we conjecture the following.
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Conjecture 5.1 For fixed n ≥ 1 and 2 ≤ m < m′,

τm,n ≥ τm′,n,

with strict inequality when m′ ≤ n + 1.

Although we have been unable to prove this, we shall give a partial mono-
tonicity result in Theorem 3, and Proposition 6.2 is further evidence in favor.

Note added in proof: Conjecture 5.1 is false. The first counterexample is
the following:

τ8,16 = 12112 < 12870 = τ9,16.

Before proceeding we switch notation to t(c, n) := τc+1,n, c ≥ 1 and n ≥ 0.
Here c denotes the capacity, or maximum number of keys that can be stored,
at each node. We define a capacity-c tree to be a (c + 1)-ary search tree.

Our main result (Theorem 3) is a consequence of the following three
lemmas. We state the first easy lemma without proof.

Lemma 5.1 A capacity-c tree on n ≥ 1 keys has at most
⌊

n−1
c

⌋
nodes with

at least one nonempty subtree.

Remark: The bound in Lemma 5.1 is achieved at (for example) the tree
obtained by successively inserting the keys 1, 2, . . . , n into an initially empty
capacity-c tree.

Lemma 5.2 If 1 ≤ c < c′ and n ≥ 1, then

t(c, n) ≤ t
(
c′, n + (c′ − c)

⌊
n − 1

c

⌋)
, (20)

with strict inequality if and only if n ≥ c + 1.

Proof If 1 ≤ n ≤ c, then t(c, n) = 1 and

t
(
c′, n + (c′ − c)

⌊
n − 1

c

⌋)
= t(c′, n) = 1.

So we assume n ≥ c+1 and build an injection from trees T counted by t(c, n)
to trees T ′ counted by the right side of (20). It will be easy to check that the
injection is not a surjection, and the lemma will follow.
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We use the notion of a complete tree [see Dobrow and Fill (1996) for
further background]. Suppose first that n = mk − 1 for integer k. Call the
unique m-ary search tree on n keys with minimum height ( = k − 1) the
perfect tree. For general n, let k = blogm(n + 1)c. The complete tree can be
obtained by attaching to the perfect tree on mk − 1 keys, and as far to the
left as possible, n − (mk − 1) keys at distance k from the root.

To build T ′ from T , first observe that, since n ≥ c + 1, the root of T is
full and has at least one nonempty subtree. To begin building T ′, replace
each of the (at most

⌊
n−1

c

⌋
) nodes with at least one nonempty subtree by

a full node of capacity c′, and replace each of the other nodes with a node
of capacity c′ containing the same number of keys as the node has in T .
The current tree is a tree with nodes of capacity c′, but it may have strictly
fewer than n + (c′ − c)

⌊
n−1

c

⌋
keys. Remedy this by replacing the currently

empty (c′ + 1)-st subtree of the root by the complete capacity-c′ tree on the
remaining number of keys. The resulting tree is the desired T ′.

Lemma 5.3 If 1 ≤ c < c′ and c′ is a multiple of c and n ≥ 0, then t(c′, n) ≤
t(c, n), with strict inequality if and only if n ≥ c + 1.

Proof As in the previous proof, we exhibit an injection from capacity-c′

trees to capacity-c trees that is not surjective when n ≥ c + 1. In Figure 1
we give a “Proof without Words” for the case when c = 2 and c′ = 6. It is
easy to see how this generalizes to give the result.

Theorem 3 If 1 ≤ c < c′ and n ≥ 0, then

t(c′, n) ≤ t

(
c,

⌊
cdc′/ce

c′
n

⌋)

with strict inequality if n ≥ c + 1.

Remarks:
1. If c′ is a multiple of c, then Theorem 3 is an immediate consequence

of Lemma 5.3.

2. According to Lemma 5.3, τm,n ≤ τ2,n for m ≥ 3, with strict inequality
if and only if n ≥ 2.
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3. The theorem “nearly” gives t(c′, n) ≤ t(c, n) when c′ is much larger
than c, since then cdc′/ce/c′ is not much larger than 1. Unfortunately the
theorem fares badly when c′ is not much larger than c. For example, if
c′ = c + 1, then

cdc′/ce
c′

=
2c

c + 1
,

and the conclusion of the theorem is (for c large) not much better than
t(c + 1, n) ≤ t(c, 2n).

Proof According to Remark 1, we may suppose that c′ is not a multiple of c.
Without loss of generality, assume n ≥ c+1, since otherwise t(c′, n) = 1. We
apply Lemma 5.2, letting c′ play the role of c and cdc′/ce > c′ play the role
of c′. Thus

t(c′, n) ≤ t
(
cdc′/ce, n + (cdc′/ce − c′)

⌊
n − 1

c′

⌋)
.

The second argument on the right satisfies

n + (cdc′/ce − c′)
⌊
n − 1

c′

⌋
≤ n + (cdc′/ce − c′)

n − 1

c′

=
cdc′/ce

c′
n − cdc′/ce − c′

c′

<
cdc′/ce

c′
n,

and so is ≤
⌊

cdc′/ce
c′ n

⌋
. Thus, since t(c, n) is nondecreasing in n ≥ 0 for each

fixed c ≥ 1,

t(c′, n) ≤ t

(
cdc′/ce,

⌊
cdc′/ce

c′
n

⌋)
. (21)

Now apply Lemma 5.3, with the role of c′ there played by cdc′/ce, giving

t

(
cdc′/ce,

⌊
cdc′/ce

c′
n

⌋)
< t

(
c,

⌊
cdc′/ce

c′
n

⌋)
, (22)

where strict inequality holds because
⌊

cdc′/ce
c′

n
⌋
≥ n ≥ c + 1. Combining (21)

and (22) completes the proof.
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6 Large-m behavior of parameters

In typical computer science applications of m-ary search trees, m is often
large (between 100 and 1,000). Thus it is of interest to derive asymptotics
for parameters depending on m in our asymptotic expansions. In this section
we describe the large-m behavior of the fundamental parameters z∗ and α∗

appearing in Theorem 2.
The defining equation for z∗ ≡ z∗(m) can be written

[
(z∗)−1 − 1

]−1 [
1 − (z∗)m−1

]
=

m − 1

mm/(m−1)
=: γ(m).

To get asymptotic expansions for z∗(m) and α∗ ≡ α∗(m), we need to know
the behavior of γ:

Lemma 6.1 For any k ≥ 0,

γ(x) = exp



−




k∑

j=1

x−j
(
log x + j−1

)
+ O

(
x−(k+1) log x

)






as x → ∞.

In particular,

γ(x) = exp
{
−
[
x−1 log x + x−1 + O

(
x−2 log x

)]}

= 1 − x−1 log x − x−1 + O
(
x−2(log x)2

)

as x → ∞.
We will be content with the following simple result:

Proposition 6.1 As m → ∞,

z∗(m) =

[
1 +

1

γ(m)

]−1

+ exp{−(1 + o(1))m log 2}

=
1

2
− 1

4
m−1 log m − 1

4
m−1 + O

(
m−2(log m)2

)

and

α∗(m) = m −
(
m

m
m−1 − 1

) [
(z∗(m))−1 − 1

]−1

= 1 + γ(m) − exp {−(1 + o(1))m log 2}
= 2 − m−1 log m − m−1 + O

(
m−2(log m)2

)
.
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Remark: The approximations

[
1 +

1

γ(m)

]−1

and 1 + γ(m)

for z∗(m) and α∗(m), respectively, are very easily computed and remarkably
accurate, even for small values of m.

Proposition 6.2 z∗(m) is strictly increasing in m ≥ 2.

Proof Observe that

z∗(2) =
1

4
< z∗(3)

.
= 0.30 < z∗(4)

.
= 0.33.

Suppose for the sake of contradiction that z∗(m+1) ≤ z∗(m) for some m ≥ 4.
Then

(m + 1)−
m+1

m =
1

m

m−1∑

k=1

[z∗(m + 1)]k +
1

m
[z∗(m + 1)]m

≤ 1

m

m−1∑

k=1

[z∗(m)]k +
1

m
[z∗(m + 1)]m

=
m − 1

m
m− m

m−1 +
1

m
[z∗(m + 1)]m,

and so by Lemma 6.2 (to follow)

2−m > [z∗(m + 1)]m ≥ m(m + 1)−
m+1

m − (m − 1)m− m
m−1 .

But this contradicts Lemma 6.3 (also to follow), and the proposition is
proved.

Lemma 6.2

z∗(m) < 1/2 for all m ≥ 2.

Proof Consider the defining equation (9) for z∗(m). Since the left side of (9)
is strictly increasing in z ∈ (0, 1), it suffices to show that

m − 1 < m
m

m−1

m−1∑

k=1

2−k = m
m

m−1

[
1 − 2−(m−1)

]
,
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i.e., that

m log m − (m − 1) log(m − 1) + (m − 1) log
[
1 − 2−(m−1)

]
> 0.

This follows from calculus, since the last expression is strictly increasing in
real m > 1.

Lemma 6.3 For m ≥ 4,

m(m + 1)−
m+1

m − (m − 1)m− m
m−1 > 2−m. (23)

Proof The result is easily checked for m = 4, so we assume m ≥ 5. The left
side of (23) equals

(m − 1)m− m
m−1 [exp{f(m + 1) − f(m)} − 1] ,

where
f(x) := log

[
(x − 1)x− x

x−1

]
= log(x − 1) − x

x − 1
log x

for x > 1. After some calculation we find

f ′(x) = (x − 1)−2 log x

and
f ′′(x) = (x − 1)−3x−1[(x − 1) − 2x log x].

To treat this further, let g(x) := (x − 1) − 2x log x and note g(1+) = 0. We
have

g′(x) = −1 − 2 log x < −1 < 0

for x > 1, so g decreases and g(x) < 0 for x > 1. We conclude that f is
concave. Therefore,

exp{f(m + 1) − f(m)} ≥ exp{f ′(m + 1)} = exp{m−2 log(m + 1)}
≥ 1 + m−2 log(m + 1),

and so

m(m + 1)−
m+1

m − (m − 1)m− m
m−1 ≥ (m − 1)m− m

m−1 m−2 log(m + 1)

=
[
m−2 log(m + 1)

]
exp{f(m)}.
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Let

h(x) := log
(
2xx−2 log(x + 1) exp{f(x)}

)

= x log 2 − 2 log x + log log(x + 1) + f(x);

it suffices to show that h(x) > 0 for x ≥ 5. Now h(5)
.
= 0.20 > 0 and

h′(x) = log 2 − 2x−1 +
1

(x + 1) log(x + 1)
+ (x − 1)−2 log x

>
1

(x + 1) log(x + 1)
+ (x − 1)−2 log x > 0

for x ≥ 5. Thus h(x) > 0 for x ≥ 5.
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