
Learning Constraint Programming Models from1

Data using Generate-and-Aggregate2

Mohit Kumar #3

KU Leuven, Belgium4

Samuel Kolb #5

KU Leuven, Belgium6

Tias Guns #7

KU Leuven, Belgium8

Abstract9

Constraint programming (CP) is used widely for solving real-world problems. However, designing10

these models require substantial expertise. In this paper, we tackle this problem by synthesizing11

models automatically from past solutions. We introduce COUNT-CP, which uses simple grammars12

and a generate-and-aggregate approach to learn expressive first-order constraints typically used in13

CP as well as their parameters from data. The learned constraints generalize across instances over14

different sizes and can be used to solve unseen instances – e.g., learning constraints from a 4 × 415

Sudoku to solve a 9 × 9 Sudoku or learning nurse staffing requirements across hospitals. COUNT-CP16

is implemented using the CPMpy constraint programming and modelling environment to produce17

constraints with nested mathematical expressions. The method is empirically evaluated on a set of18

suitable benchmark problems and shows to learn accurate and compact models quickly.19

2012 ACM Subject Classification Applied computing → Operations research20

Keywords and phrases Constraint Learning, Constraint Programming, Model Synthesis21

Digital Object Identifier 10.4230/LIPIcs.CP.2022.3222

Funding This project was partially funded by the Research Foundation - Flanders (FWO) project23

G0G3220N and FWO-S007318N, as well as the European Research Council (ERC) under the24

European Union’s Horizon 2020 research and innovation programme (Grant No. 101002802: CHAT-25

Opt, and 694980: SYNTH). Samuel Kolb is supported by the “Agentschap Innoveren & Ondernemen”26

(VLAIO) as part of the innovation mandate HBC.2021.0246.27

1 Introduction28

Constraints play an important role in modelling many real-world decision problems. They are29

used widely in fields like cryptography [13, 15], complexity theory [1] and automatic theorem30

proving [14]. However, identifying the constraints of a problem and encoding them into a31

mathematical model requires both domain knowledge and modelling expertise. This non-32

trivial task is often the major bottleneck for the widespread application of constraint-based33

methods and solvers.34

Consider, for instance, the case of scheduling nurses in a hospital, where the aim is to35

create a schedule for nurses every week. Modeling this problem requires domain knowledge to36

identify relevant constraints, such as, every shift requires at least three nurses or nurses may37

work at most five days a week. Next, these constraints have to be encoded as a mathematical38

model, e.g., a Constraint Satisfaction Problem (CSP). The skills required to achieve both39

these steps makes powerful techniques for efficiently solving such problems inaccessible to40

people without a mathematical or computer science background.41

Constraint learning approaches aim to overcome this issue by instead learning constraint42

models from past solutions [19]. In the example of nurse scheduling, this means learning43

© Mohit Kumar, Samuel Kolb and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohitkrg@gmail.com
mailto:samuel.kolb@cs.kuleuven.be
mailto:tias.guns@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Learning Constraint Programming Models from Data using Generate-and-Aggregate

the constraint model from manually created past schedules. By automating the modeling44

step, constraint learning makes constraint solving techniques more accessible and makes45

the modeling process faster and cheaper. In the CP community there are a number of46

existing approaches to learn constraints from solutions [10, 2, 4] and – in some cases – non-47

solutions [17, 18]. A popular approach to learning constraint is the so called generate-and-test48

approach [21]. The idea behind generate-and-test is to generate candidate constraints and49

apply them to various subsets of the decision variables and test whether the constraint holds50

in the training data.51

Most of these approaches learn constraints at the level that a constraint solver accepts:52

individual constraints, such as predicates with a fixed number of arguments. By listing53

all possible predicates and their signature, different predicate/variable combinations can54

be generated and tested. Learning more expressive constraints, however, often requires55

generating prohibitively large combinations of predicates and makes constraint learning very56

time-consuming. As a result several approaches design their constraint space instead as57

a flat catalog of more expressive candidate constraints, learning global constraints [2] or58

relational spreadsheet formulas [10]. By modeling constraints using an expressive, richer59

language, rather than acquiring individual lower-level constraints, these approaches are able60

to synthesize high quality models quickly. The key limitations are that only constraints from61

these catalogs can be learned and that parameters can only be inferred using constraint-62

specific parameter inference methods.63

A recent approach (COUNT-OR [11]) to learning constraints for OR models, such as64

nurse scheduling problems, offered an alternative: Using a simple grammar of aggregation65

operators, different aggregation expressions are generated and applied to various slices of66

matrices and in general tensors of decision variables. By simply computing the lower and67

upper bounds of these expressions across all training examples, the method automatically68

identifies relevant parameters from data and learns constraints quickly.69

We built on this approach to design a constraint learner (COUNT-CP) that applies the70

ideas of bounded expressions to learn CP constraints. First, we observe that constraint models71

over finite domain integers usually consist of Boolean expressions and numeric expressions72

with a comparison (e.g., x = y and x <= y). Because Boolean expressions in this context73

can be seen as a special case of numeric expressions that are equal to 1, we can use suitable74

bounded numeric expressions lb <= expr <= ub to express common types of constraints75

(e.g., abs(x-y) <= 0 and x-y <= 0). Second, we observe that first-order constraints such76

as each nurse works at most 5 days a week or global constraints such as alldifferent can77

be decomposed into multiple bounded-expression constraints.78

Based on these observations, we suggest to learn bounded-expressions using a COUNT-OR79

style approach which offers an obvious mechanism to infer the constants. COUNT-CP uses a80

simple grammar to generate suitable nested mathematical expressions and computes their81

lower and upper bounds. However, to produce expressive, first-order constraints, the learned82

bounded-expression constraints are then grouped together over structured sets of variables83

using simple grammars of foreach statements. This step also serves as an inductive bias in84

selecting which constraints should make up the final learned model. As a result, COUNT-CP85

is able to assemble first-order constraints, such as each nurse works at most 5 days a week and86

global constraints such as alldifferent. COUNT-CP allows users to provide background87

knowledge in the form of sets of variables that the user considers related – e.g., connected88

edges in a graph or shared skill levels of nurses – and adds these sets to the grammar used89

for grouping constraints.90

Our developments have been inspired by the PTHG-21 Holy Grail Challenge, which91

M. Kumar and S. Kolb and T. Guns 32:3

contains variable-sized problem instances over the integer domain, and where a preliminary92

version of our approach was the winning (and only) entry. In principle, first-order constraints93

are independent of the instance size and can be used to solve different instances of unseen94

sizes. However, the numeric constants fitted by approaches such as COUNT-OR may be95

instance size dependent and would not apply to unseen instances. To resolve this issue, we96

propose to fit a symbolic bound expression across training instances, using generic problem97

features as well as semantic constants provided by a domain expert – e.g., minimal staffing98

requirements of a hospital.99

To summarize, the key contributions of this paper are:100

Learning first-order bounded-expression constraints, which are expressive enough to101

capture many complicated constraints and can be learned using a simple and fast102

generate-and-aggregate procedure.103

Defining the language bias for constraints using simple and simple-to-extend grammars104

that are combined to learn intricate constraints.105

Replacing constants in the learned constraints by symbolic expressions, which allows106

learned model to generalise to different and unseen problem sizes.107

Allowing users to provide background knowledge using a simple interaction protocol: sets108

of related variables and semantic instance-level constants.109

Providing an effective strategy for removing redundant constraints to improve the inter-110

pretability and speed of learned models.111

This paper is structured as follows: First, we review related work on constraint learning112

(Section 2). Second, we present our constraint learning approach (COUNT-CP, Section 3)113

by discussing its links to COUNT-OR, how it learns propositional constraints, first-order114

constraints and how we filter out constraints to produce compact models. Third, we115

empirically evaluate our approach on a set of suitable benchmark problems (Section 4).116

Fourth, and finally we summarize our conclusions (Section 5).117

2 Related Work118

Learning constraints from a given set of feasible examples has a long history. The first119

algorithm in this regard was given by Valiant [21], back in 1984. Given a set of feasible120

examples, this algorithm learns Boolean formulas consistent with the given examples. To do121

so, it enumerates all possible formulas upto a pre-defined complexity and keeps only those122

which are satisfied by all feasible examples. This is essentially a generate-and-test approach,123

where the algorithm generates all possible constraints and then tests whether they hold on124

the given dataset. This approach was later extended to first order logic under the banner125

of inductive logic programming [8]. Although important, these early works are limited to126

Boolean variables and logical formulas.127

More recent works, like the series of work by Bessiere et al [4, 5, 6] extend these approaches128

to integer variables. For instance, Conacq [4] learns constraints, typically using the basic129

comparison relations (=, <, ≤, ≥, >, ̸=). The relations considered is called the bias. It130

basically searches for such constraints over every compatible subset of variables (called131

scope, e.g. all pairs) and defines a lattice structure of the comparison relations, based132

on the generalisation/specialisation relation between them. Feasible examples are used to133

remove relations from the lattice. Infeasible examples only say that there has to exist one134

constraint over all possible variable combinations that is violated; which is expressed as a135

meta constraint. The authors use the concept of convergence to denote if a lattice for a136

pair of variables only contains a single relation; if not, the default action is to take the most137

CP 2022

32:4 Learning Constraint Programming Models from Data using Generate-and-Aggregate

specific relation as constraints, e.g. in case of ≥, ≤ and =, = is taken. The concept of the138

lattice comes from the version space algorithm where a lattice is defined over the whole139

program space. When considering a separate lattice for every variable pair, arguably its140

main purpose may be to identify which relations are redundant, e.g. subsumed by others.141

None of these works can learn the bounds in the data, let alone symbolic bounds. This work142

was later extended to learn generalized constraints [3], however, the assumption here was143

that the user knows which variables are supposed to be grouped together. It was further144

extended to detect the groups automatically in [7].145

Another well known approach is ModelSeeker [2], which is also a generate-and-test146

approach; it does not just consider basic comparison relations, but a subset of all global147

constraints in the global constraint catalog. Furthermore, it does not search over all subsets148

of variables, but instead has candidate generator expressions that uses the structure of the149

decision variables (e.g. a list or matrix) to group the variables into meaningful subsets150

(e.g. per row, per column, all pairs). It then generates and tests which constraints are151

satisfied in each of the groups, over all positive instances. The use of ‘generators’ matches152

the programming style of ‘foreach s in ...: constraint(s)’ that CP modellers often use. If153

the constraint has additional parameters, then these need to be inferred separately using154

custom rules for every constraint. However, ModelSeeker requires the constraint catalog to155

be provided beforehand and does not learn symbolic parameters/bounds.156

Finally the CPS [12] approach uses inductive logic programming (ILP) to find logic157

programming rules of the form condition =⇒ constraint. The condition can be seen as a158

generator too, for the learned logical rules have to be flattened into low level constraints for159

every possible substitution of the condition.160

Our proposed approach does not go as far as ModelSeeker in considering a bias of161

a wide range of generic to very specialized global constraints. We do go beyond simple162

comparison relations between pairs of variables, by considering a comparison relation on163

a mathematical expression over variables. We use a grammar to generate the possible164

mathematical expressions. This captures the basic comparison relations, but also captures165

linear (unweighted) expressions and the use of constants such as in x + y ≥ 2. This approach166

of mathematical expressions turned into constraints by identifying bounds on them, also167

generalizes well to the use of generator expressions.168

A recent approach used for learning hard constraints given a set of feasible and infeasible169

examples is to encode the learning problem itself as a mathematical model [10, 17]. For170

instance, Pawlak et al. [17] learn constraints with linear, quadratic and trigonometric terms171

by encoding the learning as a MILP. The hard constraints of this MILP ensure that each172

example is correctly classified by the learnt model, while the objective tries to minimise the173

complexity of the learnt model. This ensures that the learnt model is concise and easily174

readable. This work was later extended to work with positive only training instances [16],175

where the idea is to fit a Gaussian mixture model on the given set of feasible points and use176

this model to sample infeasible points, the learning strategy then uses both feasible and the177

sampled infeasible instances to learn a model. The main drawback of these methods is that178

they do not learn symbolic expressions, and thus can not generalise to unseen problem sizes.179

3 Learning constraints using COUNT-CP180

3.1 Background on COUNT-OR.181

Our approach for learning constraints is inspired by COUNT-OR [11], a constraint learning182

approach for acquiring personnel rostering constraints from example schedules. Instead of183

M. Kumar and S. Kolb and T. Guns 32:5

generating and testing a set of possible constraints, COUNT-OR instead generates a set of184

expressions that capture useful quantities in the data by applying aggregates to various slices185

of matrices and tensors. We use the term tensor for a multi-dimensional matrix, basically a186

matrix is a 2D tensor and a tensor can have more than 2 dimensions.187

▶ Example 1. Consider a Boolean matrix of nurses (rows) and days (columns) that encodes188

whether a given nurse works on a given day (1) or not (0). Summing over values in a row of189

such a weekly schedule expresses the number of working days for a nurse.190

By comparing the values of these expressions across different example schedules, COUNT-191

OR finds upper and lower bounds for every expression. Together, these bounds and expressions192

can be translated to constraints. For example, if the number of working days of nurse i in193

the example schedules is always between 0 and 5, COUNT-OR produces a constraint194

0 <= sum(X[i, :]) <= 5195

COUNT-OR also compares values across tensor slices, e.g., comparing working days for196

different nurses, to find generalized constraints, such as197

foreach i: 0 <= sum(X[i, :]) <= 6198

These generalized constraints can then be applied to schedules with different numbers of199

nurses.200

We will adopt a similar strategy for learning CP models, however, we use specialized201

grammars to generating different types of expressions and to find slices that can be used for202

generalized constraints. Given the conceptual similarity to COUNT-OR, we call our approach203

COUNT-CP. First, we will explain how COUNT-CP generates propositional expressions for204

fixed problem sizes, that is, individual constraints that involve specific subsets of variables205

(their scope) and a relation between those variables. Second, we describe how to group these206

propositional expressions to find generalized constraints that can also be carried over to207

unknown problem sizes.208

3.2 Learning propositional constraints209

In this work, we consider the case of learning constraints of the following form:210

lb <= expr <= ub211

where expr is a mathematical expression over variables, such as X[i] + X[j], or an212

aggregate expression over a group of variables, such as sum(X[:]). To learn these constraints,213

we defined a grammar that captures expressions frequently occurring in CP problems, and a214

mechanism to find suitable lower and upper bounds.215

Our approach is different from current constraint learning approach in that our bias, the216

set of possible constraints that can be learned, is not determined by a fixed set of constraints217

(whose parameters might have to be infererd later). Rather, our bias consists of mathematical218

expressions on the one hand, and bound-constraints on these expressions on the other hand.219

Expression grammar220

To construct our grammar, we look at unary, binary and aggregate expressions that can be221

expressed in CP modelling languages such as MiniZinc and CPMpy. We consider the unary222

identity expression, the binary expressions addition, subtraction and absolute difference, and223

the aggregate sum expression.224

CP 2022

32:6 Learning Constraint Programming Models from Data using Generate-and-Aggregate

Observe how this grammar does not include the ‘traditional’ constraint biases x != y,225

x <= y, x < y, etc. The reason is that we have constraints that subsume those, namely226

abs(x - y) >= 1, x - y <= 0 and x - y <= -1, respectively. Hence, our constraint bias227

– inequalities over the expression grammar – can learn those traditional constraints. But228

it can also learn other constraints, like abs(x - y) > 2, as the bounds are automatically229

determined and not sequentially tested based on a predetermined list.230

One of the few unary/binary constraints it can not learn is x != c, for some constant c231

which lies between (exclusive) the lower and upperbound of x. We believe it will be very232

rare that a constraint model intentionally excludes one individual value, without that value233

being specified as the ‘input data’ (more on this later). Hence, it is not part of our bias.234

The bias also does not include n-ary global constraints such as alldifferent() or235

increasing(), however, these have decompositions into binary constraints, meaning that236

we can learn the decomposed versions. In Subsection 3.3 we will see how to group these237

decomposed constraints into generalized constraints that recreate such global constraints.238

Also currently not included are tertiary constraints, such as x + y = z or, equivalently,239

bounds on x + y - z for arbitrary triples. We leave it open whether these constructs are240

commonly used, and how to best manage the large number of candidates.241

This simple grammar already allowed us to learn a varied set of constraints. However, for242

more complicated problems, the grammar can trivially be extended with additional unary243

(e.g., X[i]*X[i], mod(X[i], 2)), binary or n-ary operators. This increased expressiveness244

would, however, incur an additional computational cost during learning.245

Learning algorithm246

Our learning algorithm learns from a set of positive examples T , i.e., given true solutions. For247

the propositional learner, which learns individual constraints on specific subsets of variables,248

we expect all examples to have the same size and hence the same number of decision variables.249

Every positive example consists of a set of tensors which contain assignments to a given set of250

decision variables. For the sake of exposition we limit our discussion in this paper to at most251

two dimensional tensors (lists and matrices) and use lists for illustration whenever possible.252

▶ Example 2. Consider the problem of graph coloring: Given a list of nodes, assign a color253

to every node such that nodes that share an edge are assigned different colors. This problem254

can be encoded using a list of n integer decision variables X – one per node – whose values255

corresponds to colors. Positive examples would be assignments to X that satisfy the graph256

coloring constraints. For an instance with 5 nodes and edges 1−2, 1−3, 2−4, 3−5, examples257

could be assignments t1 = [1, 2, 3, 1, 1] and t2 [1, 2, 2, 1, 1].258

To turn an expression into a constraint, COUNT-CP first generates all expressions in259

its grammar and computes their result for different decision variables. Unary expressions260

are simply applied to every single decision variable X[i]. Binary expressions are applied to261

every possible pair of decision variables (X[i], X[j]). In general, for n-ary expressions,262

all tuples of n variables are generated. We use lexicographical ordering to ensure pairs are263

not enumerated multiple times to avoid redundant constraints. For asymmetric expressions264

this optimization cannot be used as the position of variables are important. However,265

substraction is a special case because it holds that lb <= a - b <= ub can be rewritten as266

-ub <= b - a <= -lb which simply results in different bounds being learned.267

Aggregates are applied to logical groups of variables, such as individual rows and columns of268

matrices or user provided groupings (see partitions in Subsection 3.3). For every expression e269

and set of variables V , COUNT-CP then computes the minimum and maximum result270

M. Kumar and S. Kolb and T. Guns 32:7

across all training examples. We represent these local lower- and upper-bounds as tuples271

⟨e, V, lb, ub⟩, where – denoting the values of variables V in example t as V t:272

lb = min{e(V t) | t ∈ T} ub = max{e(V t) | t ∈ T}

It follows that, by design, the constraints learned by COUNT-CP are always satisfied by273

all training examples. In a sense, our approach learns the convex hull of all mathematical274

expressions that can be expressed by the grammar.275

▶ Example 3. Let us apply this approach to the graph coloring example. For the binary276

expression abs(X[i] - X[j]), COUNT-CP would compute the result of the expression for277

every pair in every example and then compute the bounds for every pair across the examples:278

Pair t1 t2 lb ub Pair t1 t2 lb ub
X[1], X[2] 1 1 1 1 X[2], X[4] 1 1 1 1
X[1], X[3] 2 1 1 2 X[2], X[5] 1 1 1 1
X[1], X[4] 0 0 0 0 X[3], X[4] 2 1 1 2
X[1], X[5] 0 0 0 0 X[3], X[5] 2 1 1 2
X[2], X[3] 1 0 0 1 X[4], X[5] 0 0 0 0

279

For all pairs of nodes with an edge between them, COUNT-CP will learn a constraint280

abs(X[i] - X[j]) >= 1, i.e., the nodes must have different colors.281

3.3 Learning first-order constraints282

Until now we have focused on learning propositional constraints for individual instances283

of a problem type. These local constraints can capture constraints over specific subsets of284

variables, however, these constraints cannot be used to find solutions for instances of different285

sizes (and hence different numbers of variables) and are prone to overfitting the training286

examples. Our goal is to address these shortcomings by learning first-order constraints that287

are independent of the instance size. That is, constraints of the form foreach V in ...:288

lb <= expr(V) <= ub This will allow us to learn constraints from, e.g., a 4 × 4 Sudoku and289

use these constraints to solve a 9 × 9 Sudoku. Additionally, we can find constraints, e.g., that290

the number of working days of nurses is at most 5, by generalizing across different nurses in291

a single example, even if some nurses always worked fewer days in the training examples.292

Grouping constraints293

The propositional constraint learning approach can learn constraints such as alldifferent294

by learning individual constraints abs(X[i] - X[j]) >= 1 between each pair of decision295

variables. However, these local pairwise constraints are hardcoded for individual pairs of296

variables, and will not generalize to instances of different sizes that, for example, have more297

or less decision variables.298

To overcome this limitation and learn constraints that are independent of the problem299

size, we find index groups, groups of decision variables or pairs of variables, that share a300

constraint. The concept is akin to the concept of generator expressions in ModelSeeker [2].301

In this setting, for example, alldifferent can be encoded as:302

foreach pairs (x[i], x[j]) in X:
abs(x[i] - x[j]) >= 1303

CP 2022

32:8 Learning Constraint Programming Models from Data using Generate-and-Aggregate

For a given expression e, e.g., absolute difference, and the set of learned local constraints C304

COUNT-CP uses a sequence grammar to generate sequences, i.e., sets V of decision variables305

to group over. For example, the sequence all pairs generates all pairs of decision variables.306

Next, COUNT-CP aggregates all the lower- and upper-bounds that had been found for local307

constraints to obtain a grouped or first order constraint ⟨e, V, lb, ub⟩, where:308

lb = min{l | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C}

ub = max{u | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C}

Our COUNT-CP implementation includes the following sequences: all) all individual309

unary variables; all pairs) all pairs of variables; and full) a singleton set with all variables.310

These sequences are used for unary, binary and aggregate expressions, respectively. The311

implementation can easily be extended with additional sequences, such as, variables with312

even indices, sequential pairs of variables, etc.313

Partitioning groups314

An alldifferent constraint will not usually be applied to all possible variables. A common315

pattern, instead, is that the variables are partitioned into groups with an alldifferent over316

each group. This pattern is used both by COUNT-OR, as well as the constraint learning317

system ModelSeeker [2]. For example, consider the example of Sudoku where the decision318

variables are arranged in a matrix. In this case the variables can be partitioned into rows,319

columns or blocks and within each partition the variables will be alldifferent.320

COUNT-CP follows this pattern, too, and first considers different ways to partition the321

decision variables before searching for sequences and corresponding bounds within each322

partition. By default, COUNT-CP considers arbitrary slices of tensors as partitions. In323

the case of matrices this would be rows, columns as well as the entire matrix. Additionally,324

COUNT-CP allows users to provide custom partitions. Custom partitions are a powerful325

way for users to interact with the system and provide high-level background knowledge, such326

as blocks for Sudoku or edges of a graph coloring problem.327

For an expression e, a partition P and a sequence s, COUNT-CP iterates over all328

partitions p ∈ P and generates sets of indices by applying the sequence to obtain sets of329

indices Vp = s(p). Using the tuples ⟨e, V, lb, ub⟩ found in the grouping step, it aggregates330

the bounds across partitions to obtain tuples ⟨e, P, s, lb, ub⟩, where:331

lb = min{l | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C}

ub = max{u | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C}

The combination of partitions, sequences and bounded expressions allow us to learn com-332

plicated sets of first-order constraints, e.g., that the variables in columns are alldifferent333

or that each of the sums over rows never exceed an upper bound.334

▶ Example 4. Building on the graph coloring problem introduced above, a user can provide335

a custom partition Pedges for each instance that corresponds to the edge E of the graph used336

in an instance: Pedges = {{X[i], X[j]} | (X[i], X[j]) ∈ E}.337

foreach group in P_edges:338

foreach (X[i], X[j]) in pairs(group):339

abs(X[i] - X[j]) >= 1340

341

M. Kumar and S. Kolb and T. Guns 32:9

3.4 Symbolic expressions for bounds342

So far, we talked about grouping constraints using partitions and sequence generators. In343

some cases, e.g., the column-wise all different, this grouping step is enough to learn first-order344

constraints that can be applied to instances of any size. However, in some cases the lower-345

and upper-bounds depend on the particular instance.346

▶ Example 5. Reconsider the nurse scheduling example. When learning across schedules347

from different hospitals, the minimal staffing requirement, i.e., how many nurses have to work348

each day might differ and are an instance (hospital) dependent constant. Simply learning349

the smallest minimal staffing requirement across all hospitals will produce poor results.350

To address this issue, COUNT-CP attempts to express bounds using symbolic expressions.351

These symbolic expressions can use computed features, e.g., the number of rows and columns,352

or custom features that the user provides for every instance, e.g., the minimal staffing353

requirements for hospitals. To keep the discussion clear, we focus on finding a symbolic354

expression for the upper-bound of a single first-order constraint ⟨e, P, s, lbi, ubi⟩ across355

instances i. The steps are repeated for each constraint and are analogous for lower-bounds.356

COUNT-CP aims to find a simple, univariate symbolic expression of the form f +b, where357

f is a computed feature, a custom feature or 0, and b is a fixed offset. Given m candidate358

features fj the goal is to find the feature and offset that minimize the error across all instances.359

By denoting the value of feature fj in instance i as f i
j and using a binary indicator variable αj360

to select a feature, we can express the error Ei of a single instance as:361

Ei =
m∑

j=1
αjf i

j + b − ubi

Finding the best symbolic expression now corresponds to finding the assignment to the362

indicator variables αj and offset b that minimizes the overall error: sum(|Ei|). COUNT-CP363

imposes an additional constraint that the symbolic bound must be an upper bound of the364

learned bounds. In other words, Ei cannot be negative. This ensures that learned constraints365

will be satisfied by every training example. We can now write the optimization problem as:366

min
αj

∑
i

Ei s.t.
∑

j

αj = 1 ∧ αj ∈ {0, 1} ∧ ∀i : Ei ≥ 0

In practice, this problem can be solved easily by computing the optimal offset bj and367

resulting error Eij for each feature fj and picking the index j∗ with the smallest error:368

bj = max{ubi − f i
j | i}

Eij = f i
j + bj − ubi

j∗ = argminjEij

The resulting expression will then be: fj∗ + bj∗ . Since COUNT-CP also includes the369

constant 0 as a feature, it will still return a numeric bound for expressions that do not depend370

on a symbolic feature. In fact, in these cases the fitted expression will simply be maxi ubi,371

the aggregation operation we have already applied for aggregating bounds across examples,372

sequences and partitions.373

▶ Example 6. For the nurse scheduling example, given a custom feature minimal-staffing-374

requirement (msr), COUNT-CP can now learn that the sum of every column (=nurses working375

on a day) is lower bounded by the msr leading to foreach column: sum(column) >= msr.376

This approach can be applied on any of the lb or ub of the tuples ⟨e, ·, lb, ub⟩ found.377

CP 2022

32:10 Learning Constraint Programming Models from Data using Generate-and-Aggregate

3.5 Filtering constraints378

Filtering out useless constraints379

By computing bounds over expressions, COUNT-CP ensures that learned constraints are380

always satisfied by training examples. However, by computing bounds over every expression,381

partition and sequence, COUNT-CP will always find valid lower- and upper-bounds. This382

can cause COUNT-CP to return many constraints which are true by default or trivially383

entailed by another constraint.384

First, let us have a look at trivial constraints. As an example of a constraint that is385

true by default, consider x[i] + x[j] <= c, where c is the sum of the maximal values386

of the domains of variables x[i] and x[j]. COUNT-CP filters out trivial constraints by387

detecting them during the propositional learning step. Whenever COUNT-CP learns a local388

constraint ⟨e, V, lb, ub⟩, it also computes the minimal and maximal values of the expression e389

for the variables V and their domains: l = min e(V), u = max e(V). If lb = l (or ub = b)390

the bound is marked as trivial and the corresponding constraint, as well as any first-order391

constraint that includes that bound, is removed.392

Second, let us consider trivial entailment. Consider two constraints: 1) for each393

column, the absolute difference of every pair of variables in the column in at least 1394

(⟨abs, columns, all pairs, 1, _⟩); and 2) for the entire matrix, the absolute difference of395

every pair of variables in the matrix in at least 1 (⟨abs, all, all pairs, 1, _⟩). Because the396

pairs of variables in the first constraint is a subset of the pairs of variables in the second397

constraint, the first constraint is entailed by the second one, unless it has a stricter bound.398

Consider two first-order constraints c1 = ⟨e, P1, s1, l, u⟩ and c2 = ⟨e, P2, s2, l, u⟩ with399

shared bounds (in practice entailment is computed for upper and lower bounds separately).400

If both constraints share the same partition P = P1 = P2 but one of the sequences is a401

subset of the other sequence: ∀p ∈ P : s1(p) ⊂ s2(p), then c1 is entailed by c2. Since402

the sequence grammar is fixed, entailment between sequences can easily be computed in403

an offline step before learning. More generally, c1 is entailed by c2 if the union of sets of404

indices from c1 is a subset of the union of sets of indices from c2 (as in the example above):405 ⋃
p∈P1

s1(p) ⊂
⋃

p∈P2
s2(p). Because we allow users to provide custom partitions, the more406

general entailment cannot be fully pre-computed. COUNT-CP uses these entailment checks407

to filter out entailed constraints.408

Because first-order constraints are made up of many local constraints, filtering out first-409

order constraints can drastically reduce the number of local constraints. This decreases the410

time it takes to solve a learned model and find new solutions, without affecting the quality411

of the model.412

Filtering out overly restrictive constraints413

COUNT-CP learns constraints that are satisfied by all training examples. However, there414

is a risk that the learned constraints exclude valid unseen solutions. Ideally, unconstrained415

expressions are detected by the trivial constraint detection step. However, given few training416

instances, COUNT-CP might find spurious constraints and produce bounds for unconstrained417

expressions. This may lead to the incorrect rejection of valid solutions.418

Unfortunately, this problem is much more pertinent when learning constraints across419

instances and extrapolating to unseen instances. An incorrect, loose bound for an uncon-420

strained expression might reject a few unseen solutions of the same size, however, it may reject421

large amounts of solutions for larger, unseen instances. COUNT-CP attempts to alleviate422

this issue by monitoring the errors Ei computed during the symbolic bound computation. If423

M. Kumar and S. Kolb and T. Guns 32:11

Problem User Input
Custom partitions Semantic constants

Sudoku Blocks of variables -
Magic Square - -
N-Queens Diagonals -
Graph Coloring Edges of the graph -
Nurse Rostering - Staffing requirements

Table 1 List of problems used in the experiments along with the background knowledge provided
as the user input to COUNT-CP

the errors exceed a given threshold, COUNT-CP opts to reject the bound and produce no424

constraint instead.425

In theory, this type of filtering can occur at every step where different bounds are426

aggregated – over training examples, over sequences, across partitions – however, since427

bounds naturally vary, a lot of training data is required to avoid rejecting valid bounds.428

4 Experiments429

In this section, we empirically answer the following research questions:430

Q1 How well does COUNT-CP perform on instances used during training?431

Q2 Do models learned by COUNT-CP generalize to unseen instances?432

Q3 How does the performance change with the size of the training set?433

Q4 How fast is COUNT-CP and how does the run-time scale with the number of training434

examples?435

Q5 How effective is the filtering step in COUNT-CP?436

To answer these questions, we use COUNT-CP to learn models for a set of benchmark437

problems and evaluate its performance according to different metrics. The code is available438

online1 and uses the CPMpy modeling library [9]. The benchmark problems (see Table 1)439

consist of problems selected from CSPLib2, which is a library of test problems for constraint440

solvers, and an adapted nurse scheduling problem used to evaluate COUNT-OR [11]. The441

language bias used in COUNT-CP is not expressive enough to model all the CSBLib problems,442

therefore, we selected problems that COUNT-CP should be able to learn successfully. We443

hope these experiments will showcase the capabilities of our approach and the viability of444

our architecture across different problem domains. The language bias of our approach can445

be extended to cover more complicated constraints by adding building blocks to the various446

grammars at the cost of increasing the run-time. We leave the exercise of crafting biases to447

cover larger benchmarks to future work.448

Performance measures449

The performance of the learned models are measured in terms of Precision and Recall.450

Precision tells us what percentage of the learned feasible region is actually feasible in the451

target model, while recall tells us what percentage of the target feasible region is captured452

1 https://github.com/ML-KULeuven/COUNT-CP
2 https://www.csplib.org/

CP 2022

https://www.csplib.org/

32:12 Learning Constraint Programming Models from Data using Generate-and-Aggregate

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 57.5% 100% 100% 100% 100%
Nurse Rostering 100% 15.5% 100% 100% 100% 100%

Table 2 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for training instances.

by the learned model. Ideally, having high precision is more desirable, as it ensures that the453

solutions generated using learned model have higher chances of being feasible, while high454

recall means we can generate many feasible solutions.455

Calculating these performance measures is not trivial. We sample 100 solutions from the456

learned model and compute how many satisfy the target model – this gives us precision. The457

recall is computed by instead sampling 100 solutions from the target model and computing458

how many satisfy the learned model. Sampling uniformly from the feasible region of a459

model is extremely hard [20], however, the CPMPy constraint modeling framework3 allows460

us to instruct the constraint solver to find solutions close to a given starting point. By461

generating each of the 100 solutions using different random starting points, we try to obtain462

a representative sample, which provides better estimates of the true precision and recall.463

Setup464

For each problem, we include two different training instances to learn from and another465

unseen test instance to evaluate the performance on unseen instances. Problems instances466

are instantiations of problems to a specific size or setting. For example, for the Sudoku467

problem, the training instances are of size 4 × 4 and 9 × 9, while the test instance is of size468

16 × 16. For nurse rostering, different instances correspond to different hospitals, which have469

different staffing requirements and numbers of nurses.470

For every problem instance, e.g., a 9 × 9 Sudoku, we use a set of training examples –471

solutions of the problem instance – to learn from. Specifically, we learn from 1, 5 or 10472

examples per instance. The performance is then evaluated using the sampling procedure473

described above.474

Q1. How well does COUNT-CP perform on instances used during training?475

To answer Q1, we report the precision and recall on the training instances (see Table 2).476

Using just a single training example per instance, COUNT-CP already learns models that477

have 100% precision. For two of the problems, a single example is not enough to obtain 100%478

recall. However, when given 5 training examples, COUNT-CP achieves 100% recall for all479

benchmark problems.480

M. Kumar and S. Kolb and T. Guns 32:13

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 61% 100% 100% 100% 100%
Nurse Rostering 100% 18% 100% 100% 100% 100%

Table 3 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for test instances.

Q2. Do models learned by COUNT-CP generalize to unseen instances?481

By measuring the precision and recall of models learned by COUNT-CP for unseen test482

instances (see Table 3), we can observe that the performance is similar to the performance seen483

on training instances: Learning from just one example per training instance, our approach484

obtains 100% precision – even for unseen instances – and given 5 examples, COUNT-CP485

achieves 100% recall, as well.486

In this paper, we argued for the need to introduce symbolic bounds in constraints in order487

for them to be able to generalize to unseen instances. We evaluate this claim qualitatively488

by comparing the scores obtained by COUNT-CP on the Nurse Rostering problem with a489

modified version that simply keeps numeric bounds. As expected, we see that the learned490

model cannot generalize well to unseen instances with different staffing requirements (see491

Table 4).492

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

COUNT-CP 100% 18% 100% 100% 100% 100%
Naive version 0% 100% 0% 100% 0% 100%

Table 4 Comparison of COUNT-CP against a naive version which learns numerical bounds
instead of symbolic expressions.

Q3. How does the performance change with the size of the training set?493

The change in performance across different training sizes is shown in Table 2 and Table 3.494

When we use more training examples, COUNT-CP learns less tight bounds, which in turn495

would lead to improved recall, and that is exactly what we observe in the results as well. In496

most cases we learn perfect model with just one example, and in cases where this is not the497

case (last two rows in both tables), the performance improves as the size of the training set498

increases.499

CP 2022

32:14 Learning Constraint Programming Models from Data using Generate-and-Aggregate

Problem Time Taken (in seconds)
Sudoku 2.5
Magic Square 58.3
N-Queens 8.5
Graph Coloring 22.6
Nurse Rostering 328.3

Table 5 COUNT-CP learns all problems in less than a minute except nurse rostering where it
takes close to 5 minutes.

1 10 50 100
training_size

0

10

20

30

40

Ti
m

e
Ta

ke
n

(in
 se

co
nd

s)

Graph Coloring Magic Square N-Queens Nurse Rostering Sudoku

Figure 1 The learning time of COUNT-CP remains consistent when increasing the number of
training examples

Q4. How fast is COUNT-CP and how does the run-time scale with the number of500

training examples?501

COUNT-CP learns most problems in a less than a minute, except for the Nurse Rostering502

problem, for which it requires close to 5 minutes (see Table 5). Considering the time taken503

by experts to model a problem and the fact that once learnt, these models can be used to504

solve problems of different sizes, we can characterize our learning time as lightning fast in505

comparison. The run-time depends mainly on the number of decision variables and since506

COUNT-CP enumerates all pairs of variables, the run-time increases quadratically with the507

number of decision variables. Here, again, the ability to learn models from small instances508

and apply them to much larger instances makes COUNT-CP useful in practice.509

COUNT-CP scales linearly with the number of training examples, however, by evaluating510

candidate expressions efficiently using vectorized operations, the impact of the number of511

training instances is negligible in most cases (see Figure 1). This, again, is good news, as it512

allows the user to provide large number of training examples to learn more accurate models,513

while avoiding long learning times.514

Q5. How effective is the filtering step in COUNT-CP?515

In Subsection 3.5, we discussed the importance of filtering out useless and overly restrictive516

constraints. Unnecessary constraints make the learned models less interpretable and slower517

to solve. Filtering out these constraints, however, has a cost: It significantly increases the518

learning time by adding overhead for every single local constraint learned.519

To answer Q5 and evaluate the effectiveness of the filtering step, we compare the total520

3 https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy

M. Kumar and S. Kolb and T. Guns 32:15

Graph Coloring Sudoku N-Queens Magic Square Nurse Rostering

102

103

104

105
total_constraints
learned_constraints

Figure 2 Filtering step in COUNT-CP leads to more than 96% reduction in the total number of
learned constraints.

number of possible constraints produced by COUNT-CP with the constraints included521

in the learned model after the filtering step. Our experiments show that COUNT-CP is522

able to drastically reduce the number of constraints it outputs (see Figure 2). On average,523

COUNT-CP filters out 96.7% of the constraints, significantly improving the interpretability524

and solving time of learned models.525

5 Conclusion526

In this paper, we presented the novel constraint learner COUNT-CP, which uses simple527

grammars and a generate-and-aggregate approach to generate mathematical expressions,528

compute their bounds across training examples and group the learned constraints to obtain529

first-order constraints that can generalize to unseen instances. A symbolic expression fitting530

step is used to obtain symbolic bounds for expressions, making them instance-independent.531

Additionally, COUNT-CP uses an effective filtering step to remove useless and spurious532

constraints. We empirically evaluated our approach on a set of suitable benchmark problems.533

This evaluation showed that, indeed, COUNT-CP is able to learn compact, high quality534

models quickly. The learned models achieve high precision and recall, even when only trained535

on a handful of examples. Because the learned models contain first-order constraints and536

support bound expressions, these results also hold true for unseen instances. Finally, our537

simple interaction protocol allows users to provide relevant background knowledge without538

requiring any specialized knowledge about the underlying constraint language. We believe539

that the COUNT-CP architecture is a promising approach to constraint learning that can be540

further tuned to learn a wide range of constraint problems.541

References542

1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer543

Algorithms. Addison-Wesley, Reading, Mass., 1974.544

2 Nicolas Beldiceanu and Helmut Simonis. A Model Seeker: Extracting global constraint models545

from positive examples. In International Conference on Principles and Practice of Constraint546

Programming, 2012.547

3 Christian Bessiere, Remi Coletta, Abderrazak Daoudi, Nadjib Lazaar, Younes Mechqrane, and548

El-Houssine Bouyakhf. Boosting constraint acquisition via generalization queries. In ECAI,549

pages 99–104, 2014.550

4 Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Leveraging551

the learning power of examples in automated constraint acquisition. In Mark Wallace,552

CP 2022

32:16 Learning Constraint Programming Models from Data using Generate-and-Aggregate

editor, Principles and Practice of Constraint Programming – CP 2004, pages 123–137, Berlin,553

Heidelberg, 2004. Springer Berlin Heidelberg.554

5 Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-based version555

space algorithm for acquiring constraint satisfaction problems. In Machine Learning: ECML556

2005, pages 23–34, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.557

6 Christian Bessiere, Remi Coletta, Barry O’Sullivan, and Mathias Paulin. Query-driven558

constraint acquisition. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th559

International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,560

2007, pages 50–55, 2007. URL: http://ijcai.org/Proceedings/07/Papers/006.pdf.561

7 Abderrazak Daoudi, Nadjib Lazaar, Younes Mechqrane, Christian Bessiere, and El Houssine562

Bouyakhf. Detecting types of variables for generalization in constraint acquisition. In 2015563

IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pages564

413–420. IEEE, 2015.565

8 Luc De Raedt and Sašo Džeroski. First-order jk-clausal theories are PAC-learnable. Artificial566

Intelligence, 70(1-2):375–392, 1994.567

9 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,568

cppy as python-embedded example. In The 18th workshop on Constraint Modelling and569

Reformulation at CP, pages 1–8. ModRef, 2019.570

10 Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints in571

spreadsheets and tabular data. Mach. Learn., 106(9-10):1441–1468, 2017. doi:10.1007/572

s10994-017-5640-x.573

11 Mohit Kumar, Stefano Teso, Patrick De Causmaecker, and Luc De Raedt. Automating574

personnel rostering by learning constraints using tensors. In 2019 IEEE 31st International575

Conference on Tools with Artificial Intelligence (ICTAI), pages 697–704, 2019. doi:10.1109/576

ICTAI.2019.00102.577

12 Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On learning constraint578

problems. In 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI579

2010, Arras, France, 27-29 October 2010 - Volume 1, pages 45–52. IEEE Computer Society,580

2010. doi:10.1109/ICTAI.2010.16.581

13 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a sat problem. Journal of582

Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.583

14 Ralph Eric Mcgregor. Automated Theorem Proving Using Sat. PhD thesis, USA, 2011.584

AAI3471671.585

15 Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash functions.586

In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing587

- SAT 2006, pages 102–115, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.588

16 Tomasz Pawlak. Synthesis of mathematical programming models with one-class evolutionary589

strategies. Swarm and Evolutionary Computation, 44, 05 2018. doi:10.1016/j.swevo.2018.590

04.007.591

17 Tomasz Pawlak and Krzysztof Krawiec. Automatic synthesis of constraints from examples592

using mixed integer linear programming. European Journal of Operational Research, 261, 02593

2017. doi:10.1016/j.ejor.2017.02.034.594

18 Tomasz Pawlak and Krzysztof Krawiec. Automatic synthesis of constraints from examples595

using mixed integer linear programming. EJOR, 2017.596

19 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In597

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence - AAAI 18, pages598

7965–7970. AAAI Press, 2018.599

20 Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. Knowledge compilation600

meets uniform sampling. In Proceedings of International Conference on Logic for Programming601

Artificial Intelligence and Reasoning (LPAR), 11 2018.602

21 L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November 1984.603

doi:10.1145/1968.1972.604

http://ijcai.org/Proceedings/07/Papers/006.pdf
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1109/ICTAI.2019.00102
https://doi.org/10.1109/ICTAI.2019.00102
https://doi.org/10.1109/ICTAI.2019.00102
https://doi.org/10.1109/ICTAI.2010.16
https://doi.org/10.1023/A:1006326723002
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1016/j.ejor.2017.02.034
https://doi.org/10.1145/1968.1972

	1 Introduction
	2 Related Work
	3 Learning constraints using COUNT-CP
	3.1 Background on COUNT-OR.
	3.2 Learning propositional constraints
	3.3 Learning first-order constraints
	3.4 Symbolic expressions for bounds
	3.5 Filtering constraints

	4 Experiments
	5 Conclusion

