
Things we underestimated
while developing the 

CPMpy constraint modelling library

 Prof. Tias Guns <tias.guns@kuleuven.be>     @TiasGuns
Ignace Bleukx

 Wout Vanroose
 Emilio Gamba
 Jo Devriendt
 Dimos Tsouros
  Helene Verhaeghe
 Ahmed K.A. Abdullah
 Maxime Mulamba
 Victor Bucarey
 Jayanta Mandi
  Nicholas Decleyre

mailto:tias.guns@kuleuven.be


Constraint programming

“Solving combinatorial optimisation problems”

 Vehicle Routing

 Scheduling

 Packing

 Other combinatorial problems

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/


Decision variables
Constraints
Objective function

   Model          +          Solve

Constraint solving paradigm



Modeling Tools
Modeling
language

System
language

Solver
interfacing

Data
wrangling

MiniZinc MiniZinc C++ Text-based
(flatzinc)

minizinc-
python

Conjure Essence Haskell Text-based
(essence’)

Jupyter 
notebooks

Savile Row Essence’ Java Java Java?

Picat Picat C C Picat?

CPMpy Python Python Python Python



CPMpy vision

A top-down effort to make CP technology more 
accessible to AI researchers and users in general.



CPMpy vision

A top-down effort to make CP technology more 
accessible to AI researchers and users in general.

 Easy integration with Python ML & visualisation libraries
=> decision variables are numpy arrays

 Solver-independent, connect to Python ecosystems
=> to CP, SMT, ILP, SAT and BDD python packages

 Incremental solving and direct access to solvers

 Out-of-the-box UNSAT cores, hyperparam tuning, etc



Solvers

CPMpy only interfaces to Python APIs

Key principle: solver can implement any subset of 
expressions!

Solvers can also choose to:
 Support assumptions or not
 Be incremental or not
 Expose own solver parameters

Currently:
- ortools
- pysat
- minizinc
- gurobi
- pySDD
- Z3
- Exact

Wishlist: GCS, CPOptimiser, Choco,
               Cplex, Mistral2, Gecode, ...



Things we underestimated...



Supporting typical constraint models

 Vs 

 



Supporting typical constraint models

Vs

Supporting all valid input



Design

No rewriting!

As specified

CPMpy
(user code)

Model
 constraints:

  expression tree 
 objective:

  expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

Only 1-to-1
mapping of
supported
expressions

Rewriting & Flattening



Underestimation 1

 Flattening is central to CP and SAT

 but SMT and BDDs accept nested input
 a.implies(b) | (c & ~(a|d))

 no need to create auxiliary variables!





 Flattening is central to CP and SAT

 but SMT & BDDs accept nested input
 a.implies(b) | (c & ~(a|d))

 no need to create auxiliary variables!

 they don’t support global constraints though...



Underestimation 2
Global constraints are central to CP

 Just decompose them, well studied in CP!

But any expression in CPMpy can be nested in another expression
 If your language supports a global constraint,

  it must also support the reified global constraint
 Solvers don’t support reified global constraints…

 Reified global == reification of the decomposition?



On the reification of global constraints, 2013.
N. Beldiceanu, M. Carlsson, P. Flener, J. Pearson

“most global constraints can be reformulated as a conjunction of 
total function constraints together with a constraint that can be 
easily reified”

Key issue: decompositions may define auxiliary variables. 
 Example: Circuit(nodes): creates successor variables

Our approach:

G.decompose() = (reifiable cons, defining cons)

   Toplevel G: reifiable & defining

  Reified, bv ↔ G: (bv ↔ reifiable) & defining





Underestimation 3
Bool and integer coercions

Flexibility in the language vs strict typing in the solvers.

 No automatic coercion? Or automatically coerce all?
What about BV == ~IV?

=> Bool can be used as int (common use case, e.g. sum(bvs), not the other way around

Solvers require strict typing. When coercing, stay in Bool space if you can
(e.g. BV1 == 0, BV1 + BV2 >= 1)





Underestimation 4
Negation

 Just push it down to leafs of expression tree...

→ what about global constraints? OK with reifiable,defining

→ but don’t push all negation down for SMT/BDD…

→ avoid introducing unnecessary auxiliary variables in general

So push down early,
do know that later transformations can re-introduce negation…
(creates loop)





Underestimation 4
Global constraints again!

 Is Abs(x) == y a global constraint?

 Is Abs(x) >= y a global constraint?
 Is BV ↔ Abs(x) >= a global constraint?

Our solution: Abs(x) is a global function 

To solvers that support Abs(x) == y, we rewrite each of the above as:
 Abs(x) == y
 Abs(x) == tmp   &   tmp >= y

 Abs(x) == tmp   &   BV ↔ tmp >= a





Underestimation 5
Linearisation

 ILP modeling is so similar, and yet so different...

 Custom decompositions (e.g. of AllDifferent, Xor, Circuit)
 Avoid Big-M formulations where possible
 lhs/rhs of expressions versus canonical linear constraint
 negated Boolean variable versus negative Boolean var in sum





Underestimation 6
Semantics: which solutions are valid, how many in total

What semantics do the solvers follow? E.g.

 For ‘element’ global constraint?
=> assumes total (index variable is bounded to array) or not?

 For integer division
  => exact division, floor division, fractional division?

Partial functions… (for now: we assume all are total)



Underestimation 7

How can you be sure everything is correct?

All cases you can think of?

For all possible expression trees across all solvers 
(CP,MIP,SMT,SAT)?

=> Automated fuzztesting!

Including solution counting (e.g. are transformations 
equivalence preserving?)



Supporting typical constraint models

Vs

Supporting all valid input



Conclusion / discussion
 Typical model vs all models

 Keep as much structure as solver supports

 Reify everything?

 FuzzTest everything?

 Efficiency?

 Partial functions?

Extra thanks to Hakan Kjellerstrand for initial testing, Ruben Kindt for initial fuzztesting!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

