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Abstract
Many decision-making processes involve solving
a combinatorial optimization problem with uncer-
tain input that can be estimated from historic data.
Recently, problems in this class have been suc-
cessfully addressed via end-to-end learning ap-
proaches, which rely on solving one optimization
problem for each training instance at every epoch.
In this context, we provide two distinct contribu-
tions. First, we use a Noise Contrastive approach
to motivate a family of surrogate loss functions,
based on viewing non-optimal solutions as nega-
tive examples. Second, we address a major bot-
tleneck of all predict-and-optimize approaches, i.e.
the need to frequently recompute optimal solutions
at training time. This is done via a solver-agnostic
solution caching scheme, and by replacing opti-
mization calls with a lookup in the solution cache.
The method is formally based on an inner approx-
imation of the feasible space and, combined with
a cache lookup strategy, provides a controllable
trade-off between training time and accuracy of the
loss approximation. We empirically show that even
a very slow growth rate is enough to match the qual-
ity of state-of-the-art methods, at a fraction of the
computational cost.

1 Introduction
Many real-life decision-making problems can be formu-
lated as combinatorial optimization problems. However,
uncertainty in the input parameters is commonplace; an
example being the day-ahead scheduling of tasks on ma-
chines, where future energy prices are uncertain. A predict-
then-optimize [Elmachtoub and Grigas, 2021] approach is a
widely-utilized industry practice, where first a machine learn-
ing (ML) model is trained to make a point estimate of the
uncertain parameters and then the optimization problem is
solved using the predictions.

The ML models are trained to minimize prediction er-
rors without taking into consideration their impacts on the
downstream optimization problem. This often results in sub-
optimal decision performance. A more appropriate choice

would be to integrate the prediction and the optimization task
and train the ML model using a decision-focused loss [El-
machtoub and Grigas, 2021; Wilder et al., 2019; Demirović
et al., 2019a]. Such predict-and-optimize approach is proven
to be effective in various tasks [Mandi et al., 2020; Demirovic
et al., 2019b; Ferber et al., 2020].

Unfortunately, computational complexity and scalability
are two major roadblocks for the predict-and-optimize ap-
proach involving NP-hard combinatorial optimization prob-
lem. This is due to the fact that an NP-hard optimization
problem must be solved and differentiated for each training
instance on each training epoch to find a gradient of the opti-
mization task and backpropgating it during model training.

A number of approaches [Wilder et al., 2019; Ferber et al.,
2020; Mandi and Guns, 2020] consider problems formulated
as Integer Linear program (ILP) and solve and differentiate
the relaxed LP using interior point methods. On the other
hand, the approaches from [Mandi et al., 2020] and [Pogančić
et al., 2020] are solver-agnostic, because they compute a sub-
gradient using solutions of any combinatorial solvers.

Here we propose an alternative approach, motivated by
the literature of noise-contrastive estimation [Gutmann and
Hyvärinen, 2010], which we use to develop a new family of
surrogate loss functions based on viewing non-optimal solu-
tions as negative examples. This necessitates building a cache
of solutions, which we implement by storing previous so-
lutions during training. We provide a formal interpretation
of such a solution cache as an inner approximation of the
convex-hull of feasible solutions. This is helpful whenever
a linear cost vector is optimized over a discrete space. Our
second contribution is to propose a family of loss functions
specific to combinatorial optimization problems with linear
objectives. As an additional contribution, we extend the con-
cept of discrete inner approximation to solver-agnostic ap-
proaches. In this way, we are able to overcome the train-
ing time bottleneck. Finally, we empirically demonstrate
that noise-contrastive estimation and solution caching pro-
duce predictions at the same quality or better than the state-
of-the-art methods in the literature with a drastic decrease in
computational times.



2 Related Work
Noise-contrastive estimation (NCE) performs tractable pa-
rameter optimization for many models requiring normal-
ization of the probability distribution over a set of dis-
crete assignments. This is a common element of many
popular probabilistic logic frameworks like Markov Logic
Networks [Richardson and Domingos, 2006] or Probabilis-
tic Soft Logic [Bach et al., 2017]. More recently, NCE
has been at the core of several neuro-symbolic reasoning
approaches [Garcez et al., 2012] like Deep Logic Mod-
els [Marra et al., 2019] or Relational Neural Machines [Marra
et al., 2020]. We use NCE to derive some tractable formula-
tions of the combinatorial optimization problem.

Numerical instability is a major issue in end-to-end train-
ing as implicit differentiation at the optimal point leads to
zero Jacobian when optimizing linear functions. [Wilder et
al., 2019] introduce end-to-end training of a combinatorial
problem by constructing a simpler optimization problem in
the continuous relaxation space adding a quadratic regular-
izer term to the objective. As the continuous relaxation is an
outer approximation of the feasible region in mixed integer
problems, [Ferber et al., 2020] strengthen the formulation by
adding cuts. [Mandi and Guns, 2020] propose to differentiate
the homogeneous self-dual formulation, instead of the KKT
condition and show its effectiveness.

The Smart Predict and Optimize (SPO) framework intro-
duced by [Elmachtoub and Grigas, 2021] uses a convex surro-
gate loss based subgradient which could overcome the numer-
ical instability issue for linear problems. [Mandi et al., 2020]
investigate scaling up the technique for large-scale combi-
natorial problems using continuous relaxations and warm-
starting of the solvers. Recent work by [Pogančić et al., 2020]
is similar to the SPO framework but it uses a different subgra-
dient considering “implicit interpolation” of the argmin oper-
ator. Both of these approaches are capable of computing the
gradient for any blackbox implementation of a combinatorial
optimization with linear objective. [Elmachtoub et al., 2020]
extends the SPO framework for decision trees.

In all the discussed approaches, scalability is a major
challenge due to the need to repeatedly solve the (possi-
bly relaxed) optimisation problems. In contrast, our con-
trastive losses, coupled with a solution caching mechanism,
do away with repeatedly solving the optimization problem
during training and can be applied to other solver agnostic
predict-and-optimize methods, too.

3 Problem Setting
In our setting we consider a combinatorial optimization prob-
lem in the form

v∗(c) = argmin
v∈V

f(v, c) (1)

where V is a set of feasible solutions and f : V × C → R
is a real valued function. The objective function f is para-
metric in c, the values we will try to estimate. We denote
by v∗(c) an optimal solution of (1). Despite the fact that V
can be any set, for the rest of the article we will consider the
particular case where V is a discrete set, specified implicitly

Algorithm 1 Gradient-descent over combinatorial problem
Input:A,b; training data D≡ {(xi, ci)}ni=1
Hyperparams: α- learning rate, epochs

1: Initialize ω.
2: for each epochs do
3: for each instances do
4: c̃← t(ĉ) with ĉ = m(ω, x)
5: Obtain v by calling a solver for Eq. (1) with c̃
6: ω ← ω − α∂Lv

∂c̃
∂c̃
∂ω # backpropagate (sub)gradient

7: end for
8: end for

through a set of constraints. This type of sets arise naturally
in combinatorial optimization problems, including Mixed In-
teger Programming (MIP) and Constraint Programming (CP)
problems, many of which are known to be NP-complete.

The value of c is unknown but we assume having ac-
cess to correlated features x and a historic dataset D =
{(xi, ci)}ni=1. One straightforward method to learn c is to
find a model m(ω, x) with model parameters ω that predicts
a value ĉ. This model can be learned by fitting the data D
to minimizing some loss function, as in classical supervised
learning approaches.

In a predict-and-optimize setting, the challenge is to learn
model parameters ω, such that, when it is used to provide
estimates ĉ, these predictions lead to an optimal solution of
the combinatorial problem with respect to the real values of
c. In order to measure how good a model is, we compute the
regret of the combinatorial optimisation, that is, the difference
between the true value of: 1) the optimal solution v∗(c) for
the true parameter values; and 2) the optimal solution for the
estimated parameter values v∗(ĉ). Formally, Regret(ĉ, c) =
f(v∗(ĉ), c)− f(v∗(c), c). In case of minimisation problems,
regret is always positive and it is 0 in case optimizing over
the estimated values leads either to the true optimal solution
or to an equivalent one.

The goal of prediction-and-optimisation is to learn the
model parameters ω to minimize the regret of the resulting
predictions, i.e. argminω E [Regret(m(ω, x), c)]. When us-
ing backpropagation as a learning mechanism, regret can-
not be directly used as a loss function because it is non-
continuous and involves differentiating over the argmin in
v∗(c). Hence, the general challenge of predict-and-optimize
is to identify a differentiable and efficient-to-compute loss
function Lv∗

that takes into account the structure of f and
v∗(·) more generally.

Learning over a set of N training instances can be formu-
lated within the empirical risk minimisation framework as

argmin
ω

E
[︂
Lv∗

(m(ω, x), c)
]︂

≈ argmin
ω

1

N

N∑︂
i=1

Lv∗
(m(ω, xi), ci)

(2)

3.1 Gradient-Descent Decision-Focused Learning
Algorithm 1 depicts a standard gradient descent learning pro-
cedure for predict-and-optimize approaches. For each epoch



and instance, it computes the predictions, optionally trans-
forms them on Line 4, calls a solver to compute v∗(c̃), and
updates the trainable weights ω via standard backpropagation
for an appropriately defined gradient ∂Lv/∂c.

To overcome both the non-continuous nature of the opti-
misation problem v∗(c) and the computation time required, a
number of works replace the original task v∗ by a continuous
relaxation g∗ and solve and implicitly differentiate over Lg∗

,
considering a quadratic [Wilder et al., 2019] or log-barrier
[Mandi and Guns, 2020] task-loss. In these cases, t(ĉ) = ĉ.

Other approaches are solver-agnostic and do the implicit
differentiation by defining a subgradient for ∂Lv/∂c. In case
of SPO+ loss [Elmachtoub and Grigas, 2021], the subgradi-
ent is v∗(c) − v∗(2ĉ − c), involving t(ĉ) = (2ĉ − c). In
case of Blackbox differentiation [Pogančić et al., 2020], the
solver is called twice on Line 5 of Alg 1 and the subgradient
is an interpolation of Lv around ĉ, where the interpolation is
between v∗(ĉ) and its perturbation v∗(ĉ+ λc).

In all those cases, in order to find the (sub)gradient, the op-
timization problem v∗(c) must be solved repeatedly for each
instance. In the next section, we present an alternative class
of contrastive loss functions that has, to the best of our knowl-
edge, not been used before for predict-and-optimize prob-
lems. These loss functions can be differentiated in closed-
form and do not require solving a combinatorial problem
v∗(c) for every instance.

4 A Contrastive Loss for
Predict-and-Optimize

Probabilistic models define a parametric probability distri-
butions over the feasible assignments, and Maximum Like-
lihood Estimation can be used to find the distribution pa-
rameters making the observed data most probable under the
model [Kindermann, 1980]. In particular, the family of expo-
nential distributions emerges ubiquitously in machine learn-
ing, as it is the required form of the optimal solution of any
maximum entropy problem [Berger et al., 1996].

We now propose an exponential distribution that fits the
optimisation problem of Eq. (1). Let v ∈ V be the space of
feasible output assignments V for one example x. Then, we
define the following exponential distribution over V :

p(v|m(ω, x)) =
1

Z
exp

(︂
− f(v,m(ω, x))

)︂
(3)

the partition function Z normalizes the distribution over the
assignment space V :

Z =
∑︂
v′∈V

exp
(︂
− f(v′,m(ω, x))

)︂
.

By construction, if v∗(m(ω, x)) is the minimizer of Eq. 1 for
an instance x, it will maximize Eq. (3) and vice versa. We
can use this to fix the solution to v = v∗(c) with c being the
true costs, and learn the network weights ω that maximize the
likelihood p(v∗(c)|m(ω, x)). This corresponds to learning
an ω that makes the intended true solution v∗(c) be the best
scoring solution of Eq. 3 and hence of v∗(m(ω, x)), which
is the goal of prediction-and-optimisation. In the following,

these definitions will be implicitly extended over all training
instance (xi, ci).

A main challenge of working with this distribution is that
computing the partition function Z requires iterating over all
possible solutions V , which is intractable for most combina-
torial optimization problems.

4.1 Noise-Contrastive Estimation
Learning over this distribution without a direct evaluation
of Z can be achieved by using Noise Contrastive Estima-
tion (NCE) [Mikolov et al., 2013]. The key idea there is to
work with a small set of negative samples. To apply NCE in
this work, we will use as negative samples the solutions that
are different from the target solution v⋆, that is any subset
S ⊂ (V \ v⋆) of feasible solutions.

Such an NCE approach avoids a direct evaluation of Z and
instead maximizes the separation of the probability of the op-
timal solution v⋆i = v∗(ci) for xi from the probability of a
sample of the non-optimal ones (the ‘noise’ part). It is ex-
pressed as a maximization of the product of ratios between
the optimal solution v⋆i and the negative samples S:

argmax
ω

log
∏︂
i

∏︂
vs∈S

p
(︂
v⋆i |m(ω, xi)

)︂
p
(︂
vs|m(ω, xi)

)︂ = (4)

= argmax
ω

∑︂
i

∑︂
vs∈S

(︂
− f(v⋆i ,m(ω, xi))− log(Z)

+ f(vs,m(ω, xi)) + log(Z)
)︂

= argmax
ω

∑︂
i

∑︂
vs∈S

(︂
f(vs,m(ω, xi))− f(v⋆i ,m(ω, xi))

)︂
.

By changing the sign to perform loss minimization, this leads
to the following NCE-based loss function:

LNCE =
∑︂
i

∑︂
vs∈S

(︂
f
(︁
v⋆i ,m(ω, xi)

)︁
− f

(︁
vs,m(ω, xi

)︁)︂
(5)

which can be plugged directly into Algorithm 1. During dif-
ferentiation, both v⋆i and vs will be treated as constants- the
first since it effectively never changes, the second since it will
be computed in the forward pass on line 5 in Alg. 1. As a side
effect, automatic differentiation of Eq. 5 will yield a subgra-
dient rather than a true gradient, as is common in integrated
predict-and-optimize settings. In section 5, we will discuss
how to create the sample S.

4.2 MAP Estimation
Self-contrastive estimation [Goodfellow, 2015] is a special
case of NCE where the samples are drawn from the model.
A simple but very efficient self-contrastive algorithm takes a
single sample, which is the Maximum A Posteriori (MAP) as-
signment, i.e. the most probable solution for each example
according to the current model m(ω, ·). Therefore , the MAP
assignment approximation trains the weights ω as:

argmax
ω

∑︂
i

[︁
−f(v⋆i ,m(ω, xi)) + f(v̂⋆i ,m(ω, xi))

]︁]︁



with v̂⋆i = argminv′∈S [f(v
′,m(ω, xi))] being the MAP so-

lution for the current model. With a sign change to switch
optimization direction, this translates into the following loss
variant:

LMAP =
∑︂
i

[︁
f(v⋆i ,m(ω, xi))− f(v̂⋆i ,m(ω, xi))

]︁
(6)

4.3 Better Handling of Linear Cost Functions
The losses can be minimized by either matching the true
optimal solution (the intended behavior), or by making
f (v⋆i ,m(ω, xi)) and f (v̂⋆i ,m(ω, xi)) identical by other
means. For example, with a linear cost function f(v, c) =
cT v, Eq. 5 translates to:

LNCE =
∑︂
i

∑︂
vs∈S

m(ω, xi)
T (v⋆i − vs) (7)

which can be minimized by predicting null costs, i.e.
m(ω, xi) = 0. To address this issue, we introduce a vari-
ant of Eq. 5, where we replace the cî term in the loss with(︁
cî − ci

)︁
. The modification amounts to adding a constant (so

that all optimal solutions are preserved), and can be viewed
as a regularization term that keeps ĉ close to c. Thus we get:

L(ĉ−c)
NCE =

∑︂
i

∑︂
vs∈S

(︂
(m(ω, xi)− ci)

T (v⋆i − vs)
)︂

(8)

where ĉ (in the loss name) is a shorthand for m(ω, xi). Note
that we do not perturb the predictions prior to computing v̂⋆i ,
but only in the loss function.

The loss is still guaranteed non-negative, since v⋆i is by def-
inition the best possible solution with the cost vector ci. Eq. 7
can no longer be minimized with a null cost vector; instead,
the loss can only be minimized by having the predicted costs
ĉi match the true costs ci or, and implied by that, having the
solution with the estimated parameters v̂⋆i match the true op-
timal solution v⋆i . The same approach applied to the MAP
version leads to:

L(ĉ−c)
MAP =

∑︂
i

(m(ω, xi)− ci)
T (v⋆i − v̂⋆i ) (9)

5 Negative Samples and
Inner-approximations

5.1 Negative Sample Selection
The main question now is how to select the ‘noise’, i.e. the
negative samples S. The only requirement is that any exam-
ple in S is a feasible solution, i.e. S ⊆ V . Instead of comput-
ing multiple feasible solutions in each iteration, which would
be more costly, we instead propose the pragmatic approach of
storing each solution found when calling the solver on Line 5
of Alg. 1 in a solution cache. As training proceeds, the solu-
tion cache will grow each time a new solution is found, and
we can use this solution cache as negative samples S.

While pragmatic, we can also interpret this solution cache
S from a combinatorial optimisation perspective: if S would
contain all possibly optimal solutions (for linear cost func-
tions), it would represent the convex hull of the entire feasible
space V . When containing only a subset of points, that is, a

Algorithm 2 Gradient-descent with inner approximation
Input:A,b; training data D≡ {(xi, ci)}ni=1
Hyperparams: α learning rate, epochs, psolve

1: Initialize ω
2: Initialize S = {v∗(ci)|(xi, ci) ∈ D}
3: for each epochs do
4: for each instances do
5: c̃← t(ĉ) with ĉ = m(ω, x)
6: if random() < psolve then
7: Obtain v by calling a solver for Eq. (1) with c̃
8: S ← S ∪ {v}
9: else

10: v = argminv′∈S(f(v
′, c̃)) // simple argmin

11: end if
12: ω ← ω − α∂Lv

∂c̃
∂c̃
∂ω # backpropagate (sub)gradient

13: end for
14: end for

subset of the convex hull, it can be seen as an inner approx-
imation of V . This in contrast to continuous relaxation that
relax the integrality constraints, which are commonly used in
prediction-and-optimisation today, that lead to an outer ap-
proximation. The inner approximation has the advantage of
having more information about the structure of V . This is
depicted in Figure 1 where a solution cache S is represented
by blue points, and the set V of feasible points is the union
of black and blue points. The continuous relaxation of this
set depends on the formulation, that is, the precise set of in-
equalities used to represent V , for example, the green part,
which clearly is an outer approximation of the convex-hull of
V . The convex-hull of the solution cache is represented as
conv(S) and it is completely included in conv(V ) in contrast
to the outer approximation.

5.2 Gradient-descent with Inner Approximation
The idea that caching the computed solutions results in an in-
ner approximation, is not limited to noise-contrastive estima-
tion. As S becomes larger we can expect the inner approx-
imation to become tighter, and hence we can solve the in-
ner approximation instead of the computationally expensive
full problem. Because the inner approximation is a reason-
ably sized list of solutions, solving it simply corresponds to a
linear-time argmin over this list!

Alg. 2 shows the generic algorithm. In comparison to
Alg. 1 the main difference is that on Line 2 we initialise the
solution pool, for example with all true optimal solutions;
these must be computed for most loss functions anyway. On

conv(S)

P

-c
↓

Figure 1: Representation of a solution cache (blue) and the continu-
ous relaxation (green) of V .



Knapsack
60

Knapsack
120

Knapsack
180

LNCE ĉ 912(21) 760(12) 2475(45)
LNCE (ĉ− c) 1024(66) 770(15) 2474 (40)

LMAP ĉ 1277(555) 912(9) 491(8)
LMAP (ĉ− c) 764 (2) 562(1) 327(1)

Two-stage 989 (14) 1090 (27) 433 (12)

Table 1: Comparison among Contrastive loss variants on Knapsacks
(Average and standard deviation of regret on test data)

Energy
1

Energy
2

Energy
3

LNCE ĉ
45847
(780)

27633
(214)

18789
(194)

LNCE (ĉ− c)
45834
(1657)

28994
(659)

18768
(406)

LMAP ĉ
104496
(18109)

50897
(20958)

32180
(8382)

LMAP (ĉ− c)
41236
(66)

27734
(267)

17507
(42)

Two-stage 43384
(376)

31798
(781)

23423
(893)

Table 2: Comparison among Contrastive loss variants on Energy
scheduling (Average and standard deviation of regret on test data)

Line 6 we now first sample a random number between 0 and
1, and if it is below psolve, which represents the probability
of calling the solver, then the expensive solver is called and
the solution is added to the cache if not yet present, otherwise
an argmin of the cache is done.

Note how the probability of solving psolve has an
efficiency-accuracy trade-off: more solving is computation-
ally more expensive but leads to better approximations of V.
The approach of Alg. 1 corresponds to psolve = 1.

This inner-approximation caching approach can be used
for any decision-focused learning method that calls an exter-
nal solver, such as SPO+ method in [Mandi et al., 2020] and
its variants [Elmachtoub et al., 2020], Blackbox solver differ-
entiation of [Pogančić et al., 2020] and our two contrastive
losses LMAP and LNCE.

6 Empirical Evaluation
In this section we answer the following research questions:

Q1 What is the performance of each task loss function in
terms of expected regret?

Q2 How does the growth of the solution caching impact on
the solution quality and efficiency of the learning task?

Q3 How do other solver-agnostic methods benefit from the
solution caching scheme?

Q4 How does the methodology outlined above perform
in comparison with the state-of-the-art algorithms for

Matching
10

Matching
25

Matching
50

LNCE ĉ 3702 (64) 3696 (76) 3382 (49)
LNCE (ĉ− c) 3618 (81) 3674 (48) 3376 (73)

LMAP ĉ 3708 (88) 3700 (23) 3444 (74)
LMAP (ĉ− c) 3732 (85) 3712 (86) 3402 (66)

Two-stage 3700 (42) 3712 (59) 3440 (36)

Table 3: Comparison among Contrastive loss variants on Diverse
Bipartite Matching (Average and standard deviation of regret on test
data)

decision-focused learning?
To do so, we evaluate our methodology on three NP hard
problems, the knapsack problem, a job scheduling problem
and a maximum diverse bipartite matching problem.1

6.1 Experimental Settings
Knapsack Problem. The objective of this problem is to se-
lect a maximal value subset from a set of items subject to
a capacity constraint. We generate our dataset from [Ifrim
et al., 2012], which contains historical energy price data at
30-minute intervals from 2011-2013. Each half-hour slot has
features such as calendar attributes; day-ahead estimates of
weather characteristics; SEMO day-ahead forecasted energy-
load, wind-energy production and prices. Each knapsack in-
stance consists of 48 half-our slots, which basically translates
to one calendar day. The knapsack weights are synthetically
generated where a weight ∈ {3, 5, 7} is randomly assigned
to each of the 48 slots and the price is multiplied accord-
ingly before adding Gaussian noise ξ ∼ N(0, 25) to main-
tain high correlation between the prices and the weights as
strongly correlated instances are difficult to solve [Pisinger,
2005]. We study three instances of this knapsack problem
with capacities of 60, 120 and 180.
Energy-cost Aware Scheduling. In our next experiment,
we consider a more complex combinatorial optimization
problem. This combinatorial problem is taken from
CSPLib [Gent and Walsh, 1999], a library of constraint op-
timization problems. In energy-cost aware scheduling [Si-
monis et al., 1999], a given number of tasks, each having
its own duration, power usage, resource requirement, earliest
possible start and latest-possible end, must be scheduled on
a certain number of machines respecting the resource capac-
ities of the machines. A task cannot be stopped or migrated
once started on a machine. The cost of energy price varies
throughout the day and the goal is to find a scheduling which
would minimize the total energy consumption cost. We use
the same energy price data for this experiment. We study
three instances named Energy-1, Energy-2 and Energy-3.
Diverse Bipartite Matching. We adopt this experiment
from [Ferber et al., 2020]. The matching instances are con-
structed from the CORA citation network [Sen et al., 2008].

1Code and data are publicly available at https://github.com/
CryoCardiogram/ijcai-cache-loss-pno.

https://github.com/CryoCardiogram/ijcai-cache-loss-pno
https://github.com/CryoCardiogram/ijcai-cache-loss-pno


(a) NCE (b) SPO+ (c) Blackbox

Figure 2: Comparison of learning curves with/without the inner approximation with psolve = 5% for Energy-3.

(a) Knapsack-120 (b) Energy-3 (c) Matching-25

Figure 3: Regret versus total training time for the different methods

The graph is partitioned into 27 sets of disjoint nodes. Di-
versity constraints are added to ensure there are some edges
between papers of the same field as well as edges between
papers of different fields. The prediction task is to predict
which edges are present using the node features. The opti-
mization task is to find a maximum matching in the predicted
graph. Contrary to the previous ones, here the learning task
is the challenging one whereas the optimisation task is rela-
tively simpler. We study three instances with varying degree
of diversity constraints, Matching-10, Matching-25 and -50.

6.2 Results
For all the experiments, the dataset is split on training (70%),
validation (10%) and test (20%) data. The validation sets are
used for selecting the best hyperparameters. The final model
is run on the test data 10 times and we report the average and
standard deviation (in bracket) of the 10 runs. All methods
are implemented with Pytorch 1.3.1 [Paszke et al., 2019] and
Gurobi 9.0.1 [Gurobi Optimization, 2021].

Q1
In section 4, we introduced LNCE, LMAP, L(ĉ−c)

NCE and L(ĉ−c)
MAP .

In Table 1, 2 and 3, we compare the test regret of these 4 con-
trastive losses. The test regret of a two-stage approach, where
model training is done with no regards to the optimization
task, is provided as baseline.

We can see in Table 1 and Table2 for the knapsack and the
scheduling problem, LMAP (ĉ− c) performs the best among
all the loss variants. Interestingly, with LNCE, there is no
significant advantage of the linear objective loss function (ĉ−
c)); whereas in case of LMAP, we observe significant gain by
using the linear objective loss function. On the other hand,

in Table 3, for the matching problem LNCE performs slightly
better than LMAP.

Q2

In the previous experiment, the initial discrete solutions on
the training data as well as all solutions obtained during train-
ing are cached to form the inner approximation of the feasi-
ble region. But, as explained in section 5, finding the optimal
v∗(ĉ) and adding it to the solution cache for all ĉ during train-
ing is computationally expensive. Instead, now we empiri-
cally experiment with psolve = 5%, i.e. where new solutions
are computed only 5% of the time.

In Figure 2a, we plot regret against training time for
Energy-3 (we observe similar results as shown in the ap-
pendix). There is a significant reduction in computational
times as we switch to 5% sampling strategy. Moreover, this
does have not deleterious impact on the test regret. We con-
clude that adding new solutions to the solution cache by sam-
pling seem to be an effective strategy to have good quality
solutions without a high computational burden.

Q3

To investigate the validity of inner-approximation caching ap-
proach, we implement SPO-caching and Blackbox-caching,
where we perform differentiation of SPO+ loss and Black-
box solver differentiation respectively, with psolve being 5%.
We again plot regret against training time in Figure 2b and
Figure 2c for SPO+ and Blackbox respectively. These fig-
ures show caching drastically reduces training times without
any significant impact on regret both for SPO+ and Blackbox
differentiation.



Q4
Finally we investigate what we gain by implementing LNCE,
L(ĉ−c)
NCE , L(ĉ−c)

MAP and SPO-caching and blackbox-caching with
psolve being 5%. We compare them against some of the state-
of-the-art approaches- SPO+ [Elmachtoub and Grigas, 2021;
Mandi et al., 2020], Blackbox [Pogančić et al., 2020],
QPTL [Wilder et al., 2019] and Interior [Mandi and Guns,
2020]. Our goal is not to beat them in terms of regret; rather
our motivation is to reach similar regret in a time-efficient
manner.

In Figure 3a, Figure 3b and 3c, we plot Test regret against
per epoch training time for Knapsack-120, Energy-3 and
Matching-25. In Knapsack-120, Blackbox and Interior per-
forms best in terms of regret. L(ĉ−c)

MAP , SPO-caching and
Blackbox-caching attain low regret comparable to these with
a significant gain in training time. For Energy-3 the regret
of SPO-caching and Blackbox-caching are comparable to the
state of the art, whereas L(ĉ−c)

MAP , in this specific case, results
in lowest regret at very low training time. In Matching-25,
QPTL is the best albeit the slowest and SPO+ and Blackbox
perform marginally better than a two-stage approach. In this
instance, caching methods are not good enough; but the four
contrastive methods performs better than SPO+ and Black-
box. These methods can be viewed as trade-off between
lower regret of QPTL and faster runtime of two-stage.

7 Concluding Remarks
We presented a methodology for decision-focused learning
based on two main contributions: i. A new family of loss
functions inspired by noise contrastive estimation; and ii. A
solution cache representing an inner approximation of the
feasible region. We adapted the solution caching concept to
other state-of-the-art methods, namely Blackbox [Pogančić
et al., 2020] and SPO+ [Elmachtoub and Grigas, 2021], for
decision-focused learning improving their efficiency. These
two concepts allow to reduce solution times drastically while
reaching similar quality solutions.

Acknowledgments
This research received partial funding from the Flemish Gov-
ernment (AI Research Program), the FWO Flanders projects
G0G3220N and Data- driven logistics (FWO-S007318N) and
the H2020 Project AI4EU, G.A. 825619 as well as from the
European Research Council (ERC H2020, Grant agreement
No. 101002802, CHAT-Opt)

References
[Bach et al., 2017] Stephen H Bach, Matthias Broecheler,

Bert Huang, and Lise Getoor. Hinge-loss markov random
fields and probabilistic soft logic. The Journal of Machine
Learning Research, 18(1):3846–3912, 2017.

[Berger et al., 1996] Adam Berger, Stephen A Della Pietra,
and Vincent J Della Pietra. A maximum entropy approach
to natural language processing. Computational linguistics,
22(1):39–71, 1996.
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