Learning and Reasoning with
Constraint Solving

Prof. Tias Guns

VRIJE
UNIVERSITEIT

‘@TiasGuns

Joint work with team members:
- Rocs Canoy
- Jayanta Mandi

- Maxime Mulamba And external colaborators:

- Victor Bucarey Lopez - Michelangelo Diligenti (Sienna Uni, It)
- Emilio Gamba - Michele Lombardi (Bologna, It)
- Ignace Bleukx - Bart Bogaerts (VUB, Be)

mailto:tias.guns@kuleuven.be

Constraint solving

“Solving combinatorial optimisation problems”

seconds)

* Vehicle Routing

* Scheduling

SSSSSS

* Packing

* Other combinatorial problems |
AT SBs 4 2

[Solved and visualized with the constraint solving library]

https://cpmpy.readthedocs.io/

Example: room scheduling

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
room_assignment.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb

Example: room scheduling (backup slide)

def model rooms(df, max rooms, verbose=True):
n requests = len(df)

All requests must be assigned to one out of the rooms (same room during entire period).
requestvars = intvar(®@, max rooms-1, shape=(n_requests,))

m = Model()

Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna(row['room']}):
m += (requestvars[idx] == int(row['room']})

A room can only serve one request at a time.
=== requests on the same day must be in different rooms
for day in pd.date range(min(df['start']), max(df['end'])):
overlapping = df[(df['start'] == day) & (day < df['end’'])]
if len(overlapping) = 1:
m += AllDifferent(requestvars[overlapping.index])

index
35
ﬁ - -- . i

return (m, requestvars)

w

Room Number

=]

Jun 20 Jul4 julig Aug 1 Aug 15 Aug 29 Sep 12
2021

Current combinatorial optimisation practice

Model +

-
7 ~

S

)
Domain experts

Stakeholders

Opt. expert\

Current combinatorial opt. practice, problem

Model + Solve

Changing preferences
@ Rigid and static
Opt. expert\
@
po = &

Incomplete information
Ad-hoc maodifications

Domain experts
Stakeholders

Vision

g 2 U

Vision

* Learning implicit user preferences

* Learning from the environment @

Vision

* Learning implicit user preferences
* Learning from the environment

* Explaining constraint solving

Vision

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

°
«® 9 L]
e et

B AN B
2. : . ® ® [
3
European Research Council
| Established by the European Commission o‘\

[Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

s
““““
s

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html ‘\,\mng 90‘5 --------

.

)
tttt

1]
““““

.
at®
wet® -

“““““

Conversational Human-Aware Technology for Optimisation @

What would the ideal CP system be?

* Easy integration with Machine Learning libraries
=> Python and numpy arrays

* Efficient repeated solving
=> |ncremental

* Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

)

S

o

i

&

Conversational Human-Aware Technology for Optimisation @A"\

What would the ideal CP system be?

* Easy integration with Machi
=> Python and numpy arrays

* Efficient repeated solving
=> |[ncremental

* Use CP/SAT/MIP or any co

=> solver independent and mul

https://github.com/CPMpy/cpmpy

>N C @ @a

readthedocs.io

» CPMpy: Constraint Programming and Modeling in Python

CPMpy: Constraint Programming and Mod
Python

CPMpy is a Constraint Programming and Modeling library in Python, based on nu
solver access.

Constraint Programming is a methodology for solving combinatorial optimisation
assignment problems or covering, packing and scheduling problems. Problems th:
searching over discrete decision variables.

CPMpy allows to model search problems in a high-level manner, by defining deci:
constraints and an objective over them (similar to MiniZinc and Essence'). You car
functions and indexing while doing so. This model is then automatically translate
art solver like or-tools, which then compute the optimal answer.

Source code and bug reports at https:/github.com/CPMpy/cpmpy

Getting started:

« Installation instructions

etting started with Constraint Programming and CPMpy
+ Quickstart sudoku notebook

+ More examples

User Documentation:

https://github.com/CPMpy/cpmpy

This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Perception-based constraint solving

¢ |5
9 7.3
Z | |a| |6
1
/
8 49 | |1
6 g
] &

What if part of the input is in an image?

Pedagogical example: Visual Sudoku
* Every image represents a valid sudoku
* Explicitly know: CP constraints

* Need to predict: image labels

=> test limits of reasoning on learning

Perception data and Constralnt solvmg

Other application settings:

* Document analysis

* Paper-based configuration problem;(taf(“ forms)
* Object-detection based reasoning

* Visual relationship detection

Perception-based constraint solving

Visual sudoku (naive)

= & 7T 7] 8 : 562157483
SN 2 R N
Yl Z\?&? 6 |$ k- L. CP s26[981l74s
il 7 PSS i R 587342196

3 e 1 B H 3 79 1 64 3579|811
17 J 7 5 b 179(826|534
5 o 5 a6 258413967

: 2x Convolution + Max pool layer
2x Fullly
connected :
layer
|
Pre-trained neural network Solving
accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01

Perception-based constraint solving

| [
=z ' ' | p szp - -
s@i?{ B~ i = = \31 argmax _— /'/13?12 " el 18alssalzsa
T~ 5 ! Fee |8 4 815234679
dot| 6 T\ : ; | P3 | A 8|7 CP 3269 7
A EPAND i : Pa 4 8 491[765/328
3 e 1S ; —_— 5873421196
Fall" | B s o
e 2 - 96 258/a13[967
2x Convolution + Max pool layer A g
2x Fullly / |
ccccc ted : P |
layer
|1
Pre-trained neural network Solving

What is going on?

Each cell predicts the maximum likelihood value:
.@ij — arg max P(y?;j =]‘C|X@j)

This is a multi-output problem (one for each given cell):
together this is the ‘maximum likelihood’ interpretation

If sudoku(7) = False: no solution, interpretation is wrong...

What about the next most likely interpretation?

s - [
SNwEe g cgmax _— 7| - i [FEET
NG 5 . e STl
e RN | Rl al e | CP‘Q::i;zaf;i
e el [| e -
s | a b ' - ;éa“:aé?
: 2x Convolution + Max pool layer Fal g
2o /(6
layer
I
Pre-trained neural network Solving
What about the next most likely interpretation?
. Treat prediction as joint inference problem:
Y = arg max I | P(y;; = k| X;;) s.t. sudoku(y)
1]
. This is the constrained ‘maximum likelihood’ interpretation

=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]

Perception-based constraint solving

i . |
] 8 X E 1 ' Py /'/’@21 I —T
Ny . : 5 : | F1 T2 co 962157483
i e rif‘hf'"“——-ﬂ i 5 pz | agmax _—— 47 B12:5 i Y |734lses [2 51
T : : S 8/ L 815/234/6789
: ¥ ol : : P3 8 |7 326(981(745
49 6 Nad | - : e 491 & 28 CP 49 1/765/328
-3 3¢ [Ff ™~ ;] | P4 | 5 34 |1 sg7l3a2(196
L I ; ;_"pﬁ 3| 79 1 643579812
J : : 17 5 179826534
-5 a6 E | : 9 5 258 3l0 6 7
2x Convolution + Max pool layer
2x Fullly 5
connected :
layer

Pre-trained neural network I

Can we use a constraint solver for that?

y = arg maXH P(y;; = k| X;;) s.t. sudoku(y)

* Log-likelihood trick:

min Z Z —log(Py(yi; = k| Xij)) * 1[si; = k] s.t. sudoku(g})

(i.4)'e ke
;':;'f.':!{{:!"ﬂ R constant

Visual sudoku

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/visual _sudoku.ipynb

21

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

#

N/

e
i

st

Y

4/

L)

-~

g o=

o WS

2x Convolution + Max pool layer
AR SRS 2x Fullly

. connected |

layer

Pre-trained neural network

EEEFERF

> eB o

accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybrid1l 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

~4 oo

LI [T - T
00 WD R W
[T REFTY RN, 3 (T O S

- LR BT L]

(SR FN. -) (PO
[V T T, QS N R
WA G0 e o~ e B

R - T Y-]

=TT (F= T 9

This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Research trend

Model
A
1) learn the 2) learn the
constraints objective
function

Can we learn

it instead?

+

Solve

%

3) learn to solve (faster)

25

Learn the objective function

Prediction + Optimisation (regression of weights)

Historic data: gt e G
e || (R
VO] VIIIIII1D S hmyan
2 e 2 Ll) [E——— |
| V 212|222 ?]2]?]?]?
learm f —— aPPy 1(a)
Predict: hourly energy prices + Optimize: energy-

aware scheduling

Other examples:
* Optimize steel plant production waste, by predicting steel defects

* Optimize money transport, by predicting value of coins at clients

prediction-focussed regression

Implementation

i e [PregitPrice:
' | \\\ o B g,
v N OB
Predictiv L_"rl’\) I Fiy
Model i
///
I w— l :

T '
Features | compute loss !
]

backpropagate

Training
Pre-trained neural network

MSE loss not the best proxy for task loss....

Historic data:

VLITTITTIT] VLLIIIITTTT]
a

V [?]?]?]?]?]?|?]?|?|?
|

| f____—applyf(a) Vector of predictions
earn

Why?

MSE = average of individual errors of the vector
Joint inference = joint error

— some errors worse than others!

MSE

Epoch

Joint inference: trades off
the individual predictions

Regret

Which errors worse?

IS combinatorial, need to solve to know

features true cost vector

argmin E [regret (m(z;;w), ¢;)]
wt

network_params
)) . Challenges:
TEGREUG, E)'= T |1y6) — 0"] - no expgljicit gradient
with v* = argminyev f (v, c) - V is implicit, exponential size
0 = argmingev f (v, ¢) - argmin f may be NP-hard

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Learning approaches (gradient descent)

Solve

v

..‘F - :':7 " ’ " i .
e .
1.5‘? Vs “.\.
Ay ;o N Answer
a
: ckpropagate

Loss

Key challenges:
1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch

Related work for discrete optimisation

Differentiating KKT of a relaxed problem

Differentiating HSD of a relaxed problem

Subgradient of a surrogate loss

Differentiation by perturbation

Decision-focused learning

Suitable loss function?

Key observation:

“The objective function induces a ranking over feasible solutions”

Sol 1 [a,c,b,d,a]
Sol 2 [a,b,c,d,a]
Sol 3 [a,c,d,b,a]
Sol 4 [a,d,b,c,a]
Sol 5 [a,d,c,b,a]

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

(

(

(

(rank: 4
8 (

Obj with true costs

rank: 1)
rank: 2

)
rank: 3)
)
)

rank: 5

14 (
10 (
11 (rank: 2
16 (
18 (

Obj with predicted

rank: 3)

rank: 1

)
)
rank: 4)
)

rank: 5

Decision-focussed learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible
solutions”

I 1[?('b": c) p(v; €)
I I I . I I I N I
Vpest 4

=> \We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Listwise Learning 2 Rank for DFL

Vhest

p(ic) p(;0)
Discrete exponential distribution
in solution space I
1. &= |1].

1
p(v;c) = EEXP(—)((U; c)/t) veV
0 vev
True Distribution Predicted Distribution

We obtain 2 distributions (one for true costs, one for predicted costs)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi. Mulamba. Bucarev. Guns. Decision-focused learnina: throuagh the lens of learnina to rank. ICML2022]

Test Regret(3:)
-]

j

H

Fotwist Parwise df Frinese Ustwise | WOE s S0 Wackbox Tanstage

Model

Degree 4

Test Regrat(3)
& B

s

Results

Shortest Path Problem

|
I

" Model

Degree 6

Test Regret]i)

&
]

E
H

T

B
]

&
]

z
-

i 3

Test Regreti®)
- "]

——
§

§

Tl
i § 8
" P

Test Regreti)
)
i

i

FO Sickes esimae Pasiwize MarwSt Parmma dff Usese mE

Scheduling Problem

ki

Decision-focused learning with L2R

G

24 Key bottleneck: repeatedly calling the solver

Solve

[
»

\c" SR .
=N i ‘N Answer
: 3ckpropagate

Loss

Decision-focused learning with L2R

2" Key bottleneck: repeatedly calling the solver

Solve

[
»

AT predict _» '
-"".‘t\.,
PR ‘R % swer
! ac

Loss

Can use as approximate solver!!

These cached solutions are the feasible set S
(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, [JCAI2021]

Results

Caching scheme compatible with all methods that call a
blackbox solver (call the cache instead, 90% of time)

1200

100

Test Regret

1]
=
(=

GO0

Leceld — €l
L-El-lc]

W vio-siage

¥ Lugpic)

Blackbox-caching

dae SPO-caching w SFG-E;PTL

Lugapdc —)

g Blackbox

|:.

1 2 3
Per Epoch Training Time(sec.)

(a) Knapsack-120

4

S0

450640

A0O0D

Test Regret
i
g

23000

20D

000D

200000
oy Model
Y — —e— Blackbox
} § -
w LiaplS) E —=— Blackbox-caching
o | 000 \
E 4+
H i
IE.' SO000 | \l_._
._-_--—u_.
16 22 500 1000
Training Time (sec.)
Lucelf — €}
: el
Two-stage
3Ei@55-ﬁiwn1gg & SPO+ m Blackbox
| LaplS— ¢} , .
| 10 20 3 A0 54

Per Epoch Training Time(sec.)

(b) Energy-3

Implementation in gradient descent loop

Standard: with Listwise ranking:

Algorithm 1: Stochastic gradient descent Algorithm 3: Stochastic gradient descent with KL on solutions

Input : training data D = {X, y}/L,, learning rate ~ Input : training data D = {X, y}!" |, architecture g, learning rate ~,
initialize # (neural network weights)
for epochs do
for batches do

sample batch (X,y) ~D

1 sample rate r
2

3

4

5 7« g(z,0) (forward pass: compute predictions)

6

7

8

9

1 initialize ¢ {peural network weights of gl
ZIH:J]H +— {solver(y) | (X,y) € D} (initialize with true solutions)
for epochs do

4]

Compute loss L(y,) and gradient %"5 4 for batches do) .
Update 8 = 8 —~ %‘?} through backpropagation (backward pass) d 'Liﬂl“ph']m“_:h ILX) ~D o .
o 6 i+ gl X, 8 (forward pass: compute predictions)
end T if random() < r then
8 | sols + sols U solver(y)}
9 end
10 Compute loss L = KL{distr(y, sols), distr{q, sols)) and grad. %‘I.r]-
11 Update & = ## — 4 % through backpropagation (backward pass)
12 end

13 end

Decision-focused learning

Demo with CPMpy (older method)

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/predict_plus_optimize.ipynb

41

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb

This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Debugging a model

Solver says UNSAT, what now?
— compute Minimal Unsatisfiable Subset (MUS)

def mus({constraints):
m = Model{constraints)
assert ~m.solve(), "MUS: model must be UNSAT"

core = m.get core() # or all constraints
i=20
while i < len{core}:
subcore = core[:1] + core[i+l:] # check if all but 1 makes core SAT

if Model(subcore).solve():
i+=1 # removing it makes it SAT, must keep
else:
core = subcore # overwrite core, so coref[i] is next one

return core

(faster if the solver supports unsat core extraction
and assumptions)

What if a model is SAT?

* User may not understand all derivations
* Or wants to learn about it

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)

* Parse puzzles and translate into CSP

* Solve CSP automatically

* Explain in a human-understandable way how to solve this puzzle

Explanation steps ;|

Let E’ &|S’|=>Mlbe one explanation step.

E’ = a subset of previously derived facts E

S’|= a minimal subset of constraints S such thatE’ & S’ => n

i = a newly derived fact

How? MUS(~n & E & S) is a valid explanation step

The best/easiest explanation step...

Let f(E, S, n) be a cost-function that quantifies how good (e.g. easy to
understand) an explanation step is.

Simple MUS-based algo:
X best = None
For n in optimal propagate (constraints):
X = MUS(~n & E & S)
If £(X) < £(X best):
X best = X

return X best

But MUS gives no guarantees on quality, only subset minimal

Optimal unsatisfiable subsets

O(C)US: use an implicit hitting set algorithm (like MaxHS)

Algorithm 4: ocus(T, f,p)

1 H 0

2 while (rue do

3 | &+ COST-OPTIMAL-HITTINGSET(H,f,p) —— MIP solver

) If =SAT(S) t hen SAT/CP solver

5 | return &

6 end 7

7 S + GROW(S, T) Big efficiency gains
g H o H {T \ S} If incremental...

9 end

[E. Gamba, B. Bogaerts, T. Guns, Efficiently Explaining CSPs with Unsatisfiable Subset Optimization, [JCAI 2021]

Step-wise explanations

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/explain_stepwise_csp.ipynb

48

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb

This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Design

Design principle:

Aim to be a thin layer on top of solver API

Central concept: CPMpy expression

CPMpy
(user code)

creates

expressions/

No rewriting!

Like a parser

Design

Hardest part

transformations/

solvers/

Only 1-to-1
mapping of
supported
expressions

Transformations in a nutshell

% solvers/ f
 Only 1-to-1
| mapping of !
' supported
| expressions

transformations/

Transformations are functions

* Flat Normal Form:
* Removes nested expressions (except reification)
* All subsequent transformations can assume input is ‘normalized’

* All transformations are pure functions:
* Can call them in any order, and indep. of solver objects
* State can be passed as an argument, but not required
=> they are incremental

* Great for debugging too

Solvers

We only interface to Python APIs
(unfortunately, no Common CP solver API : (

Key principle: solver can implement any subset of expressions!

Solvers can also choose to:

Support assumptions or not —

* Be incremental or not S

- minizinc
° EXpOSG own solver parameters -gurSobi
- pySDD

Near future: ExactSolver, Z3
Wishlist: Mistral2, Geas,

—Gecode

This talk

0. Data/Visualisations

1. Integrating CP with ML predictions
2. Integrating CP with ML /earning

3. CP Explanations with implicit hitting sets

4. How does CPMpy enable this?

https://github.com/CPMpy/cpmpy

CHAT-Opt: o
Conversational Human-Aware Technology for Optimisation

[Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

ue

u®

“““““
e

e

“““““

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html ‘\,\mng 903 --------

sun®

an®
)
tttt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 56
	Slide 57
	Slide 58

