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Constraint solving

“Solving combinatorial optimisation problems”

 Vehicle Routing

 Scheduling

 Packing

 Other combinatorial problems

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/
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Example: room scheduling

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
room_assignment.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb


  4

Example: room scheduling (backup slide)



  5

   Model          +          Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert  
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   Model          +          Solve

Domain experts
Stakeholders

Current combinatorial opt. practice, problem

Rigid and static

Opt. expert  
    

Incomplete information
Ad-hoc modifications
Changing preferences
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Vision

 Learning implicit user preferences
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Vision

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction



  

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html Hiring post-docs!



  

Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver
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This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



  

Perception-based constraint solving

What if part of the input is in an image?

Pedagogical example: Visual Sudoku

 Every image represents a valid sudoku
 Explicitly know: CP constraints
 Need to predict: image labels

=> test limits of reasoning on learning
[Mulamba, Mandi, Canoy, Guns, CPAIOR20]



  

Perception data and constraint solving

Other application settings:

 Document analysis

 Paper-based configuration problems (tax forms)

 Object-detection based reasoning

 Visual relationship detection

 ...



  

Perception-based constraint solving

Visual sudoku (naïve)

Pre-trained neural network Solving



  

Perception-based constraint solving

Pre-trained neural network Solving

What is going on?

 Each cell predicts the maximum likelihood value:

 This is a multi-output problem (one for each given cell):
together this is the ‘maximum likelihood’ interpretation

 If                      = False: no solution, interpretation is wrong...

What about the next most likely interpretation?



  

Perception-based constraint solving

What about the next most likely interpretation?

 Treat prediction as joint inference problem:

 This is the constrained ‘maximum likelihood’ interpretation

         => Structured output prediction

              Used e.g. in NLP: [Punyakanok, COLING04]

Pre-trained neural network Solving



  

Perception-based constraint solving
X

ij

Pre-trained neural network

Can we use a constraint solver for that?

 Log-likelihood trick:

       constant
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Visual sudoku

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/visual_sudoku.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb


  

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network



  

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this
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   Model          +          Solve

Research trend

Can we learn
it instead?

1) learn the
    constraints

2) learn the
    objective
    function

   3) learn to solve (faster)



  

Learn the objective function

                          
 

Prediction + Optimisation (regression of weights)

Other examples:

 Optimize steel plant production waste,  by predicting steel defects

 Optimize money transport,  by predicting value of coins at clients

 ...

   Predict: hourly energy prices     +         Optimize: energy- 
                                                                      aware scheduling

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10



  

prediction-focussed regression

Pre-trained neural network



  

MSE loss not the best proxy for task loss....

Why?
 MSE = average of individual errors of the vector
 Joint inference = joint error

→ some errors worse than others!

Vector of predictions

Joint inference: trades off
the individual predictions

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10



  

features true cost vector

predicted cost vectornetwork params

Challenges:
- no explicit gradient
- V is implicit, exponential size
- argmin f may be NP-hard

Which errors worse?

 is combinatorial, need to solve to know

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



  

Learning approaches (gradient descent)

 Loss

Predict
Solve

Backpropagate

Answer

Key challenges:

1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch



  

Related work for discrete optimisation

 Differentiating KKT of a relaxed problem [Wilder, B., Dilkina, 
B., & Tambe, M. (2019, July)., Ferber, A., Wilder, B., Dilkina, B., & Tambe, 
M. (2020, April)]

 Differentiating HSD of a relaxed problem [Mandi, J., & Guns, 
T. (2020)]

 Subgradient of a surrogate loss [Elmachtoub, A. N., & Grigas, 
P. (2022), Mulamba, M. & Mandi, J. & Diligenti, M. & Lombardi, M. & 
Bucarey, V. & Guns, T.]

 Differentiation by perturbation [Pogančić, Marin Vlastelica, et al. 
(2020), Niepert, M., Minervini, P., & Franceschi, L. (2021)]



  

Decision-focused learning

Suitable loss function?

Key observation: 
“The objective function induces a ranking over feasible solutions”

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Obj with true costs Obj with predicted

Sol 1 [a,c,b,d,a] 12 (rank: 1) 14 (rank: 3)

Sol 2 [a,b,c,d,a] 15 (rank: 2) 10 (rank: 1)

Sol 3 [a,c,d,b,a] 16 (rank: 3) 11 (rank: 2)

Sol 4 [a,d,b,c,a] 23 (rank: 4) 16 (rank: 4)

Sol 5 [a,d,c,b,a] 28 (rank: 5) 18 (rank: 5)



  

Decision-focussed learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible 
solutions”

=> We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]



  

Listwise Learning 2 Rank for DFL

We obtain 2 distributions (one for true costs, one for predicted costs)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Discrete exponential distribution
in solution space



  

Results



  

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

 Loss

Predict
Solve

Backpropagate

Answer



  

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

Can use cached solutions as approximate solver!!

These cached solutions are the feasible set S

(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, IJCAI2021]

 Loss

Predict
Solve

Backpropagate

Answer

Use
cache



  

Results

Caching scheme compatible with all methods that call a 
blackbox solver (call the cache instead, 90% of time)



  

Implementation in gradient descent loop

Standard: with Listwise ranking:
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Decision-focused learning

Demo with CPMpy (older method)

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/predict_plus_optimize.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb


  

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



  

Debugging a model

Solver says UNSAT, what now?

→ compute Minimal Unsatisfiable Subset (MUS)

(faster if the solver supports unsat core extraction
and assumptions)



  

What if a model is SAT?

 User may not understand all derivations
 Or wants to learn about it

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)
 Parse puzzles and translate into CSP
 Solve CSP automatically
 Explain in a human-understandable way how to solve this puzzle



  

Explanation steps

Let      & S’ =>    be one explanation step.

    = a subset of previously derived facts E

S’ = a minimal subset of constraints S such that E’ & S’ => n

    = a newly derived fact

How? MUS(~n & E & S) is a valid explanation step

2

2

2

8
6

n

n

E’

E’



  

The best/easiest explanation step...

Let f(E, S, n) be a cost-function that quantifies how good (e.g. easy to 
understand) an explanation step is.

Simple MUS-based algo:
X_best = None

For n in optimal_propagate(constraints):

    X = MUS(~n & E & S)

    If f(X) < f(X_best):

        X_best = X

return X_best

But MUS gives no guarantees on quality, only subset minimal



  

Optimal unsatisfiable subsets

O(C)US: use an implicit hitting set algorithm (like MaxHS)

MIP solver

SAT/CP solver

Big efficiency gains
If incremental...

[E. Gamba, B. Bogaerts, T. Guns, Efficiently Explaining CSPs with Unsatisfiable Subset Optimization, IJCAI 2021]
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Step-wise explanations

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/explain_stepwise_csp.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb
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1. Integrating CP with ML predictions
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3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



  

Design

Design principle:

        Aim to be a thin layer on top of solver API

        Central concept: CPMpy expression



  

Design

No rewriting!

Like a parser

CPMpy
(user code)

Model
 constraints:

  expression tree 
 objective:

  expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

expressions/

solvers/

Only 1-to-1
mapping of
supported
expressions

Hardest part

transformations/



  

Transformations in a nutshell

Flat
Normal 
Form

Solver Interface

CPM_ortools

CPM_gurobi

CPM_pysat

CPM_z3

CPM_pySDD

CPM_minizinc

solvers/

Only 1-to-1
mapping of
supported
expressions

transformations/

decompose()

to_cnf()

reify_rw()

comparisons_rw() 

linearize()



  

 Flat Normal Form:
 Removes nested expressions (except reification)
 All subsequent transformations can assume input is ‘normalized’

 All transformations are pure functions:
 Can call them in any order, and indep. of solver objects
 State can be passed as an argument, but not required

=> they are incremental

 Great for debugging too

Transformations are functions



  

Solvers

We only interface to Python APIs
(unfortunately, no Common CP solver API : (

Key principle: solver can implement any subset of expressions!

Solvers can also choose to:
 Support assumptions or not
 Be incremental or not
 Expose own solver parameters

Currently:
- ortools
- pysat
- minizinc
- gurobi
- pySDD

Near future: ExactSolver, Z3
Wishlist: Mistral2, Geas, 
Gecode



  

This talk

0. Data/Visualisations

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

4. How does CPMpy enable this?

https://github.com/CPMpy/cpmpy



  

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html Hiring post-docs!
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