

Learning and Reasoning with
 Constraint Solving

Prof. Tias Guns
<tias.guns@kuleuven.be>

 @TiasGuns

Joint work with team members:
- Rocs Canoy
- Jayanta Mandi
- Maxime Mulamba
- Victor Bucarey Lopez
- Emilio Gamba
- Ignace Bleukx

And external colaborators:
- Michelangelo Diligenti (Sienna Uni, It)
- Michele Lombardi (Bologna, It)
- Bart Bogaerts (VUB, Be)

mailto:tias.guns@kuleuven.be

 2

Constraint solving

“Solving combinatorial optimisation problems”

 Vehicle Routing

 Scheduling

 Packing

 Other combinatorial problems

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/

 3

Example: room scheduling

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
room_assignment.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb

 4

Example: room scheduling (backup slide)

 5

 Model + Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert

 6

 Model + Solve

Domain experts
Stakeholders

Current combinatorial opt. practice, problem

Rigid and static

Opt. expert

Incomplete information
Ad-hoc modifications
Changing preferences

Vision

Vision

 Learning implicit user preferences

 Learning from the environment

Vision

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

Vision

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html Hiring post-docs!

Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Perception-based constraint solving

What if part of the input is in an image?

Pedagogical example: Visual Sudoku

 Every image represents a valid sudoku
 Explicitly know: CP constraints
 Need to predict: image labels

=> test limits of reasoning on learning
[Mulamba, Mandi, Canoy, Guns, CPAIOR20]

Perception data and constraint solving

Other application settings:

 Document analysis

 Paper-based configuration problems (tax forms)

 Object-detection based reasoning

 Visual relationship detection

 ...

Perception-based constraint solving

Visual sudoku (naïve)

Pre-trained neural network Solving

Perception-based constraint solving

Pre-trained neural network Solving

What is going on?

 Each cell predicts the maximum likelihood value:

 This is a multi-output problem (one for each given cell):
together this is the ‘maximum likelihood’ interpretation

 If = False: no solution, interpretation is wrong...

What about the next most likely interpretation?

Perception-based constraint solving

What about the next most likely interpretation?

 Treat prediction as joint inference problem:

 This is the constrained ‘maximum likelihood’ interpretation

 => Structured output prediction

 Used e.g. in NLP: [Punyakanok, COLING04]

Pre-trained neural network Solving

Perception-based constraint solving
X

ij

Pre-trained neural network

Can we use a constraint solver for that?

 Log-likelihood trick:

 constant

 21

Visual sudoku

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/visual_sudoku.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

 25

 Model + Solve

Research trend

Can we learn
it instead?

1) learn the
 constraints

2) learn the
 objective
 function

 3) learn to solve (faster)

Learn the objective function

Prediction + Optimisation (regression of weights)

Other examples:

 Optimize steel plant production waste, by predicting steel defects

 Optimize money transport, by predicting value of coins at clients

 ...

 Predict: hourly energy prices + Optimize: energy-
 aware scheduling

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10

prediction-focussed regression

Pre-trained neural network

MSE loss not the best proxy for task loss....

Why?
 MSE = average of individual errors of the vector
 Joint inference = joint error

→ some errors worse than others!

Vector of predictions

Joint inference: trades off
the individual predictions

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10

features true cost vector

predicted cost vectornetwork params

Challenges:
- no explicit gradient
- V is implicit, exponential size
- argmin f may be NP-hard

Which errors worse?

 is combinatorial, need to solve to know

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Learning approaches (gradient descent)

 Loss

Predict
Solve

Backpropagate

Answer

Key challenges:

1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch

Related work for discrete optimisation

 Differentiating KKT of a relaxed problem [Wilder, B., Dilkina,
B., & Tambe, M. (2019, July)., Ferber, A., Wilder, B., Dilkina, B., & Tambe,
M. (2020, April)]

 Differentiating HSD of a relaxed problem [Mandi, J., & Guns,
T. (2020)]

 Subgradient of a surrogate loss [Elmachtoub, A. N., & Grigas,
P. (2022), Mulamba, M. & Mandi, J. & Diligenti, M. & Lombardi, M. &
Bucarey, V. & Guns, T.]

 Differentiation by perturbation [Pogančić, Marin Vlastelica, et al.
(2020), Niepert, M., Minervini, P., & Franceschi, L. (2021)]

Decision-focused learning

Suitable loss function?

Key observation:
“The objective function induces a ranking over feasible solutions”

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Obj with true costs Obj with predicted

Sol 1 [a,c,b,d,a] 12 (rank: 1) 14 (rank: 3)

Sol 2 [a,b,c,d,a] 15 (rank: 2) 10 (rank: 1)

Sol 3 [a,c,d,b,a] 16 (rank: 3) 11 (rank: 2)

Sol 4 [a,d,b,c,a] 23 (rank: 4) 16 (rank: 4)

Sol 5 [a,d,c,b,a] 28 (rank: 5) 18 (rank: 5)

Decision-focussed learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible
solutions”

=> We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Listwise Learning 2 Rank for DFL

We obtain 2 distributions (one for true costs, one for predicted costs)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Discrete exponential distribution
in solution space

Results

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

 Loss

Predict
Solve

Backpropagate

Answer

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

Can use cached solutions as approximate solver!!

These cached solutions are the feasible set S

(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, IJCAI2021]

 Loss

Predict
Solve

Backpropagate

Answer

Use
cache

Results

Caching scheme compatible with all methods that call a
blackbox solver (call the cache instead, 90% of time)

Implementation in gradient descent loop

Standard: with Listwise ranking:

 41

Decision-focused learning

Demo with CPMpy (older method)

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/predict_plus_optimize.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/predict_plus_optimize.ipynb

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Debugging a model

Solver says UNSAT, what now?

→ compute Minimal Unsatisfiable Subset (MUS)

(faster if the solver supports unsat core extraction
and assumptions)

What if a model is SAT?

 User may not understand all derivations
 Or wants to learn about it

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)
 Parse puzzles and translate into CSP
 Solve CSP automatically
 Explain in a human-understandable way how to solve this puzzle

Explanation steps

Let & S’ => be one explanation step.

 = a subset of previously derived facts E

S’ = a minimal subset of constraints S such that E’ & S’ => n

 = a newly derived fact

How? MUS(~n & E & S) is a valid explanation step

2

2

2

8
6

n

n

E’

E’

The best/easiest explanation step...

Let f(E, S, n) be a cost-function that quantifies how good (e.g. easy to
understand) an explanation step is.

Simple MUS-based algo:
X_best = None

For n in optimal_propagate(constraints):

 X = MUS(~n & E & S)

 If f(X) < f(X_best):

 X_best = X

return X_best

But MUS gives no guarantees on quality, only subset minimal

Optimal unsatisfiable subsets

O(C)US: use an implicit hitting set algorithm (like MaxHS)

MIP solver

SAT/CP solver

Big efficiency gains
If incremental...

[E. Gamba, B. Bogaerts, T. Guns, Efficiently Explaining CSPs with Unsatisfiable Subset Optimization, IJCAI 2021]

 48

Step-wise explanations

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/explain_stepwise_csp.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/explain_stepwise_csp.ipynb

This talk

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this

Design

Design principle:

 Aim to be a thin layer on top of solver API

 Central concept: CPMpy expression

Design

No rewriting!

Like a parser

CPMpy
(user code)

Model
 constraints:

 expression tree
 objective:

 expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

expressions/

solvers/

Only 1-to-1
mapping of
supported
expressions

Hardest part

transformations/

Transformations in a nutshell

Flat
Normal
Form

Solver Interface

CPM_ortools

CPM_gurobi

CPM_pysat

CPM_z3

CPM_pySDD

CPM_minizinc

solvers/

Only 1-to-1
mapping of
supported
expressions

transformations/

decompose()

to_cnf()

reify_rw()

comparisons_rw()

linearize()

 Flat Normal Form:
 Removes nested expressions (except reification)
 All subsequent transformations can assume input is ‘normalized’

 All transformations are pure functions:
 Can call them in any order, and indep. of solver objects
 State can be passed as an argument, but not required

=> they are incremental

 Great for debugging too

Transformations are functions

Solvers

We only interface to Python APIs
(unfortunately, no Common CP solver API : (

Key principle: solver can implement any subset of expressions!

Solvers can also choose to:
 Support assumptions or not
 Be incremental or not
 Expose own solver parameters

Currently:
- ortools
- pysat
- minizinc
- gurobi
- pySDD

Near future: ExactSolver, Z3
Wishlist: Mistral2, Geas,
Gecode

This talk

0. Data/Visualisations

1. Integrating CP with ML predictions

2. Integrating CP with ML learning

3. CP Explanations with implicit hitting sets

4. How does CPMpy enable this?

https://github.com/CPMpy/cpmpy

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html Hiring post-docs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 56
	Slide 57
	Slide 58

