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Constraint solving

“Solving combinatorial optimisation problems”

seconds)

* Vehicle Routing

* Scheduling
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* Packing

*  Other combinatorial problems |
AT SBs 4 2

[Solved and visualized with the constraint solving library]


https://cpmpy.readthedocs.io/

Example: room scheduling

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
room_assignment.ipynb


https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/room_assignment.ipynb

Example: room scheduling (backup slide)

def model rooms(df, max rooms, verbose=True):
n requests = len(df)

# All requests must be assigned to one out of the rooms (same room during entire period).
requestvars = intvar(®@, max rooms-1, shape=(n_requests,))

m = Model()

# Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna(row['room']}):
m += (requestvars[idx] == int(row['room']})

# A room can only serve one request at a time.
# === requests on the same day must be in different rooms
for day in pd.date range(min(df['start']), max(df['end'])):
overlapping = df[(df['start'] == day) & (day < df['end’'])]
if len(overlapping) = 1:
m += AllDifferent(requestvars[overlapping.index])

index
35
ﬁ - -- . i

return (m, requestvars)
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Current combinatorial optimisation practice

Model +
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Current combinatorial opt. practice, problem

Model + Solve

Changing preferences
@ Rigid and static
Opt. expert\
@
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Incomplete information
Ad-hoc maodifications

Domain experts
Stakeholders
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Vision

* Learning implicit user preferences

* Learning from the environment @




Vision

* Learning implicit user preferences
* Learning from the environment

* Explaining constraint solving




Vision

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction




CHAT-Opt:
Conversational Human-Aware Technology for Optimisation
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European Research Council
| Established by the European Commission o‘\

[ Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction
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Conversational Human-Aware Technology for Optimisation @

What would the ideal CP system be?

* Easy integration with Machine Learning libraries
=> Python and numpy arrays

* Efficient repeated solving
=> |ncremental

* Use CP/SAT/MIP or any combination

=> solver independent and multi-solver
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Conversational Human-Aware Technology for Optimisation @A"\

What would the ideal CP system be?

* Easy integration with Machi
=> Python and numpy arrays

* Efficient repeated solving
=> |[ncremental

* Use CP/SAT/MIP or any co

=> solver independent and mul

https://github.com/CPMpy/cpmpy
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readthedocs.io

# » CPMpy: Constraint Programming and Modeling in Python

CPMpy: Constraint Programming and Mod
Python

CPMpy is a Constraint Programming and Modeling library in Python, based on nu
solver access.

Constraint Programming is a methodology for solving combinatorial optimisation
assignment problems or covering, packing and scheduling problems. Problems th:
searching over discrete decision variables.

CPMpy allows to model search problems in a high-level manner, by defining deci:
constraints and an objective over them (similar to MiniZinc and Essence'). You car
functions and indexing while doing so. This model is then automatically translate
art solver like or-tools, which then compute the optimal answer.

Source code and bug reports at https:/github.com/CPMpy/cpmpy

Getting started:

« Installation instructions

etting started with Constraint Programming and CPMpy
+ Quickstart sudoku notebook

+ More examples

User Documentation:


https://github.com/CPMpy/cpmpy

This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



Perception-based constraint solving
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What if part of the input is in an image?

Pedagogical example: Visual Sudoku
* Every image represents a valid sudoku
* Explicitly know: CP constraints

* Need to predict: image labels

=> test limits of reasoning on learning



Perception data and Constralnt solvmg

Other application settings:

* Document analysis

* Paper-based configuration problem;(taf(“ forms)
* Object-detection based reasoning

* Visual relationship detection




Perception-based constraint solving

Visual sudoku (naive)
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Pre-trained neural network Solving
accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01




Perception-based constraint solving
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What is going on?

Each cell predicts the maximum likelihood value:
.@ij — arg max P(y?;j = ]‘C|X@j)

This is a multi-output problem (one for each given cell):
together this is the ‘maximum likelihood’ interpretation

If sudoku(7) = False: no solution, interpretation is wrong...

What about the next most likely interpretation?
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Pre-trained neural network Solving
What about the next most likely interpretation?
. Treat prediction as joint inference problem:
Y = arg max I | P(y;; = k| X;;) s.t. sudoku(y)
1]
. This is the constrained ‘maximum likelihood’ interpretation

=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]




Perception-based constraint solving
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Can we use a constraint solver for that?

y = arg maXH P(y;; = k| X;;) s.t. sudoku(y)

* Log-likelihood trick:

min Z Z —log(Py(yi; = k| Xij)) * 1[si; = k] s.t. sudoku(g})
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Visual sudoku

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/visual _sudoku.ipynb

21


https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/visual_sudoku.ipynb

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities
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accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybrid1l 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]
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This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



Research trend

Model
A
1) learn the 2) learn the
constraints objective
function

Can we learn

it instead?

+

Solve

%

3) learn to solve (faster)

25



Learn the objective function

Prediction + Optimisation (regression of weights)

Historic data: gt e G
e || (R
VO] VIIIIII1D S hmyan
2 e 2 Ll ) [E——— |
| V 212|222 ?]2]?]?]?
learm f —— aPPy 1(a)
Predict: hourly energy prices + Optimize: energy-

aware scheduling

Other examples:
* Optimize steel plant production waste, by predicting steel defects

* Optimize money transport, by predicting value of coins at clients



prediction-focussed regression

Implementation

i e [ PregitPrice:
' | \\\ o B g,
v N OB
Predictiv L_"rl’\) I Fiy
Model i
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T '
Features | compute loss !
]

backpropagate

Training
Pre-trained neural network



MSE loss not the best proxy for task loss....

Historic data:
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| f____—applyf(a) Vector of predictions
earn

Why?

MSE = average of individual errors of the vector
Joint inference = joint error

— some errors worse than others!

MSE

Epoch

Joint inference: trades off
the individual predictions

Regret



Which errors worse?

IS combinatorial, need to solve to know

features true cost vector

argmin E [regret (m(z;;w), ¢;)]
wt

network_params
) ) . Challenges:
TEGREUG, E)'= T |1y6) — 0" ] - no expgljicit gradient
with v* = argminyev f (v, c) - V is implicit, exponential size
0 = argmingev f (v, ¢) - argmin f may be NP-hard

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Learning approaches (gradient descent)

Solve

v
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: ckpropagate

Loss

Key challenges:
1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch



Related work for discrete optimisation

Differentiating KKT of a relaxed problem

Differentiating HSD of a relaxed problem

Subgradient of a surrogate loss

Differentiation by perturbation



Decision-focused learning

Suitable loss function?

Key observation:

“The objective function induces a ranking over feasible solutions”

Sol 1 [a,c,b,d,a]
Sol 2 [a,b,c,d,a]
Sol 3 [a,c,d,b,a]
Sol 4 [a,d,b,c,a]
Sol 5 [a,d,c,b,a]

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]
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Decision-focussed learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible
solutions”

I 1[?('b": c) p(v; €)
I I I . I I I N I
Vpest 4

=> \We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]



Listwise Learning 2 Rank for DFL

Vhest

p(ic) p(;0)
Discrete exponential distribution
in solution space I
1. &= |1].

1
p(v;c) = EEXP(—)((U; c)/t) veV
0 vev
True Distribution Predicted Distribution

We obtain 2 distributions (one for true costs, one for predicted costs)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi. Mulamba. Bucarev. Guns. Decision-focused learnina: throuagh the lens of learnina to rank. ICML2022]
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Decision-focused learning with L2R

G

24 Key bottleneck: repeatedly calling the solver

Solve

[
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=N i ‘N Answer
: 3ckpropagate

Loss




Decision-focused learning with L2R

2" Key bottleneck: repeatedly calling the solver

Solve

[
»

AT predict _» '
-"".‘t\.,
PR ‘R % swer
! ac

Loss

Can use as approximate solver!!

These cached solutions are the feasible set S
(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, [JCAI2021]



Results

Caching scheme compatible with all methods that call a
blackbox solver (call the cache instead, 90% of time)
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Implementation in gradient descent loop

Standard: with Listwise ranking:

Algorithm 1: Stochastic gradient descent Algorithm 3: Stochastic gradient descent with KL on solutions

Input : training data D = {X, y}/L,, learning rate ~ Input : training data D = {X, y}!" |, architecture g, learning rate ~,
initialize #  (neural network weights)
for epochs do
for batches do

sample batch (X,y) ~D

1 sample rate r
2

3

4

5 7« g(z,0) (forward pass: compute predictions)

6

7

8

9

1 initialize ¢ {peural network weights of gl
ZIH:J]H +— {solver(y) | (X,y) € D} (initialize with true solutions)
for epochs do

4]

Compute loss L(y, ) and gradient %"5 4 for batches do ) .
Update 8 = 8 —~ %‘?} through backpropagation (backward pass) d 'Liﬂl“ph' ]m“_:h ILX ) ~D o .
o 6 i+ gl X, 8 (forward pass: compute predictions)
end T if random() < r then
8 | sols + sols U solver(y)}
9 end
10 Compute loss L = KL{distr(y, sols), distr{q, sols)) and grad. %‘I.r]-
11 Update & = ## — 4 % through backpropagation  (backward pass)
12 end

13 end




Decision-focused learning

Demo with CPMpy (older method)

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/predict_plus_optimize.ipynb

41
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This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



Debugging a model

Solver says UNSAT, what now?
— compute Minimal Unsatisfiable Subset (MUS)

def mus({constraints):
m = Model{constraints)
assert ~m.solve(), "MUS: model must be UNSAT"

core = m.get core() # or all constraints
i=20
while i < len{core}:
subcore = core[:1] + core[i+l:] # check if all but 1 makes core SAT

if Model(subcore).solve():
i+=1 # removing it makes it SAT, must keep
else:
core = subcore # overwrite core, so coref[i] is next one

return core

(faster if the solver supports unsat core extraction
and assumptions)



What if a model is SAT?

* User may not understand all derivations
* Or wants to learn about it

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)

* Parse puzzles and translate into CSP

* Solve CSP automatically

* Explain in a human-understandable way how to solve this puzzle



Explanation steps ;|

Let E’ &|S’|=>Mlbe one explanation step.

E’ = a subset of previously derived facts E

S’|= a minimal subset of constraints S such thatE’ & S’ => n

i = a newly derived fact

How? MUS(~n & E & S) is a valid explanation step



The best/easiest explanation step...

Let f(E, S, n) be a cost-function that quantifies how good (e.g. easy to
understand) an explanation step is.

Simple MUS-based algo:
X best = None
For n in optimal propagate (constraints):
X = MUS(~n & E & S)
If £(X) < £(X best):
X best = X

return X best

But MUS gives no guarantees on quality, only subset minimal



Optimal unsatisfiable subsets

O(C)US: use an implicit hitting set algorithm (like MaxHS)

Algorithm 4: ocus(T, f,p)

1 H 0

2 while (rue do

3 | &+ COST-OPTIMAL-HITTINGSET(H,f,p) —— MIP solver

) If =SAT(S) t hen SAT/CP solver

5 | return &

6 end 7

7 S + GROW(S, T) Big efficiency gains
g H o H {T \ S} If incremental...

9 end

[E. Gamba, B. Bogaerts, T. Guns, Efficiently Explaining CSPs with Unsatisfiable Subset Optimization, [JCAI 2021]



Step-wise explanations

Demo with CPMpy

https://github.com/CPMpy/cpmpy/blob/master/examples/
advanced/explain_stepwise_csp.ipynb

48
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This talk

1. Integrating CP with ML predictions
2. Integrating CP with ML learning
3. CP Explanations with implicit hitting sets

+ High-level overview of how CPMpy enables this



Design

Design principle:

Aim to be a thin layer on top of solver API

Central concept: CPMpy expression



CPMpy
(user code)

creates

expressions/

No rewriting!

Like a parser

Design

Hardest part

transformations/

solvers/

Only 1-to-1
mapping of
supported
expressions



Transformations in a nutshell

% solvers/ f
 Only 1-to-1
| mapping of !
' supported
| expressions

transformations/



Transformations are functions

* Flat Normal Form:
* Removes nested expressions (except reification)
* All subsequent transformations can assume input is ‘normalized’

* All transformations are pure functions:
* Can call them in any order, and indep. of solver objects
* State can be passed as an argument, but not required
=> they are incremental

* Great for debugging too



Solvers

We only interface to Python APIs
(unfortunately, no Common CP solver API : (

Key principle: solver can implement any subset of expressions!

Solvers can also choose to:

Support assumptions or not —

*  Be incremental or not S

- minizinc
° EXpOSG own solver parameters -gurSobi
- pySDD

Near future: ExactSolver, Z3
Wishlist: Mistral2, Geas,

—Gecode



This talk

0. Data/Visualisations

1. Integrating CP with ML predictions
2. Integrating CP with ML /earning

3. CP Explanations with implicit hitting sets

4. How does CPMpy enable this?

https://github.com/CPMpy/cpmpy




CHAT-Opt: o
Conversational Human-Aware Technology for Optimisation

[ Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction
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