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First,

General research theme in my lab...



Combinatorial optimisation

“Solving constrained optimisation problems”

* Vehicle Routing

* Scheduling

* Configuration

* Graph problems



Current combinatorial optimisation practice

Model + Solve
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Current combinatorial opt. practice, problem
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Research trend

Model + Solve

1) learn the
constraints 2) learn the
objective 3) learn to solve
function

Can we learn

it instead?




Prediction + constraint solving
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Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG!
r % B WO g KNOWLEDGE 1IN
1S0L AT ow

* Part explicit knowledge:
In a formal language

* Part implicit knowledge:
learned from data

- tacit knowledge (user preferences, social conventions)
- complex environment (demand, prices, defects)

- perception (vision, natural language, audio)



CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

[Towards co-creation of combinatorial optimisation solutionsj

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction



https://people.cs.kuleuven.be/~tias.guns/chat-opt.html

Predict + Optimize for combinatorial opt.

aka decision-focussed learning



Complex environment (demand, prices)

Prediction + Optimisation aka decision-focussed learning:

Historic Energy Prices
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Machine Scheduling to
nimize Energy Consumption

* Optimize task scheduling's energy cost, by predicting energy prices

* Optimize steel plant production waste, by predicting steel defects

* Optimize money transport, by predicting amount of coins at clients



Prediction + Optimisation, two-step

Implementation
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Can we do the (deep) learning better?

MSE loss function is not informative enough

.........

......

Epoch

MSE loss not the best proxy for task loss....
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Vector of predictions Joint inference: trades off the individual predictions

Why?

MSE = average of individual errors of the vector
Joint inference = joint error

— some errors worse than others!



Complex environment (demand, prices)

Which errors worse? is combinatorial, need to solve to know

Goal: end-to-end learning with regret as loss

Challenges:
regret(c,c) = f(v,¢) — f (v*, ¢)

- each regret comp. is NP-hard
with v* = argmingev f (v, ¢)

b = argmingey f (v, &) - argmin over exponential nr. of outcomes

- discrete & non-differentiable

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Regret is discrete and non-differentiable

Assumption: m(x,,w) is linear: wTx,, indep. predictions for each var

For a single argmin problem, a single w;= alpha over 4 vars:
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Optimising regret?

Assumption: m(x,,w) is linear: wTx,, indep. predictions for each var

For a single argmin problem, a single w;= alpha over 4 vars:

outcome -+
“T e—e If argmin is Dynamic Program:
T ey (PP can build piece-wise linear function wrt alpha
RIS can optimise w, coordinate descent on alpha
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[E. Demirivic, P. Stuckey, J. Bailey, J. Chan, C. Leckie, K. Ramamohanarao, T. Guns, [JCAI 2020]



Problem formulation

features true cost vector

argmin E [regret (m(x;;w), C; )]
Lt
network_params

Can be seen as a bi-level optimisation problem:

N
1 .
argmin — E vi,e) — f(vi,e
ATgImin 2 f(viye) — f(v],e)

s.t. vl € argmingey f (v,¢;) Vi éHalIneTngeS'

V; € (l‘?“g’rﬂ,’éﬂ@evf (“Uj ?’H(.’L'i; E)) \V’Z - argm|n f |S not un|que
- V is implicit, exponential size
- argmin f may be NP-hard



Bilevel optimisation?
Can be seen as a bi-level optimisation problem:

N
: 1 * .
arggnnN z; f(vise) — f(vf,c)

s.t. vl €largminyey f (v, ¢;) Viel.N

(]

vil€ prgmingev f (v,m(z;;w))  Vie 1.N

Assume f is linear and V is continuous, e.g. argmin f = an LP
Solution not unique:

. pessimistic assumption = argmin f will return 'worst' regret solution
— need to compute all equivalent solutions to find worst, tri-level!

. optimistic assumption = argmin f returns 'best' regret solution
— ML model can 'cheat' by making ambiguous predictions



SPO+ loss

[Elmachtoub & Grigas, 2017 2021]
Defines an upperbound on pessimistic that is convex:

lspo+ (€, ¢) :=maxy,es {¢'w —2¢"w} +2¢"w*(c) — 2*(c).

Most importantly: subgradient (for in gradient-descent learning)
subgradients: 2( v*; —argmin_v f(2m(x,w) -c*) )

True optimal Optimal solution under perturbed
solution predicted cost vector

Key idea is (imho) perturbation of the predictions,
* solve convex combination of real ¢* and predicted c values: solve(2c — c*) = solve(c* + 2(c-c*))
* amplifies error of predictions and avoids abusing equivalent solutions



Differentiable task losses for end-to-end learning:

Black box (subgradient methods):
- SPO+[1]: solve with f(ZC - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions

[1] EImachtoub AN, Grigas P. Smart" predict, then optimize" arxiv 2017; Management Science 2021
[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020



SPO+: a deeper look at the (deep) learning

Standard:

with SPO+:

Algorithm 1: Stochastic gradient descent

Algorithm 2: Stochastic gradient descent with SPO+ subgradient

1
2
3
4
5
6
7
8
9

Input : training data D = { X, y} ;. learning rate

(backward pass)

initialize #  (neural network weights)
for epochs do
for batches do
sample batch (X,y) ~ D
9 + g(z,0) (forward pass: compute predictions)
Compute loss L(y_. y) and gradient %
Update 8 = 0 — ﬂ;% through backpropagation
end
end

1
2
3
4
5
6
7
8
9

10

Input : training data D = {X,y},, architecture g, learning rate ~
initialize #  (neural network weights of g)

for epochs do

for batches do

sample batch (X,y) ~ D

i < g(X,0) (forward pass: compute predictions)
y=y+2(g—1y) // SPO+ trick, convex comb. of y and g
Solve sol = solver(y) // calls external solver

Use subgradient 0L = solver(y) — sol

Update 8 = 6 — ﬂ;% through backpropagation
end

(backward pass)

11 end

we need to solve a comb. problem on line 7 for every training

example

(typically: 10-50 epochs, of 500 to 5000 samples...)



SPO framework

Features _

Can we do the solving better?
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Challenge

To compute subgradient v*(20 — #) must be
solved repeatedly for each training instance
High training time &
computation-expensive

Observe: constraints always the same,

only cost vector ¢ changes,
and we solve it for thousands of ¢ values,
each instance having a different true optimal solution




Can we do the solving better?

Predict R .
Price ¢ MiP To compute subgradient v*(26 — ) must be
solved repeatedly for each training instance
Fealures _ i Predictive —' [ High training time &
Mode computation-expensive
/ : Observe: constraints always the same,
i? P , only cost vector ¢ changes,
backpropagation ! SPO .
| sub-gracient’ and we solve it for thousands of ¢ values,
Training by SPO each instance having a different true optimal solution

Solving MIP = repeatedly solving LP
— Do we need to solve the MIP to optimality? or to a small gap?
—  Can we replace the MIP by the LP relaxation?

Solving LP = repeatedly finding improved basis
—  Can we warm-start from previous basis's?

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Relaxed Oracle

Call a weak but fast and accurate oracle
For MIP, the relaxed oracle is a weak oracle
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Relaxed Oracle helps in reducing train-

ing time without compromising quality

LP relaxations and warmstarts:
* Faster training time = possible to do wider grid search
* Faster training time = possible to scale up to larger problems

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Relaxed Oracle
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. (b) Time (1+ hour for single MIP solution)

Relaxed Oracle helps in reducing train-

ing time without compromising quality

*  SPO-relax with total time budget:

Two-stage Approach SPO-relax
Hard Instances
(200 tasks 2 epochs 4 epochs 6 epochs 8 epochs 2 hour 4 hour 6 hour
on 10 machines)
instance [ 90,769 88,952 86,059 86,464 72,662 74,572 79,990
instance II 128,067 124,450 124,280 123,738 120,800 110,944 114,800
instance III 129,761 128,400 122,956 119,000 108,748 102,203 112,970
instance [V 135,398 132,366 132,167 126,755 109,694 99.657 97,351
instance V 122,310 120,949 122,116 123,443 118,946 116,960 118,460

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



But LP relaxation can be weak?

Solving MIP = repeatedly solving LP
* cutting plane algorithm: solve LP, cut fractional solution
* never cuts integral solutions

— add Gomory and other cuts to the LP to strengthen it
(e.g. solve only root node of MIP, add those cuts)

— tighter relaxation, still LP

[MIPaal: MIP as a layer, A. Ferber, B. Wilder, B. Dilkina, M. Tambe, AAAI2020]



Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):

- SPO+[1]: solve with f(ZC - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions

— White box (implicit differentiation):
- QPTLI3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] EImachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AA/
51 Mandi Guns “Interior Point Solvina for | P-based nrediction+ontimisation ” NeurlPS 2020



Prediction + Optimisation for MIP

SPO's subgradient is an indirect 'black box' method
— If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?

»  Discrete so non-differentiable
Can we compute the gradient of an LP?

»  Linear objective, so 2nd derivative is 0, so not invertible
Can we compute the gradient of a QP?

» yes, through implicit differentiation



Prediction + Optimisation for QP

Implicit differentiation of a QP:

... L p
minimize EZ

e

Qz+q' >

subject to Az =b, Gz <h

Take Lagrangian relaxation:
L(z,v,\) = éZTQZ +q¢7 2+ v (Az —b) + AT (Gz — h)

Then differentiate the KKT conditions
(stationarity, primal feasibility, complementary slackness)

QZ*+Q+ATFJ*+GT)\*=U
Az —b =10
D) (G2 —h) =0,

[B. Amos and Z. Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017]




Prediction + Optimisation for MIP

Can the QP results be used for LPs?
max0lz st A =b, G < h

— make LP a QP by adding quadratic ||v||2 term

max 'z — v||z||5 st. Az =b, Gz <h
(with some hyperparameter gamma)

— can use Amos&Kaolter's OptNet!

in case of submodular maximization, closed form special case!

[Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AAAI, 2020]



Prediction + Optimisation for MIP

But wait... why an arbitrary gamma*||x||2?

— Interior Point solvers have been computing gradients of LPs for years?
mine' z
subjectto Ax = b;
x > 0; some or all z; integer
Lagrangian relaxation, does not restrict x >= 0:

L(z,y:c) = f(e,x)+y' (b— Azx)
Interior point solving: adding a logarithmic barrier

fle,z) :=c'o — )\(Zle ln(’rz))

* twice differentiable

* lambda is automatically decreased during barrier solving
* implicitly enforces x >=0

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



_ Forward Pass) p o\\ing with barrier: Int. Point method

LP Forward Pass
R 1. Solve the Homogeneous

/ :D Self-dual embedding

: 2. Perform a Newton step
Discrete ILP  Relaxed LP | 3. Decrease A

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



_ Forward Pass) p oqying with barrier: Int. Point method

LP Forward Pass
1. Solve the Homogeneous

/ :D Self-dual embedding

2. Perform a Newton step
& & Discrete ILP  Relaxed LP 3. Decrease A

—z. o Compute Task Loss:
cT[x*(¢) - xX*(©)]
Training 1

Data |

LP Backward Pass
1. Differentiate the Homogeneous

Self-dual embedding computed
in the Forward pass

2. Compute and backpropagate
dx*(€)/dé

Update Neural Net

parameters to |

__minimize Task Loss
Backward Pass

.

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



Interior Point Solving for LP-based prediction + optimisation

KKT vs HSD

KKT, log barrier HSD, log barrier
A/ A-cut-off 1071 1073 10710 1071 1073 10710

Regret 14365 14958 21258 10774 14620 21594

Table 1: Differentiating the HSD formulation is more efficient than differ-
entiating the KKT condition

Compariosn with the state of the art

Two-stage QPTL SPO HSD, log barrier
O-layer 1-layer O-layer 1-layer O-layer 1-layer Q-layer 1-layer

745 796 3516 gxmf 3327 3955 2975 1.(5><1QT
(7) (5) (56) (4x107) (485) (300) (620) (1 x 107)

13322 13590 13652 13500 11073 12342 10774 11406
(1458) (2021) (325) (288)  (895) (1335) (1715) (1238)

MSE-loss

Regret

Table 2: Qur approach is able to outperform the state of the art

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



Problem formulation

features true cost vector

a.rgmin E [Teg?"eﬁ (m(l_e w)?a)]
w
network_params

Can be seen as a bi-level optimisation problem:

N
1
argijninﬁ ; f (vi,e) — f (v, e)

s.t. vl € argmingey f (v,¢;) Vi éf;allneTngeS'

vi € argmingey f (v, m(zi;w))  Vi- argmin f is not unique

-V is implicit, exponential size

- argmin f may be NP-hard



Contrastive loss

Gradient over exponential-sized argmin/argmax?

— Contrastive loss: for n >> 1
turn n-ary argmax into n-1 pairwise argmaxs!
(then subsample some)




Contrastive loss

Gradient over exponential-sized argmin/argmax?

— Contrastive loss: for n >> 1
turn n-ary argmax into n-1 pairwise argmaxs!
(then subsample some)

For decision-focussed learning:  v*(¢) = argmin f(v, ¢)

vel
* define exponential distribution over V: p(v/m(w,z)) = %exp ( ~ f('rf;m(w;:rf)))

P (?f lm(w, :1:.,-))

argmax log H H _
“ i viesSpP ("Uﬁ |7?'i‘.-(f.u', Jt))

. contrastive loss for S subset V:

* partition function Z cancels out!!

LNCE = Z Z ( ,m( )) — f(-n‘*._m(w,:r;;))

'i-l'cs



Prediction + Optimisation for MIP and more

All current method use a 'continuous relaxation' to make it non-discrete
and hence (almost) differentiable

Observation: constraints always stay the same, Ll
so the polytope is always the same. ¥

— Can we also use an inner approximation?

Figure 1: Representation of a solution cache (blue points) and the
continuous relaxation (green area) of V.

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, [JCAI 2021]



Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-discrete and
hence (almost) differentiable

Observation: constraints always stay the same,
so the polytope is always the same. b

— Can we also use an inner approximation?

Figure 1: Representation of a solution cache (blue points) and the
continuous relaxation (green area) of V.

Inner approximation = cache of known solutions
— can replace 'argmin()' by ‘'linear pass' over finite nr of solutions! (any blackbox)
— can use this cache as subsample 'S' in contrastive loss!

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]



Prediction + Optimisation for MIP and more

Inner approximation = pool of known solutions

— can replace 'solver()' by 'linear pass' over finite solutions! (SPO+,BB)
— can use this cache as subsample 'S' in contrastive loss!

Main advantage: do not have to call a solver for each training instance!
Can 'grow’ solution cache FAST and GOOD

Test Regret

ning
i w SPCHE:-PTL

LLLLLLLL m Blackbox
b . . -
Per Epoch Training Time(sec.)

(a) Knapsack-120

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]
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Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):

- SPO+[1]: solve with f(2C - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions
- NCE[6]: contrastive loss function
=> all these: inner approximation/solution caching for efficiency gain [6]

White box:
- QPTL[3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AAAI, 2020

[5] Mandi, Guns. “Interior Point Solving for LP-based prediction+optimisation.” NeurlPS, 2020

[6] M. Mulamba, J. Mandi, M. Lombardi, M. Diligenti, V. Bucarey, T. Guns “Contrastive losses and solution caching for predict-and-optimize” IJCAI, 2021 to appear



Key take-aways:

KNOWLEDGE AS AN ICEBERG!

* Explicit knowledge: use solver EXPLiCIT |

OLATION
(lives in books )

* Implicit knowledge: do learning iMPLICIT

* Comb. optimisation inside neural loss becoming actually
feasible
— end-to-end hybrid prediction and optimisation

dig into ML-side and Opt-side equally profoundly



Future Work

Complexity of learned models vs. complexity of CP solving
Scalability vs accuracy trade-off
Interactive preference learning, multi-agent

Other perception data (language, voice, camera)

Wide range of applications (Industry 4.0, transport & more)



CHAT-Opt: :
Conversational Human-Aware Technology for Optimisation

E Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction
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