Predict + Optimize for combinatorial opt.

aka decision-focussed learning

Prof. Tias Guns

@TiasGuns

VRIJE
UNIVERSITEIT
BRUSSEL

Joint work with team members: And external colaborators:

- Jayanta Mandi - Peter Stuckey (Monash Uni, Au)

- Maxime Mulamba - Emir Demirovic (TU Delft, NL)

- Victor Bucarey Lopez - Michelangelo Diligenti (Sienna Uni, It)

- Michele Lombardi (Bologna, It)

mailto:tias.guns@kuleuven.be

First,

General research theme in my lab...

Combinatorial optimisation

“Solving constrained optimisation problems”

* Vehicle Routing

* Scheduling

* Configuration

* Graph problems

Current combinatorial optimisation practice

Model + Solve

i
o expen\/

Domain experts
Stakeholders

Current combinatorial opt. practice, problem

Model + Solve

= B
%/
o expen\/

Domain experts

Stakeholders

Research trend

Model + Solve

1) learn the
constraints 2) learn the
objective 3) learn to solve
function

Can we learn

it instead?

Prediction + constraint solving

KNONLEBGt HS AN ICEBERG Y

KNOWLEDGE IN
1S0L AT ow

* Part explicit knowledge: E
in a formal language Expual %

(lives in books)

* Part implicit knowledge:
learned from data

Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG!
r % B WO g KNOWLEDGE 1IN
1S0L AT ow

* Part explicit knowledge:
In a formal language

* Part implicit knowledge:
learned from data

- tacit knowledge (user preferences, social conventions)
- complex environment (demand, prices, defects)

- perception (vision, natural language, audio)

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

[Towards co-creation of combinatorial optimisation solutionsj

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html

Predict + Optimize for combinatorial opt.

aka decision-focussed learning

Complex environment (demand, prices)

Prediction + Optimisation aka decision-focussed learning:

Historic Energy Prices

o
o, -..;"l _ff b

\

g \/ . i

~

™,

ey

Historic Features

P

redicted
Prices _.

%

m— T —
' I || EE
o

| | | | * discrete optimisation,

* multi-output prediction

L4
~ ’
\

Llel. EEEL R L Bl L Tl Lol e L] L batch (non-sequential)

mi

Machine Scheduling to
nimize Energy Consumption

* Optimize task scheduling's energy cost, by predicting energy prices

* Optimize steel plant production waste, by predicting steel defects

* Optimize money transport, by predicting amount of coins at clients

Prediction + Optimisation, two-step

Implementation

I — \\Predict Price!
NGB

Predictiv L__r‘”\): :

Model -

P

-]

/// o !

1 /

I e 1 :

! " .Y e

Features | compute Iossi
backpropagate

Training
Pre-trained neural network

Can we do the (deep) learning better?

MSE loss function is not informative enough

.........

......

Epoch

MSE loss not the best proxy for task loss....

ﬁegreé

Regret
L1y e i
Historic Energy Prices Predicted ; = -
Ve Prices . — (L —— -
/\/_\/ i g \\““’, \ [| [B
i L] L - [_
. H— Machine Scheduling to

minimize Energy Consumption

Vector of predictions Joint inference: trades off the individual predictions

Why?

MSE = average of individual errors of the vector
Joint inference = joint error

— some errors worse than others!

Complex environment (demand, prices)

Which errors worse? is combinatorial, need to solve to know

Goal: end-to-end learning with regret as loss

Challenges:
regret(c,c) = f(v,¢) — f (v*, ¢)

- each regret comp. is NP-hard
with v* = argmingev f (v, ¢)

b = argmingey f (v, &) - argmin over exponential nr. of outcomes

- discrete & non-differentiable

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Regret is discrete and non-differentiable

Assumption: m(x,,w) is linear: wTx,, indep. predictions for each var

For a single argmin problem, a single w;= alpha over 4 vars:

A
outcome
#7 o—e 21
221 ° :
2071 {P2,P4}
s (P2Ps
14 167 (4,9)
{ 1E23 .
P} 4
10— —
L (2,8)

Optimising regret?

Assumption: m(x,,w) is linear: wTx,, indep. predictions for each var

For a single argmin problem, a single w;= alpha over 4 vars:

outcome -+
“T e—e If argmin is Dynamic Program:
T ey (PP can build piece-wise linear function wrt alpha
RIS can optimise w, coordinate descent on alpha
P}
[T |(2,|8)| [| | | |
Fol Tl
12 3 45 6 7 X

1 23 4 56 7 o

[E. Demirivic, P. Stuckey, J. Bailey, J. Chan, C. Leckie, K. Ramamohanarao, T. Guns, [JCAI 2020]

Problem formulation

features true cost vector

argmin E [regret (m(x;;w), C;)]
Lt
network_params

Can be seen as a bi-level optimisation problem:

N
1 .
argmin — E vi,e) — f(vi,e
ATgImin 2 f(viye) — f(v],e)

s.t. vl € argmingey f (v,¢;) Vi éHalIneTngeS'

V; € (l‘?“g’rﬂ,’éﬂ@evf (“Uj ?’H(.’L'i; E)) \V’Z - argm|n f |S not un|que
- V is implicit, exponential size
- argmin f may be NP-hard

Bilevel optimisation?
Can be seen as a bi-level optimisation problem:

N
: 1 * .
arggnnN z; f(vise) — f(vf,c)

s.t. vl €largminyey f (v, ¢;) Viel.N

(]

vil€ prgmingev f (v,m(z;;w)) Vie 1.N

Assume f is linear and V is continuous, e.g. argmin f = an LP
Solution not unique:

. pessimistic assumption = argmin f will return 'worst' regret solution
— need to compute all equivalent solutions to find worst, tri-level!

. optimistic assumption = argmin f returns 'best' regret solution
— ML model can 'cheat' by making ambiguous predictions

SPO+ loss

[Elmachtoub & Grigas, 2017 2021]
Defines an upperbound on pessimistic that is convex:

lspo+ (€, ¢) :=maxy,es {¢'w —2¢"w} +2¢"w*(c) — 2*(c).

Most importantly: subgradient (for in gradient-descent learning)
subgradients: 2(v*; —argmin_v f(2m(x,w) -c*))

True optimal Optimal solution under perturbed
solution predicted cost vector

Key idea is (imho) perturbation of the predictions,
* solve convex combination of real ¢* and predicted c values: solve(2c — c*) = solve(c* + 2(c-c*))
* amplifies error of predictions and avoids abusing equivalent solutions

Differentiable task losses for end-to-end learning:

Black box (subgradient methods):
- SPO+[1]: solve with f(ZC - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions

[1] EImachtoub AN, Grigas P. Smart" predict, then optimize" arxiv 2017; Management Science 2021
[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

SPO+: a deeper look at the (deep) learning

Standard:

with SPO+:

Algorithm 1: Stochastic gradient descent

Algorithm 2: Stochastic gradient descent with SPO+ subgradient

1
2
3
4
5
6
7
8
9

Input : training data D = { X, y} ;. learning rate

(backward pass)

initialize # (neural network weights)
for epochs do
for batches do
sample batch (X,y) ~ D
9 + g(z,0) (forward pass: compute predictions)
Compute loss L(y_. y) and gradient %
Update 8 = 0 — ﬂ;% through backpropagation
end
end

1
2
3
4
5
6
7
8
9

10

Input : training data D = {X,y},, architecture g, learning rate ~
initialize # (neural network weights of g)

for epochs do

for batches do

sample batch (X,y) ~ D

i < g(X,0) (forward pass: compute predictions)
y=y+2(g—1y) // SPO+ trick, convex comb. of y and g
Solve sol = solver(y) // calls external solver

Use subgradient 0L = solver(y) — sol

Update 8 = 6 — ﬂ;% through backpropagation
end

(backward pass)

11 end

we need to solve a comb. problem on line 7 for every training

example

(typically: 10-50 epochs, of 500 to 5000 samples...)

SPO framework

Features _

Can we do the solving better?

o Predict @ acca==,
“ Price

s

ﬁ backpropagation ! SPO
1 sub-gradient

Training by SPO

. '
™, 1 Solver w
/‘ """ ’

Predictive — [I I—
Model H | I —
H L]
Iy [l 0
- N (TR PR

N

Challenge

To compute subgradient v*(20 — #) must be
solved repeatedly for each training instance
High training time &
computation-expensive

Observe: constraints always the same,

only cost vector ¢ changes,
and we solve it for thousands of ¢ values,
each instance having a different true optimal solution

Can we do the solving better?

Predict R .
Price ¢ MiP To compute subgradient v*(26 —) must be
solved repeatedly for each training instance
Fealures _ i Predictive —' [High training time &
Mode computation-expensive
/ : Observe: constraints always the same,
i? P , only cost vector ¢ changes,
backpropagation ! SPO .
| sub-gracient’ and we solve it for thousands of ¢ values,
Training by SPO each instance having a different true optimal solution

Solving MIP = repeatedly solving LP
— Do we need to solve the MIP to optimality? or to a small gap?
— Can we replace the MIP by the LP relaxation?

Solving LP = repeatedly finding improved basis
— Can we warm-start from previous basis's?

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Relaxed Oracle

Call a weak but fast and accurate oracle
For MIP, the relaxed oracle is a weak oracle

1.7 x10¢

o
model 1 model 16x10¢ model
—+— MSE-r » ¢ —— MSEr o —+— MSE-r
1.4 %10
SPO-full g SPO-full o +~ SPO-full
. o D13x10t
e ~ SPO-relax &1 SPO-relax & .. 7 SPO-relax
Lf. I - +
i] Aiixiot ‘
[S [)
S i T—"y 100 &
""""""" TUYN '-««..M \ “ LY 4
...... BRI 9% 10° i)
(4] 20 i 40 60] 20 40 60 [i} 20}} 400 600 800
Time Time Time(seconds)

Relaxed Oracle helps in reducing train-

ing time without compromising quality

LP relaxations and warmstarts:
* Faster training time = possible to do wider grid search
* Faster training time = possible to scale up to larger problems

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Relaxed Oracle
Call k but f d 1 "
L poeals b Tt s ceurate ok SPO-relax is scalable

model

1.3x%104 model
L 12500 | —— MSE-r " I +— MSE-r
g iN ¢ sPoful g AT spO-full
g |\, -~ SPO-relax T1ax10 1 -+ SPO-relax
7 . 1
7 T B - ﬁ:
& 10000 54 = 10 1 s-’-.‘ o : []
~ . L * eally nard instances
T ax it [% []

0 2 4 [8 10 12 0 200 400 600 800
Epoch Time(seconds)

. (b) Time (1+ hour for single MIP solution)

Relaxed Oracle helps in reducing train-

ing time without compromising quality

* SPO-relax with total time budget:

Two-stage Approach SPO-relax
Hard Instances
(200 tasks 2 epochs 4 epochs 6 epochs 8 epochs 2 hour 4 hour 6 hour
on 10 machines)
instance [90,769 88,952 86,059 86,464 72,662 74,572 79,990
instance II 128,067 124,450 124,280 123,738 120,800 110,944 114,800
instance III 129,761 128,400 122,956 119,000 108,748 102,203 112,970
instance [V 135,398 132,366 132,167 126,755 109,694 99.657 97,351
instance V 122,310 120,949 122,116 123,443 118,946 116,960 118,460

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

But LP relaxation can be weak?

Solving MIP = repeatedly solving LP
* cutting plane algorithm: solve LP, cut fractional solution
* never cuts integral solutions

— add Gomory and other cuts to the LP to strengthen it
(e.g. solve only root node of MIP, add those cuts)

— tighter relaxation, still LP

[MIPaal: MIP as a layer, A. Ferber, B. Wilder, B. Dilkina, M. Tambe, AAAI2020]

Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):

- SPO+[1]: solve with f(ZC - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions

— White box (implicit differentiation):
- QPTLI3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] EImachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AA/
51 Mandi Guns “Interior Point Solvina for | P-based nrediction+ontimisation ” NeurlPS 2020

Prediction + Optimisation for MIP

SPO's subgradient is an indirect 'black box' method
— If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?

» Discrete so non-differentiable
Can we compute the gradient of an LP?

» Linear objective, so 2nd derivative is 0, so not invertible
Can we compute the gradient of a QP?

» yes, through implicit differentiation

Prediction + Optimisation for QP

Implicit differentiation of a QP:

... L p
minimize EZ

e

Qz+q' >

subject to Az =b, Gz <h

Take Lagrangian relaxation:
L(z,v,\) = éZTQZ +q¢7 2+ v (Az —b) + AT (Gz — h)

Then differentiate the KKT conditions
(stationarity, primal feasibility, complementary slackness)

QZ*+Q+ATFJ*+GT)*=U
Az —b =10
D) (G2 —h) =0,

[B. Amos and Z. Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017]

Prediction + Optimisation for MIP

Can the QP results be used for LPs?
max0lz st A =b, G < h

— make LP a QP by adding quadratic ||v||2 term

max 'z — v||z||5 st. Az =b, Gz <h
(with some hyperparameter gamma)

— can use Amos&Kaolter's OptNet!

in case of submodular maximization, closed form special case!

[Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AAAI, 2020]

Prediction + Optimisation for MIP

But wait... why an arbitrary gamma*||x||2?

— Interior Point solvers have been computing gradients of LPs for years?
mine' z
subjectto Ax = b;
x > 0; some or all z; integer
Lagrangian relaxation, does not restrict x >= 0:

L(z,y:c) = f(e,x)+y' (b— Azx)
Interior point solving: adding a logarithmic barrier

fle,z) :=c'o —)\(Zle ln(’rz))

* twice differentiable

* lambda is automatically decreased during barrier solving
* implicitly enforces x >=0

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]

_ Forward Pass) p o\\ing with barrier: Int. Point method

LP Forward Pass
R 1. Solve the Homogeneous

/ :D Self-dual embedding

: 2. Perform a Newton step
Discrete ILP Relaxed LP | 3. Decrease A

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]

_ Forward Pass) p oqying with barrier: Int. Point method

LP Forward Pass
1. Solve the Homogeneous

/ :D Self-dual embedding

2. Perform a Newton step
& & Discrete ILP Relaxed LP 3. Decrease A

—z. o Compute Task Loss:
cT[x*(¢) - xX*(©)]
Training 1

Data |

LP Backward Pass
1. Differentiate the Homogeneous

Self-dual embedding computed
in the Forward pass

2. Compute and backpropagate
dx*(€)/dé

Update Neural Net

parameters to |

__minimize Task Loss
Backward Pass

.

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]

Interior Point Solving for LP-based prediction + optimisation

KKT vs HSD

KKT, log barrier HSD, log barrier
A/ A-cut-off 1071 1073 10710 1071 1073 10710

Regret 14365 14958 21258 10774 14620 21594

Table 1: Differentiating the HSD formulation is more efficient than differ-
entiating the KKT condition

Compariosn with the state of the art

Two-stage QPTL SPO HSD, log barrier
O-layer 1-layer O-layer 1-layer O-layer 1-layer Q-layer 1-layer

745 796 3516 gxmf 3327 3955 2975 1.(5><1QT
(7) (5) (56) (4x107) (485) (300) (620) (1 x 107)

13322 13590 13652 13500 11073 12342 10774 11406
(1458) (2021) (325) (288) (895) (1335) (1715) (1238)

MSE-loss

Regret

Table 2: Qur approach is able to outperform the state of the art

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]

Problem formulation

features true cost vector

a.rgmin E [Teg?"eﬁ (m(l_e w)?a)]
w
network_params

Can be seen as a bi-level optimisation problem:

N
1
argijninﬁ ; f (vi,e) — f (v, e)

s.t. vl € argmingey f (v,¢;) Vi éf;allneTngeS'

vi € argmingey f (v, m(zi;w)) Vi- argmin f is not unique

-V is implicit, exponential size

- argmin f may be NP-hard

Contrastive loss

Gradient over exponential-sized argmin/argmax?

— Contrastive loss: for n >> 1
turn n-ary argmax into n-1 pairwise argmaxs!
(then subsample some)

Contrastive loss

Gradient over exponential-sized argmin/argmax?

— Contrastive loss: for n >> 1
turn n-ary argmax into n-1 pairwise argmaxs!
(then subsample some)

For decision-focussed learning: v*(¢) = argmin f(v, ¢)

vel
* define exponential distribution over V: p(v/m(w,z)) = %exp (~ f('rf;m(w;:rf)))

P (?f lm(w, :1:.,-))

argmax log H H _
“ i viesSpP ("Uﬁ |7?'i‘.-(f.u', Jt))

. contrastive loss for S subset V:

* partition function Z cancels out!!

LNCE = Z Z (,m()) — f(-n‘*._m(w,:r;;))

'i-l'cs

Prediction + Optimisation for MIP and more

All current method use a 'continuous relaxation' to make it non-discrete
and hence (almost) differentiable

Observation: constraints always stay the same, Ll
so the polytope is always the same. ¥

— Can we also use an inner approximation?

Figure 1: Representation of a solution cache (blue points) and the
continuous relaxation (green area) of V.

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, [JCAI 2021]

Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-discrete and
hence (almost) differentiable

Observation: constraints always stay the same,
so the polytope is always the same. b

— Can we also use an inner approximation?

Figure 1: Representation of a solution cache (blue points) and the
continuous relaxation (green area) of V.

Inner approximation = cache of known solutions
— can replace 'argmin()' by ‘'linear pass' over finite nr of solutions! (any blackbox)
— can use this cache as subsample 'S' in contrastive loss!

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

Prediction + Optimisation for MIP and more

Inner approximation = pool of known solutions

— can replace 'solver()' by 'linear pass' over finite solutions! (SPO+,BB)
— can use this cache as subsample 'S' in contrastive loss!

Main advantage: do not have to call a solver for each training instance!
Can 'grow’ solution cache FAST and GOOD

Test Regret

ning
i w SPCHE:-PTL

LLLLLLLL m Blackbox
b . . -
Per Epoch Training Time(sec.)

(a) Knapsack-120

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

(b) Energy-3

o] wlmetdl
—_—
26
- Model
ot v —s— Blackbox
g on 130000 .
L a Blackhox—cachmg
W, & o000 \
[4+
Lucel€ = ¢} v L
25000 o e [ih] ~ -.-\
Twio-stage |_ [
s Bacggieaing spos B
A el —) T T T
10 20 0 A 16 22 500 1000
Per Epoch Training Time(sec.}

Training Time (sec.)

Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):

- SPO+[1]: solve with f(2C - C*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions
- NCE[6]: contrastive loss function
=> all these: inner approximation/solution caching for efficiency gain [6]

White box:
- QPTL[3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AAAI, 2020

[5] Mandi, Guns. “Interior Point Solving for LP-based prediction+optimisation.” NeurlPS, 2020

[6] M. Mulamba, J. Mandi, M. Lombardi, M. Diligenti, V. Bucarey, T. Guns “Contrastive losses and solution caching for predict-and-optimize” IJCAI, 2021 to appear

Key take-aways:

KNOWLEDGE AS AN ICEBERG!

* Explicit knowledge: use solver EXPLiCIT |

OLATION
(lives in books)

* Implicit knowledge: do learning iMPLICIT

* Comb. optimisation inside neural loss becoming actually
feasible
— end-to-end hybrid prediction and optimisation

dig into ML-side and Opt-side equally profoundly

Future Work

Complexity of learned models vs. complexity of CP solving
Scalability vs accuracy trade-off
Interactive preference learning, multi-agent

Other perception data (language, voice, camera)

Wide range of applications (Industry 4.0, transport & more)

CHAT-Opt: :
Conversational Human-Aware Technology for Optimisation

E Towards co-creation of constraint optimisation solutions j

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

uu®s

wns®
.
us®
us®

us®

as®

e s
@TiasGuns L pring P

-
n®
““““
s

