Predict + Optimize for combinatorial opt.

aka decision-focussed learning

Prof. Tias Guns tias.guns@kuleuven.be @TiasGuns

Joint work with team members:

- Jayanta Mandi
- Maxime Mulamba
- Victor Bucarey Lopez

And external colaborators:

- Peter Stuckey (Monash Uni, Au)
- Emir Demirovic (TU Delft, NL)
- Michelangelo Diligenti (Sienna Uni, It)
- Michele Lombardi (Bologna, It)

First,

General research theme in my lab...

Combinatorial optimisation

"Solving constrained optimisation problems"

Vehicle Routing

Scheduling

Configuration

Graph problems

Current combinatorial optimisation practice

Current combinatorial opt. practice, problem

Research trend

Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data

Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data

- tacit knowledge (user preferences, social conventions)
- complex environment (demand, prices, defects)
- perception (vision, natural language, audio)

CHAT-Opt: Conversational Human-Aware Technology for Optimisation

Towards **co-creation** of combinatorial optimisation solutions

- Solver that learns from <u>user</u> and <u>environment</u>
- Towards conversational: explanations and stateful interaction

Predict + Optimize for combinatorial opt. aka decision-focussed learning

Complex environment (demand, prices)

<u>Prediction + Optimisation</u> aka <u>decision-focussed learning</u>:

- multi-output prediction
- discrete optimisation, batch (non-sequential)

- Optimize task scheduling's energy cost, by predicting energy prices
- Optimize steel plant production waste, by predicting steel defects
- Optimize money transport, by predicting amount of coins at clients

Prediction + Optimisation, two-step

Pre-trained neural network

Can we do the (deep) learning better?

MSE loss function is not informative enough

MSE loss not the best proxy for *task* loss....

MSE loss not the best proxy for task loss....

Vector of predictions

Joint inference: trades off the individual predictions

Why?

- MSE = average of individual errors of the vector
- Joint inference = *joint* error
 - → some errors worse than others!

Complex environment (demand, prices)

Which errors worse? is combinatorial, need to solve to know

Goal: end-to-end learning with regret as loss

$$regret(\hat{c}, c) = f(\hat{v}, c) - f(v^*, c)$$
$$with \ v^* = argmin_{v \in V} f(v, c)$$
$$\hat{v} = argmin_{v \in V} f(v, \hat{c})$$

Challenges:

- each regret comp. is NP-hard
- argmin over exponential nr. of outcomes
- discrete & non-differentiable

Regret is discrete and non-differentiable

Assumption: $m(x_i, w)$ is linear: w^Tx_i , indep. predictions for each var For a single argmin problem, a single w_i = alpha over 4 vars:

Optimising regret?

Assumption: $m(x_i, w)$ is linear: w^Tx_i , indep. predictions for each var For a single argmin problem, a single w_i = alpha over 4 vars:

if argmin is Dynamic Program: can build piece-wise linear function wrt alpha can optimise w, coordinate descent on alpha

Problem formulation

Can be seen as a bi-level optimisation problem:

- V is implicit, exponential size

- argmin f may be NP-hard

Bilevel optimisation?

Can be seen as a bi-level optimisation problem:

$$\underset{\omega}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} f(v_i, c) - f(v_i^*, c)$$

$$s.t. \quad v_i^* \in \underset{rgmin_{v \in V} f(v, c_i)}{\operatorname{argmin}_{v \in V} f(v, c_i)} \quad \forall i \in 1..N$$

$$v_i \in \underset{rgmin_{v \in V} f(v, m(x_i; \omega))}{\operatorname{argmin}_{v \in V} f(v, m(x_i; \omega))} \quad \forall i \in 1..N$$

Assume f is linear and V is continuous, e.g. argmin f = an LP Solution not unique:

- pessimistic assumption = argmin f will return 'worst' regret solution
 → need to compute all equivalent solutions to find worst, tri-level!
- optimistic assumption = argmin f returns 'best' regret solution
 → ML model can 'cheat' by making ambiguous predictions

SPO+ loss

[Elmachtoub & Grigas, 2017 2021]

Defines an upperbound on pessimistic that is convex:

$$\ell_{\text{SPO+}}(\hat{c}, c) := \max_{w \in S} \left\{ c^T w - 2\hat{c}^T w \right\} + 2\hat{c}^T w^*(c) - z^*(c).$$

Most importantly: subgradient (for in gradient-descent learning)

subgradients: $2(v_i^* - argmin_v f(2m(x_i, w) - c^*))$

True optimal Optimal solution under perturbed

solution predicted cost vector

Key idea is (imho) perturbation of the predictions,

- solve convex combination of real c^* and predicted c values: solve(2c c^*) = solve(c^* + 2(c- c^*))
- amplifies error of predictions and avoids abusing equivalent solutions

<u>Differentiable task losses</u> for end-to-end learning:

Black box (subgradient methods):

- SPO+[1]: solve with f(2c c*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions

SPO+: a deeper look at the (deep) learning

Standard:

```
Algorithm 1: Stochastic gradient descent

Input: training data \mathcal{D} = \{X,y\}_{i=1}^n, learning rate \gamma
1 initialize \theta (neural network weights)
2 for epochs do
3 | for batches do
4 | sample batch (X,y) \sim \mathcal{D}
5 | \hat{y} \leftarrow g(z,\theta) (forward pass: compute predictions)
6 | Compute loss L(y,\hat{y}) and gradient \frac{\partial L}{\partial \theta}
7 | Update \theta = \theta - \gamma \frac{\partial L}{\partial \theta} through backpropagation (backward pass)
8 | end
9 end
```

with SPO+:

```
Algorithm 2: Stochastic gradient descent with SPO+ subgradient

Input: training data \mathcal{D} = \{X,y\}_{i=1}^n, architecture g, learning rate \gamma

1 initialize \theta (neural network weights of g)

2 for epochs do

3 | for batches do

4 | sample batch (X,y) \sim \mathcal{D}

5 | \hat{y} \leftarrow g(X,\theta) (forward pass: compute predictions)

6 | \bar{y} = y + 2(\hat{y} - y) // SPO+ trick, convex comb. of y and \hat{y}

7 | Solve sol = solver(\bar{y}) // calls external solver

8 | Use subgradient \partial L = solver(y) - sol

9 | Update \theta = \theta - \gamma \frac{\partial L}{\partial \theta} through backpropagation (backward pass)

10 | end

11 end
```

we need to solve a comb. problem on line 7 for every training example

(typically: 10-50 epochs, of 500 to 5000 samples...)

Can we do the solving better?

Observe: constraints always the same, only cost vector *c* changes, and we solve it for *thousands* of *c* values, each instance having a different true optimal solution

Can we do the solving better?

Observe: constraints always the same, only cost vector *c* changes, and we solve it for *thousands* of *c* values, each instance having a different true optimal solution

- Solving MIP = repeatedly solving LP
 - Do we need to solve the MIP to optimality? or to a small gap?
 - Can we replace the MIP by the LP relaxation?
- Solving LP = repeatedly finding improved basis
 - Can we warm-start from previous basis's?

LP relaxations and warmstarts:

- Faster training time = possible to do wider grid search
- Faster training time = possible to scale up to larger problems

Relaxed Oracle

Call a **weak** but fast and accurate oracle For MIP, the *relaxed oracle* is a weak oracle

Relaxed Oracle helps in reducing training time without compromising quality

SPO-relax is scalable

- Really hard instances: (1+ hour for single MIP solution)
- SPO-relax with total time budget:

		Two-stage	Approach	SPO-relax			
Hard Instances (200 tasks on 10 machines)	2 epochs	4 epochs	6 epochs	8 epochs	2 hour	4 hour	6 hour
instance I	90,769	88,952	86,059	86,464	72,662	74,572	79,990
instance II	128,067	124,450	124,280	123,738	120,800	110,944	114,800
instance III	129,761	128,400	122,956	119,000	108,748	102,203	112,970
instance IV	135,398	132,366	132,167	126,755	109,694	99,657	97,351
instance V	122,310	120,949	$122,\!116$	123,443	118,946	116,960	118,460

But LP relaxation can be weak?

Solving MIP = repeatedly solving LP

- cutting plane algorithm: solve LP, cut fractional solution
- never cuts integral solutions
- → add Gomory and other cuts to the LP to strengthen it (e.g. solve only root node of MIP, add those cuts)
- → tighter relaxation, still LP

Related work using deep learning (gradient descent)

<u>Differentiable task losses</u> for end-to-end learning:

Black box (subgradient methods):

- SPO+[1]: solve with f(2c c*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions
- → White box (implicit differentiation):
 - QPTL[3]: solve Quadratic Program, differentiate KKT conditions
 - Melding[4]: solve tightened LP relaxation as QP
 - IntOpt[5]: solve LP with Interior Point, differentiate HSD

^[1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

^[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

^[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

^[4] Wilder B, Dilkina B, Tambe M. "Melding the data-decisions pipeline: Decision-focused learning for comb. optimization." AAA [5] Mandi, Guns, "Interior Point Solving for LP-based prediction+optimisation." NeurIPS, 2020

Prediction + Optimisation for MIP

SPO's subgradient is an indirect 'black box' method

→ If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?

» Discrete so non-differentiable

Can we compute the gradient of an LP?

» Linear objective, so 2nd derivative is 0, so not invertible

Can we compute the gradient of a QP?

yes, through implicit differentiation

Prediction + Optimisation for QP

Implicit differentiation of a QP:

minimize
$$\frac{1}{2}z^TQz + q^Tz$$

subject to $Az = b, Gz \le h$

Take Lagrangian relaxation:

$$L(z, \nu, \lambda) = \frac{1}{2}z^{T}Qz + q^{T}z + \nu^{T}(Az - b) + \lambda^{T}(Gz - h)$$

Then <u>differentiate the KKT conditions</u> (stationarity, primal feasibility, complementary slackness)

$$Qz^* + q + A^T \nu^* + G^T \lambda^* = 0$$
$$Az^* - b = 0$$
$$D(\lambda^*)(Gz^* - h) = 0,$$

Prediction + Optimisation for MIP

Can the QP results be used for LPs?

$$\max \theta^T x$$
 s.t. $Ax = b$, $Gx \le h$

→ make LP a QP by adding quadratic ||v||² term

$$\max \theta^T x - \gamma ||x||_2^2$$
 s.t. $Ax = b$, $Gx \le h$

(with some hyperparameter gamma)

→ can use Amos&Kolter's OptNet!

in case of submodular maximization, closed form special case!

Prediction + Optimisation for MIP

But wait... why an arbitrary gamma* $||x||^2$?

→ Interior Point solvers have been computing gradients of LPs for years?

$$\min c^{\top} x$$
subject to $Ax = b$;
$$x \ge 0$$
; some or all x_i integer

Lagrangian relaxation, does not restrict $x \ge 0$:

$$\mathbb{L}(x, y; c) = f(c, x) + y^{\top}(b - Ax)$$

Interior point solving: adding a logarithmic barrier

$$f(c,x) := c^{\top}x - \lambda \Big(\sum_{i=1}^{k} ln(x_i)\Big)$$

- twice differentiable
- lambda is automatically decreased during barrier solving
- implicitly enforces x >= 0

Forward Pass LP solving with barrier: Int. Point method

Interior Point Solving for LP-based prediction + optimisation

KKT vs HSD

$$\frac{\lambda \ / \ \lambda\text{-cut-off}}{\text{Regret}} \ \frac{\text{KKT, log barrier}}{10^{-1}} \ \frac{\text{HSD, log barrier}}{10^{-1}} \ \frac{10^{-3}}{10^{-10}} \ \frac{10^{-1}}{10^{-3}} \ \frac{10^{-10}}{10^{-3}}$$

Table 1: Differentiating the HSD formulation is more efficient than differentiating the KKT condition

Compariosn with the state of the art

	Two-stage		QPTL 0-layer 1-layer		SPO		HSD,log barrier	
	•	•	-	•	-	•	•	•
MSE-loss	745 (7)	796 (5)	3516 (56)	2×10^9 (4 × 10 ⁷)	3327 (485)	3955 (300)	2975 (620)	1.6×10^7 (1 × 10 ⁷)
Regret		13590 (2021)		13590 (288)			10774 (1715)	11406 (1238)

Table 2: Our approach is able to outperform the state of the art

Problem formulation

Can be seen as a bi-level optimisation problem:

- argmin f may be NP-hard

Contrastive loss

Gradient over exponential-sized argmin/argmax?

→ Contrastive loss: for n >> 1 turn n-ary argmax into n-1 pairwise argmaxs! (then subsample some)

Contrastive loss

Gradient over exponential-sized argmin/argmax?

→ Contrastive loss: for n >> 1 turn n-ary argmax into n-1 pairwise argmaxs! (then subsample some)

For decision-focussed learning: $v^*(c) = \underset{v \in V}{\operatorname{argmin}} f(v, c)$

- define exponential distribution over V: $p(v|m(\omega,x)) = \frac{1}{Z} \exp \left(-f(v,m(\omega,x))\right)$
- contrastive loss for S subset V: $\underset{\omega}{\operatorname{argmax}} \log \prod_{i} \prod_{v^{s} \in S} \frac{p\left(v_{i}^{\star} | m(\omega, x_{i})\right)}{p\left(v^{s} | m(\omega, x_{i})\right)} =$
- partition function Z cancels out!!

$$\mathcal{L}_{\text{NCE}} = \sum_{i} \sum_{v^s \in S} \left(f(v_i^{\star}, m(\omega, x_i)) - f(v^s, m(\omega, x_i)) \right)$$

Prediction + Optimisation for MIP and more

All current method use a 'continuous relaxation' to make it non-discrete and hence (almost) differentiable

Observation: constraints always stay the same, so the polytope is always the same.

→ Can we also use an <u>inner approximation</u>?

Figure 1: Representation of a solution cache (blue points) and the continuous relaxation (green area) of V.

Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-discrete and hence (almost) differentiable

Observation: constraints always stay the same, so the polytope is always the same.

→ Can we also use an <u>inner approximation</u>?

Figure 1: Representation of a solution cache (blue points) and the continuous relaxation (green area) of V.

<u>Inner approximation = cache of known solutions</u>

- → can replace 'argmin()' by 'linear pass' over *finite* nr of solutions! (any blackbox)
- → can use this cache as subsample 'S' in contrastive loss!

Prediction + Optimisation for MIP and more

<u>Inner approximation = pool of known solutions</u>

- → can replace 'solver()' by 'linear pass' over finite solutions! (SPO+,BB)
- → can use this cache as subsample 'S' in contrastive loss!

Main advantage: do not have to call a solver for each training instance!

Can 'grow' solution cache **FAST and GOOD**

Related work using deep learning (gradient descent)

<u>Differentiable task losses</u> for end-to-end learning:

Black box (subgradient methods):

- SPO+[1]: solve with f(2c c*) (convex comb of real and predicted values)
- bb[2]: solve with f(c) and f(c + eps) perturbed predictions
- NCE[6]: contrastive loss function
 - => all these: inner approximation/solution caching for efficiency gain [6]

White box:

- QPTL[3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD
- [1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017
- [2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020
- [3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017
- [4] Wilder B, Dilkina B, Tambe M. "Melding the data-decisions pipeline: Decision-focused learning for comb. optimization." AAAI, 2020
- [5] Mandi, Guns. "Interior Point Solving for LP-based prediction+optimisation." NeurIPS, 2020
- [6] M. Mulamba, J. Mandi, M. Lombardi, M. Diligenti, V. Bucarey, T. Guns "Contrastive losses and solution caching for predict-and-optimize" IJCAI, 2021 to appear

Key take-aways:

- Explicit knowledge: use solver
- Implicit knowledge: do learning

- Comb. optimisation inside neural loss becoming actually feasible
 - → end-to-end hybrid prediction and optimisation
- dig into ML-side and Opt-side equally profoundly

Future Work

- Complexity of learned models vs. complexity of CP solving
- Scalability vs accuracy trade-off
- Interactive preference learning, multi-agent
- Other perception data (language, voice, camera)

Wide range of applications (Industry 4.0, transport & more)

Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

- Solver that learns from user and environment
- Towards conversational: explanations and stateful interaction

