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Combinatorial optimisation

“Solving constrained optimisation problems”

 Vehicle Routing

 Scheduling

 Configuration

 Graph problems



Decision variables
Constraints
Objective function

   Model          +          Solve

Constraint solving paradigm



Decision variables
Constraints
Objective function

   Model          +          Solve

Research trend

Can we learn
it instead?

1) learn to model

           2) learn to solve (faster)



   Model          +          Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert  
    



   Model          +          Solve

Domain experts
Stakeholders

Current combinatorial opt. practice, problem

Too rigid, too static

Opt. expert  
    

Incomplete information
Ad-hoc modifications
Changing preferences



Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data



Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)



Perception-based Constraint Solving:
a demo application

https://visualsudoku.cs.kuleuven.be

https://visualsudoku.cs.kuleuven.be/


Perception-based constraint solving

Visual sudoku (naïve)

Pre-trained neural network Solving



Perception-based constraint solving
X

ij

Pre-trained neural network

What about the next most likely interpretation?

 Treat prediction as joint inference problem:
 

 This is the constrained ‘maximum likelihood’ interpretation



Perception-based constraint solving
X

ij

Pre-trained neural network

 Log-likelihood trick:
 

       constant



Perception-based constraint solving

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

Hybrid: CP solver does joint inference over raw probabilities



Sudoku Assistant demo, continued



Perception data and constraint solving

Other application settings:

 Document analysis

 Paper-based configuration problems (tax forms)

 Object-detection based reasoning

 Visual relationship detection

 ...



Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)



Tacit knowledge (user preferences)

Example:
“in real-life operations, the quality of a 

route is not exclusively defined by its 
theoretical length, duration, or cost”

 Data:
 stop list, zones
 TSP solutions with 

“good, average, bad” 
labels

→ learn and route



Tacit knowledge (user preferences)

“Vehicle routing by learning from historical solutions”

[Rocsildes Canoy and Tias Guns, CP19], Best student paper award

GOAL: Learn preferences, reduce manual effort, adapt to changes over time!

LEARN



Tacit knowledge (user preferences)

Small data:  6 months = 26 weeks = 130 week days (instances)



Tacit knowledge (user preferences)

For single vehicles, in mobility data mining literature:

              Can we use similar techniques

              to learn preferences across routings of multiple vehicles?

And can we optimize over them with constraint solving?



Learning and prediction part

1st order Markov approximation:

P([s1,s2,s3,...]) = P(s1)*P(s2|s1)*P(s3|s2)*...

→ estimate the P(sy|sx) by observing the transitions in the 

actually driven routes

probability of transition = relative nr of observations in the data

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]



Concept drift: new/gone clients

When 'counting' the probabilities:
 can include a prior on each historic instance wrt. current day

 e.g. weighing of the instance:

 uniform = unit weight
 by similarity = how much overlap in clients with current day
 by time = more recent instances get higher weight

incl. exponential smoothing

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]



Constrained optimisation: what now?

Goal: find constrained maximum likelihood solution:

maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

s.t. VRP([s1,s2,s3,...])

Standard probability computation trick: log-likelihood

               =                          

 → VRP: replace distance matrix by negative log-likelihood matrix!

Compatible with ALL vrp solvers



Concept drift, quality AFTER solving

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]



Extension: Neural instead of Markov?

Opportunities: contextual features (day of week, nr vehicles...)

Challenges:
 Need to predict n*n outputs

 What input representation?
 Encoding the (variable amount) of stops

 Encoding all n*n distances

 Encoding the temporal historic instances

 What loss function?
 Only few data (large networks will overfit)

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]



Neural representation

 Key ideas:
– domain-specific architecture,

– 1 source→all stops

 Contextual features:

 

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]



Loss function: Classification loss as proxy for arc-difference
  (log likelihood of arcs in ‘preferred’ solution)

Summary comparison:

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]



Learning the preferences

= imitation of user choices → copying, not intelligence?

Optimisation software is meant to do better than a user
(by considering larger nr of candidates and better resolving of conflicts)

               I prefer route X even if it is 2 kilometers longer

               → trade's off distance versus preference

Give control to combine both:



Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)
Time for end-to-end training!



Learn the objective function

                          
 

Prediction + Optimisation (regression of weights)

Other examples:

 Optimize steel plant production waste,  by predicting steel defects

 Optimize money transport,  by predicting value of coins at clients

 ...

   Predict: hourly energy prices     +         Optimize: energy- 
                                                                      aware scheduling

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10



prediction-focussed regression

Pre-trained neural network



MSE loss not the best proxy for task loss....

Why?
 MSE = average of individual errors of the vector

 Joint inference = joint error

→ some errors worse than others!

Vector of predictions

Joint inference: trades off
the individual predictions

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10



features true cost vector

predicted cost vectornetwork params

Challenges:
- no explicit gradient
- V is implicit, exponential size
- argmin f may be NP-hard

Which errors worse?

 is combinatorial, need to solve to know

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Learning approaches (gradient descent)

 Loss

Predict
Solve

Backpropagate

Answer

Key challenges:

1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch



Related work for discrete optimisation

 Differentiating KKT of a relaxed (QP) problem [Wilder, B., 
Dilkina, B., & Tambe, M. (2019, July)., Ferber, A., Wilder, B., Dilkina, B., & 
Tambe, M. (2020, April)]

 Differentiating HSD of a relaxed (LP) problem [Mandi, J., & 
Guns, T. (2020)]

 Subgradient of a surrogate loss [Elmachtoub, A. N., & Grigas, P. 
(2022), Mulamba, M. & Mandi, J. & Diligenti, M. & Lombardi, M. & Bucarey, 
V. & Guns, T.]

 Differentiation by perturbation [Pogančić, Marin Vlastelica, et al. 
(2020), Niepert, M., Minervini, P., & Franceschi, L. (2021)]



Decision-focused learning

Suitable loss function?

Key observation: 

“The objective function induces a ranking over feasible solutions”

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Obj with true costs Obj with predicted
Sol 1 [a,c,b,d,a] 12 (rank: 1) 14 (rank: 3)
Sol 2 [a,b,c,d,a] 15 (rank: 2) 10 (rank: 1)
Sol 3 [a,c,d,b,a] 16 (rank: 3) 11 (rank: 2)
Sol 4 [a,d,b,c,a] 23 (rank: 4) 16 (rank: 4)
Sol 5 [a,d,c,b,a] 28 (rank: 5) 18 (rank: 5)



Decision-focused learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible 
solutions”

=> We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]



Listwise Learning 2 Rank for DFL

We obtain 2 empirical distributions (one for true costs, one for predicted)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Discrete exponential distribution
in solution space



Results



Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

 Loss

Predict
Solve

Backpropagate

Answer



Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

Can use cached solutions as approximate solver!!

These cached solutions are the feasible set S

(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, IJCAI2021]

 Loss

Predict
Solve

Backpropagate

Answer

Use
cache



Results

Caching scheme compatible with all methods that call a 
blackbox solver (call the cache instead, 90% of time)



Implementation in gradient descent loop

Standard: with Listwise ranking:



Key take-aways:

 Explicit  knowledge: use solver

 Implicit knowledge: do learning
 

 Joint inference / collective classification:
 maximize log likelihood!

 Keep revisiting the solving AND the learning,
hybridize and use properties of one in the other!

 Prediction + Optimisation with decision-focussed learning possible



Bigger picture

 

 

 

 



Bigger picture

 Learning implicit user preferences

 Learning from the environment
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 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 



Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction



CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

Hiring post-docs!



Sudoku Assistant, explanation steps



Conversational Human-Aware Technology for Optimisation

Easy to integrate (Python) libraries

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver



Conversational Human-Aware Technology for Optimisation

Easy to integrate (Python) libraries

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy


CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns
    @TiasGuns Hiring post-docs!

https://people.cs.kuleuven.be/~tias.guns
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