
Learning from user and environment
in combinatorial optimisation

Prof. Tias Guns
<tias.guns@kuleuven.be>

@TiasGuns

Joint work with team members:
- Rocs Canoy
- Jayanta Mandi
- Maxime Mulamba
- Victor Bucarey Lopez
- Ahmed KA Abdullah
- Emilio Gamba

And external colaborators:
- Peter Stuckey (Monash Uni, Au)
- Emir Demirovic (TU Delft, NL)
- Michelangelo Diligenti (Sienna Uni, It)
- Michele Lombardi (Bologna, It)
- Bart Bogaerts (VUB, Be)

mailto:tias.guns@kuleuven.be

Combinatorial optimisation

“Solving constrained optimisation problems”

 Vehicle Routing

 Scheduling

 Configuration

 Graph problems

Decision variables
Constraints
Objective function

 Model + Solve

Constraint solving paradigm

Decision variables
Constraints
Objective function

 Model + Solve

Research trend

Can we learn
it instead?

1) learn to model

 2) learn to solve (faster)

 Model + Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert

 Model + Solve

Domain experts
Stakeholders

Current combinatorial opt. practice, problem

Too rigid, too static

Opt. expert

Incomplete information
Ad-hoc modifications
Changing preferences

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)

Perception-based Constraint Solving:
a demo application

https://visualsudoku.cs.kuleuven.be

https://visualsudoku.cs.kuleuven.be/

Perception-based constraint solving

Visual sudoku (naïve)

Pre-trained neural network Solving

Perception-based constraint solving
X

ij

Pre-trained neural network

What about the next most likely interpretation?

 Treat prediction as joint inference problem:

 This is the constrained ‘maximum likelihood’ interpretation

Perception-based constraint solving
X

ij

Pre-trained neural network

 Log-likelihood trick:

 constant

Perception-based constraint solving

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

Hybrid: CP solver does joint inference over raw probabilities

Sudoku Assistant demo, continued

Perception data and constraint solving

Other application settings:

 Document analysis

 Paper-based configuration problems (tax forms)

 Object-detection based reasoning

 Visual relationship detection

 ...

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)

Tacit knowledge (user preferences)

Example:
“in real-life operations, the quality of a

route is not exclusively defined by its
theoretical length, duration, or cost”

 Data:
 stop list, zones
 TSP solutions with

“good, average, bad”
labels

→ learn and route

Tacit knowledge (user preferences)

“Vehicle routing by learning from historical solutions”

[Rocsildes Canoy and Tias Guns, CP19], Best student paper award

GOAL: Learn preferences, reduce manual effort, adapt to changes over time!

LEARN

Tacit knowledge (user preferences)

Small data: 6 months = 26 weeks = 130 week days (instances)

Tacit knowledge (user preferences)

For single vehicles, in mobility data mining literature:

 Can we use similar techniques

 to learn preferences across routings of multiple vehicles?

And can we optimize over them with constraint solving?

Learning and prediction part

1st order Markov approximation:

P([s1,s2,s3,...]) = P(s1)*P(s2|s1)*P(s3|s2)*...

→ estimate the P(sy|sx) by observing the transitions in the

actually driven routes

probability of transition = relative nr of observations in the data

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]

Concept drift: new/gone clients

When 'counting' the probabilities:
 can include a prior on each historic instance wrt. current day

 e.g. weighing of the instance:

 uniform = unit weight
 by similarity = how much overlap in clients with current day
 by time = more recent instances get higher weight

incl. exponential smoothing

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]

Constrained optimisation: what now?

Goal: find constrained maximum likelihood solution:

maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

s.t. VRP([s1,s2,s3,...])

Standard probability computation trick: log-likelihood

 =

 → VRP: replace distance matrix by negative log-likelihood matrix!

Compatible with ALL vrp solvers

Concept drift, quality AFTER solving

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]

Extension: Neural instead of Markov?

Opportunities: contextual features (day of week, nr vehicles...)

Challenges:
 Need to predict n*n outputs

 What input representation?
 Encoding the (variable amount) of stops

 Encoding all n*n distances

 Encoding the temporal historic instances

 What loss function?
 Only few data (large networks will overfit)

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]

Neural representation

 Key ideas:
– domain-specific architecture,

– 1 source→all stops

 Contextual features:

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]

Loss function: Classification loss as proxy for arc-difference
 (log likelihood of arcs in ‘preferred’ solution)

Summary comparison:

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]

Learning the preferences

= imitation of user choices → copying, not intelligence?

Optimisation software is meant to do better than a user
(by considering larger nr of candidates and better resolving of conflicts)

 I prefer route X even if it is 2 kilometers longer

 → trade's off distance versus preference

Give control to combine both:

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)

» tacit knowledge (user preferences, social, ...)

» complex environment (demand, prices, ...)
Time for end-to-end training!

Learn the objective function

Prediction + Optimisation (regression of weights)

Other examples:

 Optimize steel plant production waste, by predicting steel defects

 Optimize money transport, by predicting value of coins at clients

 ...

 Predict: hourly energy prices + Optimize: energy-
 aware scheduling

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10

prediction-focussed regression

Pre-trained neural network

MSE loss not the best proxy for task loss....

Why?
 MSE = average of individual errors of the vector

 Joint inference = joint error

→ some errors worse than others!

Vector of predictions

Joint inference: trades off
the individual predictions

Historic data:

V
a

V
a...

learn f
apply f(a)

V ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8 9 10

features true cost vector

predicted cost vectornetwork params

Challenges:
- no explicit gradient
- V is implicit, exponential size
- argmin f may be NP-hard

Which errors worse?

 is combinatorial, need to solve to know

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Learning approaches (gradient descent)

 Loss

Predict
Solve

Backpropagate

Answer

Key challenges:

1) suitable loss function? (non-differentiable solver)

2) scalability due to repeated solving:
once per instance per epoch

Related work for discrete optimisation

 Differentiating KKT of a relaxed (QP) problem [Wilder, B.,
Dilkina, B., & Tambe, M. (2019, July)., Ferber, A., Wilder, B., Dilkina, B., &
Tambe, M. (2020, April)]

 Differentiating HSD of a relaxed (LP) problem [Mandi, J., &
Guns, T. (2020)]

 Subgradient of a surrogate loss [Elmachtoub, A. N., & Grigas, P.
(2022), Mulamba, M. & Mandi, J. & Diligenti, M. & Lombardi, M. & Bucarey,
V. & Guns, T.]

 Differentiation by perturbation [Pogančić, Marin Vlastelica, et al.
(2020), Niepert, M., Minervini, P., & Franceschi, L. (2021)]

Decision-focused learning

Suitable loss function?

Key observation:

“The objective function induces a ranking over feasible solutions”

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Obj with true costs Obj with predicted
Sol 1 [a,c,b,d,a] 12 (rank: 1) 14 (rank: 3)
Sol 2 [a,b,c,d,a] 15 (rank: 2) 10 (rank: 1)
Sol 3 [a,c,d,b,a] 16 (rank: 3) 11 (rank: 2)
Sol 4 [a,d,b,c,a] 23 (rank: 4) 16 (rank: 4)
Sol 5 [a,d,c,b,a] 28 (rank: 5) 18 (rank: 5)

Decision-focused learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible
solutions”

=> We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Listwise Learning 2 Rank for DFL

We obtain 2 empirical distributions (one for true costs, one for predicted)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]

Discrete exponential distribution
in solution space

Results

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

 Loss

Predict
Solve

Backpropagate

Answer

Decision-focused learning with L2R

2nd Key bottleneck: repeatedly calling the solver

Can use cached solutions as approximate solver!!

These cached solutions are the feasible set S

(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, IJCAI2021]

 Loss

Predict
Solve

Backpropagate

Answer

Use
cache

Results

Caching scheme compatible with all methods that call a
blackbox solver (call the cache instead, 90% of time)

Implementation in gradient descent loop

Standard: with Listwise ranking:

Key take-aways:

 Explicit knowledge: use solver

 Implicit knowledge: do learning

 Joint inference / collective classification:
 maximize log likelihood!

 Keep revisiting the solving AND the learning,
hybridize and use properties of one in the other!

 Prediction + Optimisation with decision-focussed learning possible

Bigger picture

Bigger picture

 Learning implicit user preferences

 Learning from the environment

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

Hiring post-docs!

Sudoku Assistant, explanation steps

Conversational Human-Aware Technology for Optimisation

Easy to integrate (Python) libraries

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

Conversational Human-Aware Technology for Optimisation

Easy to integrate (Python) libraries

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns
 @TiasGuns Hiring post-docs!

https://people.cs.kuleuven.be/~tias.guns

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

