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Combinatorial optimisation

“Solving constrained optimisation problems”

* Vehicle Routing

* Scheduling

* Configuration

 Graph problems




Constraint solving paradigm

Model +

Decision variables
Constraints — 2
Obijective function |~




Research trend

Model +

Decision variables
Constraints
Obijective function

Can we learn

it instead?

1){learn to model

2) learn to solve (faster)



Current combinatorial optimisation practice

Model + Solve

€

Opt. expert

Domain experts

Stakeholders



Current combinatorial opt. practice, problem

Model + Solve

B @

Changing preferences
@ Too rigid, too static
Opt. expert\
O
po = &

Domain experts

Incomplete information
Ad-hoc modifications

Stakeholders



Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG]
N v B KNOWLEDGE N
LSOLATEToN

* Part explicit knowledge:
in a formal language

* Part implicit knowledge:
learned from data




Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG]

KNOWLEDGE 1N
ISOLATIon

(lives in books )

* Part explicit knowledge:
iIn a formal language

D EXPLICIT A=

* Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)
» tacit knowledge (user preferences, social, ...)
» complex environment (demand, prices, ...)



Perception-based Constraint Solving:
a demo application

Sudoku
/ Assistant

Tias Guns, Milan Pesa, Maxime Mulamba,
! E Ignace Bleukx, Emilio Gamba, Senne Berden
Al FLANDERS ~ °
BLILDNG OUR DG TURE

GETITON
» Google Play

https://visualsudoku.cs.kuleuven.be



https://visualsudoku.cs.kuleuven.be/

Perception-based constraint solving

Visual sudoku (naive)
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Perception-based constraint solving
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What about the next most likely interpretation?

* Treat prediction as joint inference problem:

y = arg max | | P(yi; = k| X;;) s.t. sudoku(y)
]

* This is the constrained ‘'maximum likelihood’ interpretation
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Perceptlon based Constralnt solving
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= arg maXH P(y;; = k| X;;) s.t. sudoku(y)
Log-likelihood trick?

min Z Z —log(Py(yij = k| X)) * 1[si; = k] s.t.  sudoku(y)
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Perception-based constraint solving

‘Hybrid: CP solver does joint inference over raw probabilities

Check Alignment
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accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01

hybridl 99.69% 99.38% 92.33% 0% 0.79

hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]
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Sudoku Assistant demo, continued
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Perception data and constralnt solvmg

Other application settings:

* Document analysis

* Paper-based configuration problems (tax forms)
* Object-detection based reasoning

* Visual relationship detection




Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG]

KNOWLEDGE 1N
ISOLATIon

(lives in books )

* Part explicit knowledge:
iIn a formal language

D EXPLICIT A=

* Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)
» tacit knowledge (user preferences, social, ...)
» complex environment (demand, prices, ...)



Tacit knowledge (user preferences)

Example:

“in real-life operations, the quality of a
route is not exclusively defined by its
theoretical length, duration, or cost” . _

Amazon Last Mlle Routmg

* Data: RESEARCH CHALLENGE

¢ Stop ||St zones Supported by the MIT Center for

Transportation & Logistics

* TSP solutions with
“good, average, bad”
labels

— learn and route



Tacit knowledge (user preferences)

“Vehicle routing by learning from historical solutions”
[Rocsildes Canoy and Tias Guns, CP19], Best student paper award

A

Route Planner

o> B

Route Optimization
Software

u Drivers

Changes/Modifications

GOAL: Learn preferences, reduce manual effort, adapt to changes over time!




Tacit knowledge (user preferences)

Small data: 6 months = 26 weeks = 130 week days (instances)

o -

N




Tacit knowledge (user preferences)

For single vehicles, in mobility data mining literature:

» Driver turn prediction [Krumm, 2008]
» Prediction of remainder of route early in the trip [Ye et al., 2015]

» Prediction of route given origin and destination [Wang et al., 2015]

Can we use similar techniques

to learn preferences across routings of multiple vehicles?

o]
And can we optimize over them with constraint solving? i i mt
= b@
g




Learning and prediction part

1%t order Markov approximation:
P([s1,s2,s3,...]) = P(s1)*P(s2|s1)*P(s3|s2)"...

— estimate the P(sy|sx) by observing the transitions in the
actually driven routes
probability of transition = relative nr of observationg = *==<=tg,
_ Jita
N, +ad’

tij

[Canoy, Guns, Vehicle routing by learning from historical soI_utions, CP19]
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Concept drift: new/gone clients ¢~ | *

When 'counting' the probabilities: R e

* can include a prior on each historic instance wrt. current day

* e.g.weighing of the instancg:

w, A",
¢ uniform = unit weight
. by similarity = how much overlap in clients with current day
d by time = more recent instances get higher weight

incl. exponential smoothing

[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]




Constrained optimisation: what now?

Goal: find constrained maximum likelihood solution:
maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3]|s2)"...

s.t. VRP([s1,52,s3,...])
Standard probability computation trick: log-likelihood _
max H Pr(next stop=j | current stop=i), v@
(i.§)EX .—’. 0
max Z log(ti;)xi;. ®

- (2,5)€A

— VRP: replace distance matrix by negative log-likelihood matrix!

min Y cjX; e min Y —log(t;)x;. : :
(eA (hea Compatible with ALL vrp solvers




Concept drift, quality AFTER solvin

Fig. 7

Fig. 8
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[Canoy, Guns, Vehicle routing by learning from historical solutions, CP19]




Extension: Neural instead of Markov?

Opportunities: contextual features (day of week, nr vehicles...)
Challenges:

* Need to predict n*n outputs

*  What input representation?
Encoding the (variable amount) of stops
Encoding all n*n distances
Encoding the temporal historic instances

 What loss function?
* Only few data (large networks will overfit)

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]



o
T Possible

Neural representation o

stop

* Key ideas:
— domain-specific architecture,

(A—=| > 1

) inear 5 -

Past : o
Solutions : Lookback] |
L o i

e (Contextual features: _4 ’ﬂ
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[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]

Feature

Eitraction Linear Model Transition Probabilities



Loss function: Classification loss as proxy for arc-difference
(log likelihood of arcs in ‘preferred’ solution)

Summary comparison:

CE AD (%) RD(%) Distance

Markov Counting

Neural Net
(Without linear lookback)

Distance based VRP

2.44 18.55 1726 418

1.04 18.04 17.02 414

1190 /314 4693 366

[Mandi, Canoy, Bucarey, Guns, Data Driven VRP: ..., CP21]



Learning the preferences
= imitation of user choices — copying. not intelligence?

Optimisation software is meant to do better than a user
(by considering larger nr of candidates and better resolving of conflicts)

| prefer route X even if it is 2 kilometers longer

— trade's off distance versus preference

Route Planner

Give control to combine both: t; =Bty +(1— B)dy.



Prediction + constraint solving

KNOWLEDGE AS AN ICEBERG]
S & s KNOWLEDGE 1N
ISOLAT Ion
(lives in books )

* Part explicit knowledge:
iIn a formal language

~ EXBLICIT A

* Part implicit knowledge:
learned from data

» perception (vision, natural language, ...)
» tacit knowledge (user preferences, social, ...)



Learn the objective function

Prediction + Optimisation (regression of weights)

Historic data: C
v v S e S
2 =1 a Ll ) [E——— |
| v_[2[2[2]2]2]7]7]2]2]4
learn f—— apply ()
Predict: hourly energy prices + Optimize: energy-

aware scheduling

Other examples:
* Optimize steel plant production waste, by predicting steel defects

* Optimize money transport, by predicting value of coins at clients



prediction-focussed regression

Implementation
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MSE loss not the best proxy for task loss....

Historic data:

e | me———
oo | e [
vILIIITTTTT] VLTI

S i 3 iy
a a

Joint inference: trades off
——————_ | the individual predictions
| v [212122]2]2]2]2]2]2)

l

| f_——" apply f(a) Vector of predictions
earn

Why?

MSE = average of individual errors of the vector == )
Joint inference = joint error

MSE
&
m

Regret

— some errors worse than others!

Epoch



\Which errors worse?

IS combinatorial, need to solve to know

features true cost vector

argmin E [regret (m(z;;w), a)]
Lt
network_params

Challenges:

- no explicit gradient

A , ) - V is implicit, exponential size
b = argminvey f (v, ¢) - argmin f may be NP-hard

regret(¢,c) = f (0,¢c) — f (v*,c)
with v* = argminyev f (v, c)

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Learning approaches (gradient descent)

Solve

v

7 v P(ed\ct Wl g - :
O Gy : _
1\"{;\ g

‘.:‘? T

7% L3
XN ’N Answer
) a
ckpropagate

Loss

Key challenges:
1) suitable loss function? (non-differentiable solver)

2) scalablllty due to repeated solvmg



Related work for discrete optimisation

Differentiating KKT of a relaxed (QP) problem

Differentiating HSD of a relaxed (LP) problem

Subgradient of a surrogate loss

Differentiation by perturbation



Suitable loss function?

Key observation:

Decision-focused learning

“The objective function induces a ranking over feasible solutions”

Sol 1

Sol 3

Sol 5

a,c,b,d,a]
Sol 2 [a,b,c,d,a]
a,c,d,b,a]

Sol 4 [a,d,b,c,a

a,d,c,b,a]

Obj with true costs
12 (rank: 1)
15 (rank: 2)
16 (rank: 3)
23 (rank: 4)
28 (rank: 5)

Obj with predicted
14 (rank: 3)
10 (rank: 1)
11 (rank: 2)
16 (rank: 4)
18 (rank: 5)

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]



Decision-focused learning

Assume a set of feasible solutions S.

“The objective function induces a ranking over feasible
solutions”

I ??('b": c) p(v; €)
I I i . I I I N I
Vpest 4

=> \We can now use techniques from the much more mature
‘Learning to Rank’ field in ML!

[Mandi, Mulamba, Bucarey, Guns, Decision-focused learning: through the lens of learning to rank, ICML2022]



Listwise Learning 2 Rank for DFL

Vpest

p(v;c) p(v: <)
Discrete exponential distribution
in solution space I : :
1 I I = I I B

p(vic) = | 7exP(=f(v,0)/r) veV
0 vev
True Distribution Predicted Distribution

We obtain 2 empirical distributions (one for true costs, one for predicted)
over a finite sample of feasible solutions S

=> Can use the standard Kullback-Leibler Divergence loss!

[Mandi. Mulamba. Bucarev. Guns. Decision-focused learnina: throuah the lens of learning to rank. ICML2022]
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Decision-focused learning with L2R

24 Key bottleneck: repeatedly calling the solver

= //jig§§>/»h%5. X | = ;
Answer
*\\\\\I;\\\\\\\\\\\\\\ K//////
: Ackpropagate

Loss

G

Solve

[
»




Decision-focused learning with L2R

2" Key bottleneck: repeatedly calling the solver

Solve

[
»

\ L
2 ‘N Answer
‘ Ackpropagate

Loss

Can use as approximate solver!!

These cached solutions are the feasible set S
(also: sampling schemes: call the solver only 10% of the times)

[Mulamba, Mandi, Bucarey, Guns, Contrastive Losses and Solution Caching for Predict-and-Optimize, [JCAI2021]



Results

Caching scheme compatible with all methods that call a
blackbox solver (call the cache instead, 90% of time)
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Implementation in gradient descent loop

Standard:

with Listwise ranking:

Algorithm 1: Stochastic gradient descent

Algorithm 3: Stochastic gradient descent with KL on solutions

1
2
3
4
5
6
T
8
9

Input : training data D = {X,y}L, learning rate
initialize #  (neural network weights)
for epochs do
for batches do
sample batch (X,y) ~ D
7§+ g(z,0) (forward pass: compute predictions)
Compute loss L(yr._ i) and gradient ‘{—‘%
Update # = 8 — "% through backpropagation (backward pass)
end
end

Input : training data D = {X, y}" |, architecture g, learning rate ~,

sample rate r

1 initialize # (enural petwork weichis of gl

EIHIJ]H +— {solver(y) | (X,y) € D}

(initialize with true solutions)

3 for epochs do

L

(backward pass)

4 for batches do

5 sample batch (X, y) ~ D

6 go— g X, 0)  (Horward pass: compute predictions)

T if random() < r then

8 | sols + sols U solver(y)}

9 end

10 Compute loss L = KL(distr(y, sols), distr(g, sols)) and grad. o
11 Update f# = # — 4 % through backpropagation
12 end

13 end




Key take-aways:

KNOWLEDGE AS AN ICEBERG]
v e s B KNOWLEDGE N
150LA i

* Explicit knowledge: use solver L EXPLCTAS |,

» Implicit knowledge: do learning impLiciT

Joint inference / collective classification:
maximize log likelihood!

* Keep revisiting the solving AND the learning,
hybridize and use properties of one in the other!

Prediction + Optimisation with decision-focussed learning possible



Bigger picture




Bigger picture

* Learning implicit user preferences

* Learning from the environment @




Bigger picture

* Learning implicit user preferences
* Learning from the environment

* Explaining constraint solving




Bigger picture

Learning implicit user preferences
Learning from the environment

Explaining constraint solving

Stateful interaction



CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Extablishad by the Europeas

[ Towards co-creation of constraint optimisation solutions ]

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

%
----
wun®

-
us®
““““
.
as®

.
- us
an®®



Sudoku A

*40
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Conversational Human-Aware Technology for Optimisation @ A"\

Easy to integrate (Python) libraries

* Easy integration with Machine Learning libraries
=> Python and numpy arrays

* Efficient repeated solving
=> |[ncremental

 Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

)

L



Conversational Human-Aware Technology for Optimisation @A"\

Easy to integrate (Python) libraries

* Easy integration with Machi
=> Python and numpy arrays

* Efficient repeated solving
=> |[ncremental

* Use CP/SAT/MIP or any co

=> solver independent and mu

https://github.com/CPMpy/cpmpy

>N C @ @a

readthedocs.io

# » CPMpy: Constraint Programming and Modeling in Python

CPMpy: Constraint Programming and Mod
Python

CPMpy is a Constraint Programming and Modeling library in Python, based on nu
solver access.

Constraint Programming is a methodology for solving combinatorial optimisation
assignment problems or covering, packing and scheduling problems. Problems th:
searching over discrete decision variables.

CPMpy allows to model search problems in a high-level manner, by defining deci
constraints and an objective over them (similar to MiniZinc and Essence'). You car
functions and indexing while doing so. This model is then automatically translate
art solver like or-tools, which then compute the optimal answer.

Source code and bug reports at https:/github.com/CPMpy/cpmpy

Getting started:

« Installation instructions

« Getting started with Constraint Programming and CPMpy
+ Quickstart sudoku notebook

+ More examples

User Documentation:


https://github.com/CPMpy/cpmpy

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Exsablishad by the Eurpeas

[ Towards co-creation of constraint optimisation solutions ]

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

%
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.
as®

https://people.cs.kuleuven.be/~tias.guns £
@TiasGuns PRI



https://people.cs.kuleuven.be/~tias.guns
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