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1 Introduction

All of us learn to do arithmetic in grade school. The algorithms for addition and
subtraction take some time to master, and the multiplication algorithm is even more
complicated. Eventually students learn the division algorithm; most students find
it to be complicated, time-consuming, and tedious. Is there a better way to divide?

For most practical purposes, the correct way to answer this question is to con-
sider the time-complexity of division; what is the fastest division algorithm? That
is not the subject of this article. | am not aware of any recent breakthrough on
this question; any good textbook on design and analysis of algorithms will tell you
about the current state of the art on that front.

Complexity theory gives us an equally-valid way to ask about the complexity
of division:

In what complexity class does division lie?

One of the most important subclasses of P (and one of the first to be defined
and studied) is the class L (deterministic logarithmic space). It is easy to see how
to add and subtract in L. It is a simple exercise to show that multiplication can be
computed in logspace, too. However, it had been an open question since the 1960'’s
if logspace machines can divide.

This was fairly annoying.

Let me give an example, to illustrate how annoying this was.

We like to think of complexity classes as capturing fundamental aspects of
computation. The question of whether a particular problem lies in a complexity
class or not should not depend on trivial matters, such as minor issues of encoding.
As long as a “reasonable” encoding is used, it should not make much difference
exactly how the problem is encoded. For example, a computational problem in-
volving numbers should have roughly the same complexity, regardless of whether
the numbers are encoded in base ten, or base two, or some other reasonable nota-
tion. Unfortunately, it was not known how convert from base ten to base two in
logspace, and thus one could not safely ignore such matters when discussing the
class L.

Breakthrough number 1: [20] Division is in Logspace.
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As a consequence, related problems (such as converting from base ten to base
two) also lie in logspace.

Complexity theorists are not happy until they have pinpointed the “right” com-
plexity class for a problem. That s, they want to find the complexity class for which
a problem is complete; this corresponds to a tight lower bound on the complexity
of a problem. In the case of division, defining the “right” complexity class takes a
bit of explanation, as does defining the notion of “completeness”. I'll provide the
necessary definitions later. For now, let’s state the result:

Breakthrough number 2: [26] Division is complete foDLOGTIME-uniform
TCY.

This latest breakthrough was presented at ICALP 2001 by Bill Hesse, then a
student at the University of Massachusetts. He receivetbébsepaper awardior
Track A at ICALP 2001 (combined with the best student paper award). A journal
publication containing this and earlier results of [10] (on which [26] builds) is
available as [24].

All of these results build on the earlier work of Beame, Cook, and Hoover
([14]).

In the following sections, | will provide the necessary background about the
complexity classes I'll be discussing, and then I'll present the history of these
breakthroughs, and the main ideas involved. In a closing section, I'll discuss some
of the applications that these advances have already found.

2 Background on Complexity Classes

In order to understand the recent progress on division, it is necessary to understand
the significance of the complexity classes involved. In this article, we shall be
concerned almost exclusively with subclasses of P. Figure 2 lists some of the
classes that we will focus on, along with a list of some problems that are complete
for each class under¢" reductions. (For small complexity classes:"" is one

of the most natural notions of reducibility to consider. For more background on
<AC” you can consult an earlier edition of this column [6].)

Deterministic and nondeterministic logspace (L and NL) are probably familiar
to the reader. #L is the logspace-analog of the class #P; #L is the class of functions
f for which there exists a nondeterministic logspace machinguch thatf(x) is
the number of accepting computationsidf on inputz. GaplL is the class of all
functions that can be expressed as the difference of two #L functions. Additional
background about these complexity classes can be found in an earlier survey |
wrote [7], and in the excellent textbook by Vollmer [41].

The remaining two complexity classes in Figure 2 are circuit complexity classes.



Complexity Class\ Complete Problem

GapL Determinant of Integer Matrices

#L Counting paths in a DAG

Mod, L Determinant of Integer Matrices mod

NL Shortest paths, Transitive Closure

L Graph Acyclicity, Tree Isomorphism

NC! Regular sets, Boolean Formula Evaluation
TC?

Figure 1: Some complexity classes, and some sample sets complete urftler AC
reductions.

NC! is the class of languagesfor which there exist circuit familie§C,, : n € N}
where each circui€’,,

e computes the characteristic functionfon inputs of lengt,

e consists of AID and Cr gates of fan-in two,

e has depttO(log ) (and consequently has siz€(!).

TCC is the class of languagesfor which there exist circuit familie§C,, : n € N}
where each circui€’,,

e computes the characteristic function4fon inputs of lengtm,
e consists of MAJORITY gates (with no bound on the fan-in),
e has depttO(1)

e has sizea0™),

It will cause no confusion to use the terms Nénd TC also to refer to classes

of functionscomputed by these classes of circuits, instead of merely focusing on
languages For instance, thes AC reducibility mentioned earlier comes from the
class AC, which is defined the class of functiorfsfor which there exist circuit
families{C,, : n € N} where each circuif’,,

e computesf on inputs of lengti,
e consists of AID and QR gates (with no bound on the fan-in),

e has depttO(1)



e has sizen0W),

The circuit classes NG TC?, and AC’ each come in different flavors corre-
sponding to differentiniformity conditions As defined above, these classes are
nonuniform That is, there is0 restrictionon how difficult it is to compute the
functionn — C,, (i.e., on how hard it is tdouild the circuits). In order to obtain
subclasses of P, it is necessary to impose a “P-uniformity” condition. That is, the
functionn — C,, must be computable in polynomial time. Even the P-uniformity
condition does not seem to be strong enough to define subclasses of L; this leads
us to consider L-uniformity. In the same way, L-uniformity is awkward when we
want to consider subclasses of N@Ve seem to have started down a slippery slope
of increasingly more restrictive uniformity conditions, and it is natural to wonder if
there is any uniformity condition that is particularly natural or preferable to others.

There is a consensus in the community of researchers in circuit complexity
that the “right” uniformity condition is DLOGTIME-uniformity. For the rest of
this paper, any reference to “uniform” circuits means “DLOGTIME-uniform” cir-
cuits, unless some other uniformity condition is explicity mentioned. For this
paper, you won't need to be concerned with the details of this uniformity condi-
tion; for details you can consult [37, 13, 41]. (The “straightforward” notion of
DLOGTIME-uniformity needs to modified a bit in order to give a satisfactory uni-
formity condition for NC [37].) What gives rise to this consensus?

The answer to this question lies in the fact that most members of the complexity
theory community are more comfortable programming than building circuits. They
prefer to have a machine model that they can program in. Thus it is very desirable
that uniform NC correspond to logarithmic time on an alternating Turing machine
[37] and uniform AC correspond to logarithmic time on an alternating Turing
machine making)(1) alternations [15]. Similarly, uniform TCcorresponds to
logarithmic time and)(1) “alternations” on a threshold machine [34, 4].

Further support for this uniformity condition comes from a series of striking
connections to finite model theory. A language is in uniform®A€and only
if it can be viewed as the class of finite models of a first-order formula. That
is, a single formula (with existential and universal quantifiers) defines an entire
language, as opposed to having a different circuit (i.e., a Boolean formula) for each
input length. The reader can find out more about this connection between logic and
complexity in an earlier edition of this column [27] or in the text by Immerman
[28]. Lindell gives yet another characterization of uniformA@32], lending more
support to this choice of uniformity condition. When we augment the existential
and universal quantifiers with “majority” quantifiers (i.e., instead of asserting that a
predicate holds for all or some elements, we assert that it holds for “most” domain
elements), then we obtain an equivalent characterization of uniforfn TC



For this reason, uniform AOs frequently referred to as FO (for “first order”),
and uniform TC is frequently referred to as FOM (for “first-order with AJOR-
ITY").

The logical framework gives rise to a natural notion of reducibility. Suppose
that languagel can be expressed by a first-order formula (or a FOM formula) with
a new predicate symbd@). Then we say thatl is in FO+ @ (or FOM+ Q).

There are yet more types of reducibility that we'll need. The alert reader will
have noticed that Figure 2 does not lasty complete problems for TCunder
gﬁfo reducibility. This is because it is widely believed that no such language or
function exists! On the other hand, T@oes have several natural problems that
are complete undec_ri%CO reductions, including MJORITY, integer multiplication,
and sorting. Functiory is <A°” reducible tof if there is a uniform family of
polynomial-size,0(1)-depth circuits of AID, OR, and NOT gates and f gates”
(i.e., gates withn input wires and- output wires, where for each-bit input y,
ther output wires take on the-bit value f(y)), where the circuit family computes
g.

In the same way, we can defiré."’ reductions.

We now know that division is also complete for T@nder<#¢" reductions.

(It had been known for a while that multiplication reduces to division, and thus
division was known to be hard for PCIn fact, division had been known to be in
P-uniform TC ever since it was observed in [35, 36] that the algorithm of [14] can
be implemented in P-uniform T8 The breakthrough of [26] is that division is in
DLOGTIME-uniform TC.

3 Background on Division

All of the recent work on division builds on the work of Beame, Cook, and Hoover
[14]. Beame, Cook, and Hoover make use of the fact that, for small enough
u, 1/(1 —u) = Y ,_qu’. Thus to dividex by y, we first let; be roughly
the number of bits iny, s02/~! < y < 2/, and letu = 1 — (y/2’). Thus
z/y = x279(3,_, u'), which can be approximated tobits of accuracy by com-
putingz /y = z277 (3", u'). Since addition of polynomially-many numbers can
be performed in uniform TE; this entire algorithm can be viewed ag%co reduc-
tion from division to the problem of computing the power's For our purposes,
we will focus on the more general problem GERATED MULTIPLICATION (given
n integers, each having bits, compute their product).

That is, the argument of Beame, Cook, and Hoover shows thaERATED
MULTIPLICATION is in FOM, so is division. Accordingly, most of the work in
[14] focuses on presenting efficient circuits fOERATED MULTIPLICATION.



The central idea of all the Talgorithms for DvisioN and related problems is
that of Chinese remainder representation (CRRM n-bit number is uniquely de-
termined by its residues modulo polynomially many primes, each havihez »)
bits. (The Prime Number Theorem guarantees that there will be more than enough
primes of that length.) More precisely, let;, ..., m; be a sequence of primes,
each having)(log n) bits. LetM = Hf;l m;. Any numberX < M can be rep-
resented uniquely by the sequeree, . .., z;) with X = z; (mod m;) for all 4.

The sequencéry, ..., zy) is called the CRR; of X. If M is clear from context,
we will simply call this the CRR ofX .

For each number, let C; be the product of all theq;’s exceptm;, and leth; be
the inverse of”; modulom;. Itis easy to verify thafX is congruent moduld/ to
S @Gy Infact X is equal as an integer, 63~ x;h;C;) — M for some
particular number., called therank of X with respect tal/ (denoted rank; (X)).

Here | am following the convention introduced in [10] of using capital letters
(such asX, M, etc.) to refer to numbers with bit length polynomially-relatechto
(call these “long numbers”), and lower-case letters (such as etc.) to refer to
numbers with bit lengttD (log n) (call these “short numbers”). In particular, note
thatr is a short number.

The algorithm of Beame, Cook, and Hoover can be summed up in the following
three lines:

1. Converting from binary to CRR is in L-uniform PC

2. ITERATED MULTIPLICATION is in L-uniform TC, if the input and output
are in CRR.

3. Converting from CRR to binary is in P-uniform ¥C

Let us consider the first two of these points.

To convert ann-bit numberX from binary to CRR we merely need to find
z;j = 29 (mod m;) for each modulusn; and eachj < n such that bitj of
X is 1. Taking the sunzj z; ; mod m; gives us the value; in the CRR ofX.
Since the value®’ mod m; are easy to compute in L, this part of the argument is
established.

Computing TERATED MULTIPLICATION in CRR is easy, when we observe
that we can add the discrete logs. More precisely, each prime modylhss a
generatorg; generating the (cyclic) multiplicative group of the integers mod
That is, for eachx < m; there is a numbef(z) such thatr = gf(”) (mod m;).
We are given a sequence of numbésfs, ..., X,, in CRR, and we want to com-
pute [, X;. Thus, for each moduluswe want to computd [; X; = []; z;,

(mod m;) =[], gf(xj’i) (mod m;) = gizj Hes) (mod m;).



In logspace, it is easy to build a table of discrete logs for each small modulus,
and hardwire this into an L-uniform TCcircuit. Thus we can find the discrete
logs of eachr; ; and we add them moak;, and then (again using our discrete log
table) find the result of raising; to that power. This gives us one component of
our answer in CRR.

The remaining part of the algorithm in Beame, Cook, and Hoover is converting
from CRR to binary. As presented in [14] (see also [29]), the basic approach was to
note thatX is equal to(Zf:1 x;:h;C;)—rM. If the binary representation af was
given, then the valu(aZle x;h;C;) could be computed in binary. It was not clear
how to compute the number(the rank ofX), but sincer is a short number, there
are not many possible values for Thus the circuit could try all possible values
of (Zle x;:h;C;) — rM and pick the right one. The bottleneck was that nobody
knew how to compute the binary representatiordbfn logspace (although it was
easy to compute this in polynomial time).

A new approach was needed.

4 Breaking the Logspace Barrier

Andrew Y. Chiu received his MS degree from the University of Wisconsin at Mil-
waukee in August, 1995. A mathematical prodigy, he subsequently left computer
science to enter law school.

His MS thesis [19] remained unknown to most of the community for several
years. No paper summarizing its contributions was presented at any of the confer-
ences where researchers usually announce their latest theorems. No technical re-
port was published on ECCC or on any of the other repositories for such material.
We all owe a great debt to Chiu’s advisor, George Davida, and to his collaborator
Bruce Litow, for preparing a journal paper building on his work [20].

Chiu's MS thesis [19] shows that division anGERATED MULTIPLICATION
lie in uniform NC!.

In this survey, I'll sketch for now only a proof that these problems lie in L-
uniform TC. As observed in the previous section, it is sufficient to show that one
can convert from CRR to binary in L-uniform PC

Following the development in [24], I'll actually state and sketch a slightly
stronger result. Let PO, i, b, p) be defined to be true if and only if = b
(mod p) wherea, b, i andp each have)(log n) bits, andp is prime. We’'ll show
that converting from CRR to binary is in FOM POW. It is easy to see that POW
is computable in logspace, as desired.

The reader can check that the L-uniform ®T@rcuits for converting from bi-
nary to CRR and for computingrERATED MULTIPLICATION in CRR represen-



tation can actually be implemented in FOMPOW. Thus, if we can show that
converting from CRR to binary is in FOM- POW, it will follow that division lies
in this class. (In fact, it is shown in [10] that divisionagempletefor FOM+ POW,
and that it follows from a well-known number-theoretic conjecture that POW lies
in FOM. Both of these latter results are superseded by [26, 24].)

In this overview, | will state and give a hint of the main lemmas. For more
details, the reader can consult [24].

Lemma 4.1 Letp be a short prime. Then the binary representation f can be
computed ta:©() bits of accuracy iFO+ POW.

Proof. The reader may easily verify thatjifis an odd prime, then the thgh bit of
the binary expansion of the rational numbgp is the low-order bit o2* mod p.
(Alternatively, a proof is presented in [24].) [

It is not at all obvious how to tell, given two numbers in CRR, which is larger.
Logspace algorithms for this were presented in [21, 22]. Using the preceding
lemma, we obtain yet another algorithm.

Lemma 4.2 Let X and Y be numbers less thaf/ given in CRR; form. In
FOM + POWwe can determine whethéf < Y.

Proof. Clearly, X < Y ifand only if X/M < Y/M. Thus itis sufficient to show
that we can comput&’ /M to polynomially-many bits of accuracy.
Recall thatX = (Zle x;h;C;) — ranky (x) M. ThusX /M is equal to

k
) wihi(1/m;)) — ranky (z).
=1

The reader can verify that the numbetsC; mod m;, andh; are easy to obtain in
FOM + POW. By Lemma 4.1, each summand can be computed in RGROW
to n®() bits of accuracy. Hence we obtain polynomially-many bits of the binary
representation qule x;hi(1/m;)), which is equal taX /M + ranky, (X). Since
the rank is an integerX /M is simply the fractional part of this value. [

A crucial insight of [20] is that it is easy to change from CRR representation
with one set of moduli, to CRR representation using another set of moduli. This is
calledchanging the CRR basis

Lemma 4.3 GivenX in CRRy; and a short prime, we can comput& mod p in
FOM + POW.



Proof. Assume wlog thap does not divideM . In this case, consider the CRR
baseM’ = Mp. We would like to computeX in CRR,,, since this would give us
X mod p.

Trying each of they = n®() possible values for X mod p, we obtain the
CRRy, of n°0) different numbersXy, X1, ..., X,_1, one of which isX. It is
easy to see thaX is the only one of these numbers that is less thanSince we
can compute th€' RR,,s of M, the lemma now follows from Lemma 4.2. =

Another important insight of [20] is that it is easy to divide by products of
distinct short primes.

Lemma 4.4 Letby,..., by be distinct short primesB be the product of the;’s,
and letX be given inCRR,, form. Then we can comput&/B |, also inCRRy,
form, inFOM + POW.

Proof. Assume without loss of generality that divides M. (Otherwise, extend
the basis, using Lemma 4.3.) Thus Mt= BP whereP = [["_, p;.
In FOM + POW we can compute the following quantities:

e Bin CRRy, (by adding the discrete logs modulo eaah),

e The CRRy of S = (3°_, ;hi(B/b;)), whereh, is the multiplicative in-
verse ofB/b; mod b;,

e Y =X — 5in CRRy,

e B! mod P (i.e., the unique numbé&r < P suchthatBT =1 (mod P);
this can be computed in CRFby merely inverting each nonzero component
of the CRRy; of B).

The important things to note are thait= X mod B, and alsaS is only larger than
B by a polynomial factor. Sinc¥ is a multiple of B, Y/ B is an integer less than
P. Thus if we comput& T’ in CRRp we have the CRR of the integerY’/ B, and
from this we can comput®&/B in CRR)y;.

Therefore| X/B| differs fromY /B by at most an additive term af°("). That
is, we can compute a list of°(!) consecutive values, one of which is equal to
| X/B|. We can find the correct value by determining the vaglsech tha{Y7T"+
HNB<X<(YT+j+1)B. ]

Theorem 4.5 Let X be given inCRRy; form. Then we can compute the binary
representation o in FOM + POW.



Proof. As observed in [20], it is sufficient to show that we can compute the GRR
of | X/2*| for any k. This is because, to get theth bit of a numberX that is
given to us in CRR, we compute = | X/2¥| andv = | X/2¢*!]|, and note that
the desired bit is — 2v.

First, we create numberds, ..., A, each a product of polynomially many
short odd primes that do not dividd, with eachA; > M. LetP = M Hf;l A;,
and computeX in CRRp. By Lemma 4.4 (or directly) we can compute+ A;)/2
in CRRp. Itis easy to show thaf ", (4; + 1))/ 1, 4 < 1+ (k/M).

Note that in FOMH POW we can compute the CRRepresentation of) =
[ X T (L + A0 /2)/ T, Ai). But X [T, ((1+ A:)/2)/ TT1, As is equal to
(X/28) (TR, (A + 1))/ TIE, A < (X/25)(1 + (k/M)). We determine which
of {Q,Q — 1} is the correct answer by checkinggR® > X. [

5 Division in Uniform TC

In order to present Hesse's FOM division algorithm, it is useful to define param-
eterized versions of the three problems we have been studying thus far(nl.et

be a function orlN. (We will need to consider only(n) € {kloglogn, klogn,
klog® n, n} for various constant.) Define

e DIVISION(,) to be the problem of computingX /Y | where X andY are
integers withb(n) bits.

¢ ITERATED MULTIPLICATION,,, to be the problem of taking(n) numbers
X1, , Xpn) (each withb(n) bits) as input, and computing; X;.

e POW,, to be the problem of computing POQW i, b, p), where each of,
i, b, p hasb(n) bits.

Thus the preceding section showed that, for sémeOM + POW, 1., CON-
tains both TERATED MULTIPLICATION,, and DVISION,,.

The same analysis shows that for any reason&pig, DIVISION,(,,) and -
ERATED MULTIPLICATION . lie inside FOM+ POW, 14 5, - A direct argument
shows that for small enougttn) (for instance, fob(n) = O(loglog n)), POW,,,
is in FO. We thus have the following corollary:

Corollary 5.1 For any constant;, uniformTC? contains
DIVISION, 1,42 ,, &N ITERATED MULTIPLICATION 1.2 .

Hesse’s theorem showing that division is in uniform®ft@us follows from the
preceding corollary and the following theorem.



Theorem 5.2 [26] For some constank, POWis in
FOM+ ITERATED MULTIPLICATION jog n+ DIVISIONklngn.

Proof. We are giveru, b, i andp and we want to determine if = b (mod p).
Again, we will resort to the Chinese Remainder Theorem.

In FO we can find a list ok = o(logn) primesd;, . .., dy, such that for allj,

d; < 2logp andd; does not divide — 1. (In this overview, I'll ignore the details
of how to find this list.) Furthermore, we can find such a list where= []; d;
itself has onlyO(log n) bits.

Our next step is to compute, for eaghthe valuea; = al®~1/%] mod
p. To do this, compute®; = p mod d;. (Since these numbers are very small,
this can be done in FO.) In FO find the multiplicative inverseaah the in-
tegers modp (call thisa™!, and (using TERATED MULTIPLICATION 1o, and
DIVISION,, 1,2 ,,) cOmputea™i. One can show that there is exactly one num-
berz < p such thatz¥ = a™P7 (mod p), and that furthermore, this is the
value a; that we seek. Sincé; is quite small, once again we can find the
such thatr% = @ P/ (mod p) using ITERATED MULTIPLICATION ; 1og,» @nd
DIVISION, 142 -

Lets = [iD/(p — 1)]. (We can think ofs as being a gross approxima-
tion to ¢ — but one having some nice properties.) Since: D, s has a repre-
sentation(sy, ..., sx) in CRRp. Sincei, D,p — 1 and s are all short numbers,

s and the CRR of s can be computed in FO. If we defing; to be D/d;,
andu; to be stj*l mod dj;, then by the Chinese Remainder Theorem we have
s=>_;u;Dj mod D.

Using ITERATED MULTIPLICATION 1oz, @Nd DIVISION 2, WE CaN COM-
pute the valued = H?Zl a;.”j mod p. An important insight of Hesse [26] is that
Ain some sense is “close” td. More precisely, observe that we can compute the
valueu = i — Z?:l uj|(p—1)/d;] mod p—1inFO. Thena’ = a*A (mod p).
Hesse furthermore is able to show that log? n. Thus (by first computing'©s™,
if need be) we can comput&. Since we already havé, and since:’ = a“ A, we
have succeeded in computinj as desired. [

6 Applications

The new division algorithms have already found application in a rather diverse
collection of settings. Here is a small sample.



6.1 Graph Isomorphism

Although there is a long history of research on the graph isomorphism problem
(GI), there has been very little progress on the problem of proldmger bounds
on the complexity of graph isomorphism — until recently.

In [40], Toran shows thaI is hard for NL and for MoglL under<A¢” reduc-
tions. Using the L-uniform T€&circuits of [20] for converting from CRR to binary,
Toran was able to build on those hardness results and showthiathard for the
apparently-larger class N@3apL) under logspace many-one reductions. Using
the improved uniformity provided by [26, 24], it now follows th@tl is hard for
NC!(GapL) undergﬁbCO reductions. (In an earlier version of this paper [8], | listed
this as open problem, and instead stated only a weaker result.)

6.2 Time-Space Tradeoffs

In a recent edition of the Computational Complexity Column [33], Dieter van
Melkebeek provided a survey of recent progress on time-space tradeoffs. Most
of the results surveyed there are for SAT and related problems on deterministic
and nondeterministic machines using sublinear space. In yet another example of
the observation that “upper bounds vyield lower bounds”, the new division algo-
rithm of [20] enabled the authors of [11] to transfer these lower bound techniques
from the domain of hondeterministic computation to the realm of unbounded-error
probabilistic computation.

6.3 Eulerian Paths

Toda was one of the first authors to show that some natural problems are complete
for GapL [39]. Most of the reductions presented in [39] are very restrictive, show-
ing that problems are hard for #L or GapL unel_%CO reductions, or even under a
more restrictive notion known as projections. However, there is a glaring example
where he was forced to consider a very powerful notion of reducibility.

An Euler touris a closed path in a graph that traverses each edge. Toda shows
in [39] that counting the number of Eulerian tours in a grapliﬁco-reducible
to the problem of computing the determinant of an integer matrix. Thus it lies in
AC°(GapL). He was unable to show that counting Euler tours is hard for GapL
underg%CO reductions, but he could show that GapL reduces to counting Euler
tours under P-uniform T€reductions, via a reduction that involves division. By
making use of the results of [26, 24], we now see that the P-uniformity condition
can be replaced by DLOGTIME-uniformity.



6.4 Arithmetic Circuits

The complexity classes #&Cand GapA€ were introduced in [1] and have been
studied in [12] and [9]. (See also the survey article on arithmetic circuits [7], and
the material on arithmetic circuits in [41].) The main motivation for introducing
and studying these classes comes from the fact that they give rise to several char-
acterizations of T€.

However, there was a problem with these characterizations — some of them
were not known to hold in the uniform setting. For instance, four different language
classes arising from arithmetic A@ircuits were shown to coincide with PGn
the non-uniform and P-uniform settings, but were not known to coincide in the
DLOGTIME-uniform setting. Some more of these classes were shown to coincide
in [12], but there still remained a question as to whether these classes were really
the same as DLOGTIME-uniform TC

It is an immediate consequence of [26, 24] that all of the classes introduced in
[1] coincide with TC even in the uniform setting.

Another important class of arithmetic circuits arises by arithmetizing bl
cuits. This yields the classes #N@nd GapNC, which have received attention
in [18, 7, 41]. 1 conjecture in [7] that the functions in #N@nd GapN¢C actu-
ally coincidewith the functions in (Boolean) NC (This conjecture is based on a
very efficient simulation of arithmetic circuits by Boolean circuits, first presented
by Jung [30].) However, until the work of Chiu, Davida, and Litow, it was not
even known whether the functions in these classes can be computed in logspace.
Now, we know that they can be; that is, every function in GapMomputable
in logspace.

6.5 Powering in Finite Fields

It was shown in [2] that the techniques of [24] can be used to show that power-
ing in finite fields of polynomial size can be performed in FO. This is used in
[2] to show that there is a set that is complete for NP under DLOGTIME-uniform
AC[®)] circuits that is not complete unde_;?ﬁCO (even non-uniform reductions).
This improves a result that appeared in an earlier version [3], where a more power-
ful uniformity notion was used instead.

6.6 Sparse Complete Sets

In [16], Cai and Sivakumar showed that if there is a sparse set that is hard for P
under <A®” reductions, then P is equal to L-uniform ¥.CIn [17] they proved
an analogous result, showing that if there is a sparse set that is hard for NL under



<AC” "then NL = L-uniform TC. The reason for having an L-uniformity condi-
tion, instead of the more-natural DLOGTIME-uniformity condition, was because
their construction required some precomputation involving finite fields; in partic-
ular it was necessary to perform powering in small finite fields. By making use
of the improved powering algorithm of [2], it follows that if there is a sparse hard
set for P (or for NL) undelg,‘j;CO reductions, then P (NL, respectively) is equal to
DLOGTIME-uniform TC.

6.7 Additional Applications

Several additional applications of the improved division algorithms are surveyed
in [24] (including division of polynomials, iterated multiplication of polynomials,
power series computation, and applications in proof theory). The reader is referred
to [24] for details.

7 Small Space Bounds

Itis observed in [24] that the division algorithm of [20] provides a new translational
lemma for small space bounds.

Usually a lower bound on the complexity of the binary encoding of a set follows
from a bound on the complexity of the unary encoding. (The unary encoding of
A,un(A), is defined to bg0” : x € A}.) This follows from a standarttanslation
lemma such as:

Lemma 7.1 (Traditional Translation Lemma) If s(logn) = Q(log logn) is fully
space-constructible, then the first statement below implies the second:

e A c dspacés(n)).
e un(A) € dspacélogn + s(logn)).
The converse also holds,siflogn) = Q(logn).

Note in particular that this translation lemma does not allow one to derive any
lower bound on the space complexity 4f assuming only a logarithmic lower
bound on the space complexity of (uf).

There is another reasonable way to define small space complexity classes. De-
fine DSPACHEs(n)) to be the class of languages accepted by Turing machines that
begin their computation with a worktape consistings¢f) cells (delimited by
endmarkers), as opposed to the more common complexity classes ([@$pare



where the worktape is initially blank, and the machine must use its own computa-
tional power to make sure that it respects the space bous:¢f Viewed another
way, DSPACEs(n)) is simply dspacés(n)) augmented by a small amount of “ad-
vice”, allowing the machine to compute the space bound. (This model was defined
under the name “DEMONSPACE” by Hartmanis and Ranjan [25]. See also Szepi-
etowski’'s book [38] on sublogarithmic space.)

DSPACEs(n)) seems at first to share many of the properties of d§péce).
In particular, it is still relatively straightforward to show that there are natural prob-
lems, such as the set of palindromes, that are not in DSPACIg n)).

The efficient division algorithm of [20] provides a new translation lemma.

Lemma 7.2 New translation lemmalet s(n) = Q(logn) be fully space-con-
structible. Then the following are equivalent:

e A c dspacés(n))
e un(A) € DSPACHEloglogn + s(logn)).

Corollary 7.3 In order to show NP is not contained In it suffices to present a
setA € NP such thatun(A) ¢ DSPACKE]log logn).

At first glance, this corollary may seem surprising, since there are sets in NP
(such as the set of prime numbers) whose unary encoding is knotto be in
dspacélog log n) [23]. It might seem as if the computational power of the classes
dspacélog logn) and DSPACHog log n) might not be so very different. One
conseqguence of our new insight into division is that it is now clear that the DSPACE
classes can carry out simulations that seem impossible in the dspace model.
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