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1 Introduction

All of us learn to do arithmetic in grade school. The algorithms for addition and
subtraction take some time to master, and the multiplication algorithm is even more
complicated. Eventually students learn the division algorithm; most students find
it to be complicated, time-consuming, and tedious. Is there a better way to divide?

For most practical purposes, the correct way to answer this question is to con-
sider the time-complexity of division; what is the fastest division algorithm? That
is not the subject of this article. I am not aware of any recent breakthrough on
this question; any good textbook on design and analysis of algorithms will tell you
about the current state of the art on that front.

Complexity theory gives us an equally-valid way to ask about the complexity
of division:

In what complexity class does division lie?

One of the most important subclasses of P (and one of the first to be defined
and studied) is the class L (deterministic logarithmic space). It is easy to see how
to add and subtract in L. It is a simple exercise to show that multiplication can be
computed in logspace, too. However, it had been an open question since the 1960’s
if logspace machines can divide.

This was fairly annoying.
Let me give an example, to illustrate how annoying this was.
We like to think of complexity classes as capturing fundamental aspects of

computation. The question of whether a particular problem lies in a complexity
class or not should not depend on trivial matters, such as minor issues of encoding.
As long as a “reasonable” encoding is used, it should not make much difference
exactly how the problem is encoded. For example, a computational problem in-
volving numbers should have roughly the same complexity, regardless of whether
the numbers are encoded in base ten, or base two, or some other reasonable nota-
tion. Unfortunately, it was not known how convert from base ten to base two in
logspace, and thus one could not safely ignore such matters when discussing the
class L.

Breakthrough number 1: [20] Division is in Logspace.
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As a consequence, related problems (such as converting from base ten to base
two) also lie in logspace.

Complexity theorists are not happy until they have pinpointed the “right” com-
plexity class for a problem. That is, they want to find the complexity class for which
a problem is complete; this corresponds to a tight lower bound on the complexity
of a problem. In the case of division, defining the “right” complexity class takes a
bit of explanation, as does defining the notion of “completeness”. I’ll provide the
necessary definitions later. For now, let’s state the result:

Breakthrough number 2: [26] Division is complete forDLOGTIME-uniform
TC0.

This latest breakthrough was presented at ICALP 2001 by Bill Hesse, then a
student at the University of Massachusetts. He received thebest paper awardfor
Track A at ICALP 2001 (combined with the best student paper award). A journal
publication containing this and earlier results of [10] (on which [26] builds) is
available as [24].

All of these results build on the earlier work of Beame, Cook, and Hoover
([14]).

In the following sections, I will provide the necessary background about the
complexity classes I’ll be discussing, and then I’ll present the history of these
breakthroughs, and the main ideas involved. In a closing section, I’ll discuss some
of the applications that these advances have already found.

2 Background on Complexity Classes

In order to understand the recent progress on division, it is necessary to understand
the significance of the complexity classes involved. In this article, we shall be
concerned almost exclusively with subclasses of P. Figure 2 lists some of the
classes that we will focus on, along with a list of some problems that are complete
for each class under≤AC0

m reductions. (For small complexity classes,≤AC0

m is one
of the most natural notions of reducibility to consider. For more background on
≤AC0

m you can consult an earlier edition of this column [6].)
Deterministic and nondeterministic logspace (L and NL) are probably familiar

to the reader. #L is the logspace-analog of the class #P; #L is the class of functions
f for which there exists a nondeterministic logspace machineM such thatf(x) is
the number of accepting computations ofM on inputx. GapL is the class of all
functions that can be expressed as the difference of two #L functions. Additional
background about these complexity classes can be found in an earlier survey I
wrote [7], and in the excellent textbook by Vollmer [41].

The remaining two complexity classes in Figure 2 are circuit complexity classes.



Complexity Class Complete Problem

GapL Determinant of Integer Matrices
#L Counting paths in a DAG
ModpL Determinant of Integer Matrices modp
NL Shortest paths, Transitive Closure
L Graph Acyclicity, Tree Isomorphism
NC1 Regular sets, Boolean Formula Evaluation
TC0

Figure 1: Some complexity classes, and some sample sets complete under AC0

reductions.

NC1 is the class of languagesA for which there exist circuit families{Cn : n ∈ N}
where each circuitCn

• computes the characteristic function ofA on inputs of lengthn,

• consists of AND and OR gates of fan-in two,

• has depthO(log n) (and consequently has sizenO(1)).

TC0 is the class of languagesA for which there exist circuit families{Cn : n ∈ N}
where each circuitCn

• computes the characteristic function ofA on inputs of lengthn,

• consists of MAJORITY gates (with no bound on the fan-in),

• has depthO(1)

• has sizenO(1).

It will cause no confusion to use the terms NC1 and TC0 also to refer to classes
of functionscomputed by these classes of circuits, instead of merely focusing on
languages. For instance, the≤AC0

m reducibility mentioned earlier comes from the
class AC0, which is defined the class of functionsf for which there exist circuit
families{Cn : n ∈ N} where each circuitCn

• computesf on inputs of lengthn,

• consists of AND and OR gates (with no bound on the fan-in),

• has depthO(1)



• has sizenO(1).

The circuit classes NC1, TC0, and AC0 each come in different flavors corre-
sponding to differentuniformity conditions. As defined above, these classes are
nonuniform. That is, there isno restrictionon how difficult it is to compute the
function n 7→ Cn (i.e., on how hard it is tobuild the circuits). In order to obtain
subclasses of P, it is necessary to impose a “P-uniformity” condition. That is, the
functionn 7→ Cn must be computable in polynomial time. Even the P-uniformity
condition does not seem to be strong enough to define subclasses of L; this leads
us to consider L-uniformity. In the same way, L-uniformity is awkward when we
want to consider subclasses of NC1. We seem to have started down a slippery slope
of increasingly more restrictive uniformity conditions, and it is natural to wonder if
there is any uniformity condition that is particularly natural or preferable to others.

There is a consensus in the community of researchers in circuit complexity
that the “right” uniformity condition is DLOGTIME-uniformity. For the rest of
this paper, any reference to “uniform” circuits means “DLOGTIME-uniform” cir-
cuits, unless some other uniformity condition is explicitly mentioned. For this
paper, you won’t need to be concerned with the details of this uniformity condi-
tion; for details you can consult [37, 13, 41]. (The “straightforward” notion of
DLOGTIME-uniformity needs to modified a bit in order to give a satisfactory uni-
formity condition for NC1 [37].) What gives rise to this consensus?

The answer to this question lies in the fact that most members of the complexity
theory community are more comfortable programming than building circuits. They
prefer to have a machine model that they can program in. Thus it is very desirable
that uniform NC1 correspond to logarithmic time on an alternating Turing machine
[37] and uniform AC0 correspond to logarithmic time on an alternating Turing
machine makingO(1) alternations [15]. Similarly, uniform TC0 corresponds to
logarithmic time andO(1) “alternations” on a threshold machine [34, 4].

Further support for this uniformity condition comes from a series of striking
connections to finite model theory. A language is in uniform AC0 if and only
if it can be viewed as the class of finite models of a first-order formula. That
is, a single formula (with existential and universal quantifiers) defines an entire
language, as opposed to having a different circuit (i.e., a Boolean formula) for each
input length. The reader can find out more about this connection between logic and
complexity in an earlier edition of this column [27] or in the text by Immerman
[28]. Lindell gives yet another characterization of uniform AC0 [32], lending more
support to this choice of uniformity condition. When we augment the existential
and universal quantifiers with “majority” quantifiers (i.e., instead of asserting that a
predicate holds for all or some elements, we assert that it holds for “most” domain
elements), then we obtain an equivalent characterization of uniform TC0.



For this reason, uniform AC0 is frequently referred to as FO (for “first order”),
and uniform TC0 is frequently referred to as FOM (for “first-order with MAJOR-
ITY”).

The logical framework gives rise to a natural notion of reducibility. Suppose
that languageA can be expressed by a first-order formula (or a FOM formula) with
a new predicate symbolQ. Then we say thatA is in FO+ Q (or FOM+ Q).

There are yet more types of reducibility that we’ll need. The alert reader will
have noticed that Figure 2 does not listany complete problems for TC0 under
≤AC0

m reducibility. This is because it is widely believed that no such language or
function exists! On the other hand, TC0 does have several natural problems that
are complete under≤AC0

T reductions, including MAJORITY, integer multiplication,
and sorting. Functiong is ≤AC0

T reducible tof if there is a uniform family of
polynomial-size,O(1)-depth circuits of AND, OR, and NOT gates and “f gates”
(i.e., gates withm input wires andr output wires, where for eachm-bit input y,
ther output wires take on ther-bit valuef(y)), where the circuit family computes
g.

In the same way, we can define≤TC0

T reductions.
We now know that division is also complete for TC0 under≤AC0

T reductions.
(It had been known for a while that multiplication reduces to division, and thus
division was known to be hard for TC0. In fact, division had been known to be in
P-uniform TC0 ever since it was observed in [35, 36] that the algorithm of [14] can
be implemented in P-uniform TC0. The breakthrough of [26] is that division is in
DLOGTIME-uniform TC0.

3 Background on Division

All of the recent work on division builds on the work of Beame, Cook, and Hoover
[14]. Beame, Cook, and Hoover make use of the fact that, for small enough
u, 1/(1 − u) =

∑
i=0 ui. Thus to dividex by y, we first let j be roughly

the number of bits iny, so 2j−1 ≤ y < 2j , and letu = 1 − (y/2j). Thus
x/y = x2−j(

∑
i=0 ui), which can be approximated ton bits of accuracy by com-

putingx/y = x2−j(
∑n

i=0 ui). Since addition of polynomially-many numbers can
be performed in uniform TC0, this entire algorithm can be viewed as a≤TC0

T reduc-
tion from division to the problem of computing the powersui. For our purposes,
we will focus on the more general problem of ITERATED MULTIPLICATION (given
n integers, each havingn bits, compute their product).

That is, the argument of Beame, Cook, and Hoover shows that if ITERATED

MULTIPLICATION is in FOM, so is division. Accordingly, most of the work in
[14] focuses on presenting efficient circuits for ITERATED MULTIPLICATION.



The central idea of all the TC0 algorithms for DIVISION and related problems is
that ofChinese remainder representation (CRR). An n-bit number is uniquely de-
termined by its residues modulo polynomially many primes, each havingO(log n)
bits. (The Prime Number Theorem guarantees that there will be more than enough
primes of that length.) More precisely, letm1, . . . ,mk be a sequence of primes,
each havingO(log n) bits. LetM =

∏k
i=1 mi. Any numberX < M can be rep-

resented uniquely by the sequence(x1, . . . , xk) with X ≡ xi (mod mi) for all i.
The sequence(x1, . . . , xk) is called the CRRM of X. If M is clear from context,
we will simply call this the CRR ofX.

For each numberi, letCi be the product of all themj ’s exceptmi, and lethi be
the inverse ofCi modulomi. It is easy to verify thatX is congruent moduloM to∑k

i=1 xihiCi. In factX is equal, as an integer, to(
∑k

i=1 xihiCi)− rM for some
particular numberr, called therank of X with respect toM (denoted rankM (X)).

Here I am following the convention introduced in [10] of using capital letters
(such asX,M , etc.) to refer to numbers with bit length polynomially-related ton
(call these “long numbers”), and lower-case letters (such asr, xi, etc.) to refer to
numbers with bit lengthO(log n) (call these “short numbers”). In particular, note
thatr is a short number.

The algorithm of Beame, Cook, and Hoover can be summed up in the following
three lines:

1. Converting from binary to CRR is in L-uniform TC0.

2. ITERATED MULTIPLICATION is in L-uniform TC0, if the input and output
are in CRR.

3. Converting from CRR to binary is in P-uniform TC0.

Let us consider the first two of these points.
To convert ann-bit numberX from binary to CRR we merely need to find

xi,j = 2j (mod mi) for each modulusmi and eachj < n such that bitj of
X is 1. Taking the sum

∑
j xi,j mod mi gives us the valuexi in the CRR ofX.

Since the values2j mod mi are easy to compute in L, this part of the argument is
established.

Computing ITERATED MULTIPLICATION in CRR is easy, when we observe
that we can add the discrete logs. More precisely, each prime modulusmi has a
generatorgi generating the (cyclic) multiplicative group of the integers modmi.
That is, for eachx < mi there is a number̀(x) such thatx ≡ g

`(x)
i (mod mi).

We are given a sequence of numbersX1, . . . ,Xn in CRR, and we want to com-
pute

∏
j Xj . Thus, for each modulusi we want to compute

∏
j Xj ≡ ∏

j xj,i

(mod mi) ≡
∏

j g
`(xj,i)
i (mod mi) ≡ g

∑
j `(xj,i)

i (mod mi).



In logspace, it is easy to build a table of discrete logs for each small modulus,
and hardwire this into an L-uniform TC0 circuit. Thus we can find the discrete
logs of eachxj,i and we add them modmi, and then (again using our discrete log
table) find the result of raisinggi to that power. This gives us one component of
our answer in CRR.

The remaining part of the algorithm in Beame, Cook, and Hoover is converting
from CRR to binary. As presented in [14] (see also [29]), the basic approach was to
note thatX is equal to(

∑k
i=1 xihiCi)−rM . If the binary representation ofM was

given, then the value(
∑k

i=1 xihiCi) could be computed in binary. It was not clear
how to compute the numberr (the rank ofX), but sincer is a short number, there
are not many possible values forr. Thus the circuit could try all possible values
of (

∑k
i=1 xihiCi) − rM and pick the right one. The bottleneck was that nobody

knew how to compute the binary representation ofM in logspace (although it was
easy to compute this in polynomial time).

A new approach was needed.

4 Breaking the Logspace Barrier

Andrew Y. Chiu received his MS degree from the University of Wisconsin at Mil-
waukee in August, 1995. A mathematical prodigy, he subsequently left computer
science to enter law school.

His MS thesis [19] remained unknown to most of the community for several
years. No paper summarizing its contributions was presented at any of the confer-
ences where researchers usually announce their latest theorems. No technical re-
port was published on ECCC or on any of the other repositories for such material.
We all owe a great debt to Chiu’s advisor, George Davida, and to his collaborator
Bruce Litow, for preparing a journal paper building on his work [20].

Chiu’s MS thesis [19] shows that division and ITERATED MULTIPLICATION

lie in uniform NC1.
In this survey, I’ll sketch for now only a proof that these problems lie in L-

uniform TC0. As observed in the previous section, it is sufficient to show that one
can convert from CRR to binary in L-uniform TC0.

Following the development in [24], I’ll actually state and sketch a slightly
stronger result. Let POW(a, i, b, p) be defined to be true if and only ifai ≡ b
(mod p) wherea, b, i andp each haveO(log n) bits, andp is prime. We’ll show
that converting from CRR to binary is in FOM+ POW. It is easy to see that POW
is computable in logspace, as desired.

The reader can check that the L-uniform TC0 circuits for converting from bi-
nary to CRR and for computing ITERATED MULTIPLICATION in CRR represen-



tation can actually be implemented in FOM+ POW. Thus, if we can show that
converting from CRR to binary is in FOM+ POW, it will follow that division lies
in this class. (In fact, it is shown in [10] that division iscompletefor FOM+POW,
and that it follows from a well-known number-theoretic conjecture that POW lies
in FOM. Both of these latter results are superseded by [26, 24].)

In this overview, I will state and give a hint of the main lemmas. For more
details, the reader can consult [24].

Lemma 4.1 Letp be a short prime. Then the binary representation of1/p can be
computed tonO(1) bits of accuracy inFO+ POW.

Proof. The reader may easily verify that ifp is an odd prime, then the thekth bit of
the binary expansion of the rational number1/p is the low-order bit of2k mod p.
(Alternatively, a proof is presented in [24].)

It is not at all obvious how to tell, given two numbers in CRR, which is larger.
Logspace algorithms for this were presented in [21, 22]. Using the preceding
lemma, we obtain yet another algorithm.

Lemma 4.2 Let X and Y be numbers less thanM given in CRRM form. In
FOM + POWwe can determine whetherX < Y .

Proof. Clearly,X < Y if and only if X/M < Y/M . Thus it is sufficient to show
that we can computeX/M to polynomially-many bits of accuracy.

Recall thatX = (
∑k

i=1 xihiCi)− rankM (x)M . ThusX/M is equal to

(
k∑

i=1

xihi(1/mi))− rankM (x).

The reader can verify that the numbersxi, Ci mod mi, andhi are easy to obtain in
FOM + POW. By Lemma 4.1, each summand can be computed in FOM+ POW
to nO(1) bits of accuracy. Hence we obtain polynomially-many bits of the binary
representation of(

∑k
i=1 xihi(1/mi)), which is equal toX/M + rankM (X). Since

the rank is an integer,X/M is simply the fractional part of this value.
A crucial insight of [20] is that it is easy to change from CRR representation

with one set of moduli, to CRR representation using another set of moduli. This is
calledchanging the CRR basis.

Lemma 4.3 GivenX in CRRM and a short primep, we can computeX mod p in
FOM + POW.



Proof. Assume wlog thatp does not divideM . In this case, consider the CRR
baseM ′ = Mp. We would like to computeX in CRRM ′, since this would give us
X mod p.

Trying each of thep = nO(1) possible valuesi for X mod p, we obtain the
CRRM ′ of nO(1) different numbersX0,X1, . . . ,Xp−1, one of which isX. It is
easy to see thatX is the only one of these numbers that is less thanM . Since we
can compute theCRRM ′ of M , the lemma now follows from Lemma 4.2.

Another important insight of [20] is that it is easy to divide by products of
distinct short primes.

Lemma 4.4 Let b1, . . . , b` be distinct short primes,B be the product of thebi’s,
and letX be given inCRRM form. Then we can computebX/Bc, also inCRRM

form, inFOM + POW.

Proof. Assume without loss of generality thatB dividesM . (Otherwise, extend
the basis, using Lemma 4.3.) Thus letM = BP whereP =

∏k
i=1 pi.

In FOM + POW we can compute the following quantities:

• B in CRRM (by adding the discrete logs modulo eachmi),

• The CRRM of S = (
∑`

i=1 xihi(B/bi)), wherehi is the multiplicative in-
verse ofB/bi mod bi,

• Y = X − S in CRRM ,

• B−1 mod P (i.e., the unique numberT < P such thatBT ≡ 1 (mod P );
this can be computed in CRRP by merely inverting each nonzero component
of the CRRM of B).

The important things to note are thatS ≡ X mod B, and alsoS is only larger than
B by a polynomial factor. SinceY is a multiple ofB, Y/B is an integer less than
P . Thus if we computeY T in CRRP we have the CRRP of the integerY/B, and
from this we can computeY/B in CRRM .

ThereforebX/Bc differs fromY/B by at most an additive term ofnO(1). That
is, we can compute a list ofnO(1) consecutive values, one of which is equal to
bX/Bc. We can find the correct value by determining the valuej such that(Y T +
j)B ≤ X < (Y T + j + 1)B.

Theorem 4.5 Let X be given inCRRM form. Then we can compute the binary
representation ofX in FOM + POW.



Proof. As observed in [20], it is sufficient to show that we can compute the CRRM

of bX/2kc for any k. This is because, to get thek-th bit of a numberX that is
given to us in CRR, we computeu = bX/2kc andv = bX/2k+1c, and note that
the desired bit isu− 2v.

First, we create numbersA1, . . . , Ak, each a product of polynomially many
short odd primes that do not divideM , with eachAi > M . Let P = M

∏k
i=1 Ai,

and computeX in CRRP . By Lemma 4.4 (or directly) we can compute(1+Ai)/2
in CRRP . It is easy to show that(

∏k
i=1(Ai + 1))/

∏k
i=1 Ai < 1 + (k/M).

Note that in FOM+ POW we can compute the CRRP representation ofQ =
bX ∏k

i=1((1 + Ai)/2)/
∏k

i=1 Aic. But X
∏k

i=1((1 + Ai)/2)/
∏k

i=1 Ai is equal to
(X/2k)(

∏k
i=1(Ai + 1))/

∏k
i=1 Ai < (X/2k)(1 + (k/M)). We determine which

of {Q,Q− 1} is the correct answer by checking ifQ2k > X.

5 Division in Uniform TC 0

In order to present Hesse’s FOM division algorithm, it is useful to define param-
eterized versions of the three problems we have been studying thus far. Letb(n)
be a function onN. (We will need to consider onlyb(n) ∈ {k log log n, k log n,
k log2 n, n} for various constantsk.) Define

• DIVISIONb(n) to be the problem of computingbX/Y c whereX andY are
integers withb(n) bits.

• ITERATED MULTIPLICATION b(n) to be the problem of takingb(n) numbers
X1, . . . ,Xb(n) (each withb(n) bits) as input, and computing

∏
i Xi.

• POWb(n) to be the problem of computing POW(a, i, b, p), where each ofa,
i, b, p hasb(n) bits.

Thus the preceding section showed that, for somek, FOM + POWk log n con-
tains both ITERATED MULTIPLICATIONn and DIVISIONn.

The same analysis shows that for any reasonableb(n), DIVISIONb(n) and IT-
ERATED MULTIPLICATION b(n) lie inside FOM+POWk log b(n). A direct argument
shows that for small enoughb(n) (for instance, forb(n) = O(log log n)), POWb(n)

is in FO. We thus have the following corollary:

Corollary 5.1 For any constantk, uniformTC0 contains
DIVISIONk log2 n and ITERATED MULTIPLICATIONk log2 n.

Hesse’s theorem showing that division is in uniform TC0 thus follows from the
preceding corollary and the following theorem.



Theorem 5.2 [26] For some constantk, POWis in
FOM+ ITERATED MULTIPLICATIONk log n+ DIVISIONk log2 n.

Proof. We are givena, b, i andp and we want to determine ifai ≡ b (mod p).
Again, we will resort to the Chinese Remainder Theorem.

In FO we can find a list ofk = o(log n) primesd1, . . . , dk, such that for allj,
dj < 2 log p anddj does not dividep − 1. (In this overview, I’ll ignore the details
of how to find this list.) Furthermore, we can find such a list whereD =

∏
j dj

itself has onlyO(log n) bits.
Our next step is to compute, for eachj, the valueaj = ab(p−1)/djc mod

p. To do this, computepj = p mod dj. (Since these numbers are very small,
this can be done in FO.) In FO find the multiplicative inverse ofa in the in-
tegers modp (call this a−1, and (using ITERATED MULTIPLICATIONk log n and
DIVISIONk log2 n) computea−pj . One can show that there is exactly one num-

ber x < p such thatxdj ≡ a−pj (mod p), and that furthermore, thisx is the
value aj that we seek. Sincedj is quite small, once again we can find thex
such thatxdj ≡ a−pj (mod p) using ITERATED MULTIPLICATIONk log n and
DIVISIONk log2 n.

Let s = biD/(p − 1)c. (We can think ofs as being a gross approxima-
tion to i – but one having some nice properties.) Sinces < D, s has a repre-
sentation(s1, . . . , sk) in CRRD. Sincei,D, p − 1 and s are all short numbers,
s and the CRRD of s can be computed in FO. If we defineDj to be D/dj ,
anduj to besjD

−1
j mod dj, then by the Chinese Remainder Theorem we have

s ≡ ∑
j ujDj mod D.

Using ITERATED MULTIPLICATIONk log n and DIVISIONk log2 n, we can com-

pute the valueA =
∏k

j=1 a
uj

j mod p. An important insight of Hesse [26] is that
A in some sense is “close” toai. More precisely, observe that we can compute the
valueu = i−∑k

j=1 ujb(p−1)/djc mod p−1 in FO. Thenai ≡ auA (mod p).
Hesse furthermore is able to show thatu < log2 n. Thus (by first computingalog n,
if need be) we can computeau. Since we already haveA, and sinceai = auA, we
have succeeded in computingai, as desired.

6 Applications

The new division algorithms have already found application in a rather diverse
collection of settings. Here is a small sample.



6.1 Graph Isomorphism

Although there is a long history of research on the graph isomorphism problem
(GI), there has been very little progress on the problem of provinglower bounds
on the complexity of graph isomorphism – until recently.

In [40], Torán shows thatGI is hard for NL and for ModpL under≤AC0

m reduc-
tions. Using the L-uniform TC0 circuits of [20] for converting from CRR to binary,
Torán was able to build on those hardness results and show thatGI is hard for the
apparently-larger class NC1(GapL) under logspace many-one reductions. Using
the improved uniformity provided by [26, 24], it now follows thatGI is hard for
NC1(GapL) under≤AC0

m reductions. (In an earlier version of this paper [8], I listed
this as open problem, and instead stated only a weaker result.)

6.2 Time-Space Tradeoffs

In a recent edition of the Computational Complexity Column [33], Dieter van
Melkebeek provided a survey of recent progress on time-space tradeoffs. Most
of the results surveyed there are for SAT and related problems on deterministic
and nondeterministic machines using sublinear space. In yet another example of
the observation that “upper bounds yield lower bounds”, the new division algo-
rithm of [20] enabled the authors of [11] to transfer these lower bound techniques
from the domain of nondeterministic computation to the realm of unbounded-error
probabilistic computation.

6.3 Eulerian Paths

Toda was one of the first authors to show that some natural problems are complete
for GapL [39]. Most of the reductions presented in [39] are very restrictive, show-
ing that problems are hard for #L or GapL under≤AC0

m reductions, or even under a
more restrictive notion known as projections. However, there is a glaring example
where he was forced to consider a very powerful notion of reducibility.

An Euler tour is a closed path in a graph that traverses each edge. Toda shows
in [39] that counting the number of Eulerian tours in a graph is≤AC0

T -reducible
to the problem of computing the determinant of an integer matrix. Thus it lies in
AC0(GapL). He was unable to show that counting Euler tours is hard for GapL
under≤AC0

T reductions, but he could show that GapL reduces to counting Euler
tours under P-uniform TC0 reductions, via a reduction that involves division. By
making use of the results of [26, 24], we now see that the P-uniformity condition
can be replaced by DLOGTIME-uniformity.



6.4 Arithmetic Circuits

The complexity classes #AC0 and GapAC0 were introduced in [1] and have been
studied in [12] and [9]. (See also the survey article on arithmetic circuits [7], and
the material on arithmetic circuits in [41].) The main motivation for introducing
and studying these classes comes from the fact that they give rise to several char-
acterizations of TC0.

However, there was a problem with these characterizations – some of them
were not known to hold in the uniform setting. For instance, four different language
classes arising from arithmetic AC0 circuits were shown to coincide with TC0 in
the non-uniform and P-uniform settings, but were not known to coincide in the
DLOGTIME-uniform setting. Some more of these classes were shown to coincide
in [12], but there still remained a question as to whether these classes were really
the same as DLOGTIME-uniform TC0.

It is an immediate consequence of [26, 24] that all of the classes introduced in
[1] coincide with TC0 even in the uniform setting.

Another important class of arithmetic circuits arises by arithmetizing NC1 cir-
cuits. This yields the classes #NC1 and GapNC1, which have received attention
in [18, 7, 41]. I conjecture in [7] that the functions in #NC1 and GapNC1 actu-
ally coincidewith the functions in (Boolean) NC1. (This conjecture is based on a
very efficient simulation of arithmetic circuits by Boolean circuits, first presented
by Jung [30].) However, until the work of Chiu, Davida, and Litow, it was not
even known whether the functions in these classes can be computed in logspace.
Now, we know that they can be; that is, every function in GapNC1 is computable
in logspace.

6.5 Powering in Finite Fields

It was shown in [2] that the techniques of [24] can be used to show that power-
ing in finite fields of polynomial size can be performed in FO. This is used in
[2] to show that there is a set that is complete for NP under DLOGTIME-uniform
AC[⊕] circuits that is not complete under≤AC0

m (even non-uniform reductions).
This improves a result that appeared in an earlier version [3], where a more power-
ful uniformity notion was used instead.

6.6 Sparse Complete Sets

In [16], Cai and Sivakumar showed that if there is a sparse set that is hard for P
under≤AC0

m reductions, then P is equal to L-uniform TC0. In [17] they proved
an analogous result, showing that if there is a sparse set that is hard for NL under



≤AC0

m , then NL = L-uniform TC0. The reason for having an L-uniformity condi-
tion, instead of the more-natural DLOGTIME-uniformity condition, was because
their construction required some precomputation involving finite fields; in partic-
ular it was necessary to perform powering in small finite fields. By making use
of the improved powering algorithm of [2], it follows that if there is a sparse hard
set for P (or for NL) under≤AC0

m reductions, then P (NL, respectively) is equal to
DLOGTIME-uniform TC0.

6.7 Additional Applications

Several additional applications of the improved division algorithms are surveyed
in [24] (including division of polynomials, iterated multiplication of polynomials,
power series computation, and applications in proof theory). The reader is referred
to [24] for details.

7 Small Space Bounds

It is observed in [24] that the division algorithm of [20] provides a new translational
lemma for small space bounds.

Usually a lower bound on the complexity of the binary encoding of a set follows
from a bound on the complexity of the unary encoding. (The unary encoding of
A, un(A), is defined to be{0x : x ∈ A}.) This follows from a standardtranslation
lemma, such as:

Lemma 7.1 (Traditional Translation Lemma) If s(log n) = Ω(log log n) is fully
space-constructible, then the first statement below implies the second:

• A ∈ dspace(s(n)).

• un(A) ∈ dspace(log n + s(log n)).

The converse also holds, ifs(log n) = Ω(log n).

Note in particular that this translation lemma does not allow one to derive any
lower bound on the space complexity ofA, assuming only a logarithmic lower
bound on the space complexity of un(A).

There is another reasonable way to define small space complexity classes. De-
fine DSPACE(s(n)) to be the class of languages accepted by Turing machines that
begin their computation with a worktape consisting ofs(n) cells (delimited by
endmarkers), as opposed to the more common complexity classes dspace(s(n))



where the worktape is initially blank, and the machine must use its own computa-
tional power to make sure that it respects the space bound ofs(n). Viewed another
way, DSPACE(s(n)) is simply dspace(s(n)) augmented by a small amount of “ad-
vice”, allowing the machine to compute the space bound. (This model was defined
under the name “DEMONSPACE” by Hartmanis and Ranjan [25]. See also Szepi-
etowski’s book [38] on sublogarithmic space.)

DSPACE(s(n)) seems at first to share many of the properties of dspace(s(n)).
In particular, it is still relatively straightforward to show that there are natural prob-
lems, such as the set of palindromes, that are not in DSPACE(o(log n)).

The efficient division algorithm of [20] provides a new translation lemma.

Lemma 7.2 New translation lemmaLet s(n) = Ω(log n) be fully space-con-
structible. Then the following are equivalent:

• A ∈ dspace(s(n))

• un(A) ∈ DSPACE(log log n + s(log n)).

Corollary 7.3 In order to show NP is not contained inL, it suffices to present a
setA ∈ NP such thatun(A) 6∈ DSPACE(log log n).

At first glance, this corollary may seem surprising, since there are sets in NP
(such as the set of prime numbers) whose unary encoding is knownnot to be in
dspace(log log n) [23]. It might seem as if the computational power of the classes
dspace(log log n) and DSPACE(log log n) might not be so very different. One
consequence of our new insight into division is that it is now clear that the DSPACE
classes can carry out simulations that seem impossible in the dspace model.
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