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Abstract

The correction of bias in magnetic resonance images is aoriaut
problem in medical image processing. Most previous appesabave
used a maximum likelihood method to increase the likelihofithe pix-
elsin a single image by adaptively estimating a correctidhé unknown
image bias field. The pixel likelihoods are defined eithereinrs of a
pre-existing tissue model, or non-parametrically in teohthe image’s
own pixel values. In both cases, the specific location of alpixthe im-
age is not used to calculate the likelihoods. We suggest aapgnoach
in which we simultaneously eliminate the bias from a set cdiges of
the same anatomy, but from different patients. We use thiststa from
the same location across different images, rather tharnathimage, to
eliminate bias fields from all of the images simultaneous$lye method
builds a “multi-resolution” non-parametric tissue modehditioned on
image location while eliminating the bias fields associatét the orig-
inal image set. We present experiments on both syntheticealdMR
data sets, and present comparisons with other methods.

1 Introduction

The problem of bias fields in magnetic resonance (MR) imagasiimportant problem
in medical imaging. This problem is illustrated in FigureWhen a patient is imaged in
the MR scanner, the goal is to obtain an image which is a fanaolely of the underlying
tissue (left of Figure 1). However, typically the desireémmical image is corrupted by a
multiplicative bias field (2nd image of Figure 1) that is cedi®y engineering issues such
as imperfections in the radio frequency coils used to retteedVIR signal. The result is a
corrupted image (3rd image of Figure 1). (See [1] for backgtbinformation.) The goal
of MR bias correction is to estimate the uncorrupted imagmfthe corrupted image.

A variety of statistical methods have been proposed to addiigis problem. Wells et
al. [7] developed a statistical model using a discrete sdissfies, with the brightness
distribution for each tissue type (in a bias-free imageyesented by a one-dimensional
Guassian distribution. An expectation-maximization (EMpcedure was then used to
simultaneouly estimate the bias field, the tissue type, bhaddsidual noise. While this
method works well in many cases, it has several drawbacksidtiels must be developed
a priori for each type of acquistion (for each different setting & MR scanner), for each
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Figure 1: On the left is an idealized mid-axial MR image of thanan brain with little
or no bias field. The second image is a simulated low-frequéiess field. It has been
exaggerated for ease of viewing. The third image is the reduixelwise multiplication
of the image by the bias field. The goal of MR bias correctiotvisecover the low-bias
image on the left from the biased image on the right. On thet igjthe sine/cosine basis,
used to construct band-limited bias fiels (see text).

new area of the body, and for different patient populatidike (nfants and adults). (2)
Models must be developed from “bias-free” images, which ipaylifficult or impossible
to obtain in many cases. (3) The model assumes a fixed numlissoés, which may
be inaccurate. For example, during development of the humnain, there is continuous
variability between gray matter and white matter. In additia discrete tissue model does
not handle so-called partial volume effects in which a preglresents a combination of
several tissue types. This occurs frequently since marslgoccur at tissue boundaries.

Non-parametric approaches have also been suggested, @safaple by Viola [10]. In
that work, a non-parametric model of the tissue was devel@pen a single image. Using
the observation that the entropy of the pixel brightnesgiligion for asingle images
likely to increase when a bias field is added, Viola’s methodtplates a bias-correction
field by minimizing the entropy of the resulting pixel brigletss distribution. This approach
addresses several of the problems of fixed-tissue parameddels, but has its own draw-
backs: (1) The statistical model may be weak, since it isthasedata from only a single
image. (2) There is no mechanism for distinguishing betvasstain low-frequency image
components and a bias field. That is, the method may mistgkalsior noise in certain
cases when removal of the true signal reduces the entroghedsrightness distriibution.
We shall show that this is a problem in real medical images.

The method we present overcomes or improves upon problesegiated with both of
these methods and their many variations (see, e.g., [1gf@nt techniques). It models tis-
sue brightness non-parametrically, but uses data frompleiltnages to provide improved
distribution estimates and alleviate the need for bias-fneages for making a model. It
also conditions on spatial location, taking advantage a¢lainformation source ignored
in other methods. Experimental results demonstrate tleet@féness of our method.

2 Thelmage Model and Problem Formulation

We assume we are given a $edf observed imagek with 1 <i < N, as shown on the
left side of Figure 2. Each of these images is assumed to bgrdiueict of some bias-free
imageL; and a smooth bias fiel; € B. We shall refer to the bias-free imageslaent
imageg(also calledntrinsic imagedy some authors). The set of all latent images shall be
denoted. and the set of unknown bias fiel8s Then each observed image can be written
as the produck(x,y) = Li(x,y) * Bi(x,y), where(x,y) gives the pixel coordinates of each
point, with P pixels per image.



Consider again Figure 2. pixel-stackthrough each image set is shown as the set of pixels
corresponding to a particular location in each image (noessarily the same tissue type).
Our method relies on the principle that the pixel-stack &alwill have lower entropy when
the bias fields have been removed. Figure 3 shows the sirdwdéftet, on the distribution

of values in a pixel-stack, of adding different bias fielde&zh image.

The latent image generation model assumes that each pikelis from a fixed distribu-
tion pyy(-) which gives the probability of each gray value at the the tioca(x,y) in the
image. Furthermore, we assume that all pixels in the lateage are independent, given
the distributions from which they are drawn. It is also assdrhat the bias fields for each
image are chosen independently from some fixed distribaten bias fields. Unlike most
models for this problem which rely on statistical regulastwithin an image, we take a
completely orthogonal approach by assuming that pixeleshre independent given their
image locations, but that pixel-stacks in general have latvopy when bias fields are
removed.

We formulate the problem as a maximum a posteriori (MAP) [mul) searching for the
most probable bias fields given the set of observed imagegingeB represent the 25-
dimensional product space of smooth bias fields (corredpgrtd the 25 basis images of
Figure 1), we wish to find
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Here H is the Shannon entropy—E(logP(x))) and Hyasicek is @ sample-based entropy
estimatott (a) is just an application of Bayes rule. (b) assumes a uniforior over the
allowed bias fields. The method can easily be altered to purate a non-uniform prior.

IThe entropy estimator used is similar to Vasicek’s estimator [6], giveriquinor details) by
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whereZ'’s represent the values in a pixel-stazk)’s represent those same values in rank ordés,
the number of values in the pixel-stack amds a function ofN (like N%5) such tham/N goes to 0
asmandN go to infinity. These entropy estimators are discussed at length elsef8here



Figure 2: On the left are a set of mid-coronal brain images from eight differefdnis,
showing clear signs of bias fields. pixel-stack a collection of pixels at the same point
in each image, is represented by the small square near thef ggch image. Although
there are probably no more than two or three tissue typegssepted by the pixel-stack,
the brightness distribution through the pixel-stack haghreémpirical entropy due to the
presence of different bias fields in each ima@a the right are a set of images that have
been corrected using our bias field removal algorithm. Wihigeiiages are still far from
identical, the pixel-stack entropies have been reduceddpping similar tissues to similar
values in an “unsupervised” fashion, i.e. without knowimgestimating the tissue types.

(c) expresses the fact that the probability of the obsemedje given a particular bias field
is the same as the probability of the latent image associaitbdhat observed image and
bias field. The approximation (d) replaces the empiricalmaahe log probability at each
pixel with the negative entropy of the underlying distribuatat that pixel. This entropy is
in turn estimated (e) using the entropy estimator of Vasj6g#irectly from the samples in
the pixel-stack, without ever estimating the distributigny explicitly. The inequality (d)
becomes an equality & grows large by the law of large numbers, while the consistenc
of Vasicek’s entropy estimator [2] implies that (e) also gt equality with largeN. (See

[2] for a review of entropy estimators.)

3 TheAlgorithm

Using these ideas, it is straightforward to construct algors for joint bias field removal.
As mentioned above, we chose to optimize Equation (8) owves#h of band-limited bias
fields. To do this, we parameterize the set of bias fields usiegine/cosine basis images
shown on the right of Figure 1:
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We optimize Equation (8) bgimultaneouslypdating the bias field estimates (taking a step
along the numerical gradient) for each image to reduce teeathentropy. That is, at time
stept, the coefficientsi; for each bias field are updated using the latent image estimat
and entropy estimates from time step 1. After all a’s have been updated, a new set of
latent images and pixel-stack entropies are calculatedi aanther gradient step is taken.
Though it is possible to do a full gradient descent to corsecg by optimizing one image
at a time, the optimization landscape tends to have mord tooama for the last few
images in the process. The appeal of our joint gradient d¢scethod, on the other hand,
is that the ensemble of images provides a natural smootHitige @ptimization landscape
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Figure 3:0n theleft is a simulated distribution from a pixel-stack taken thrioagparticu-
lar set of bias-free mid-axial MR images. The two sharp p@aktse brightness distribution
represent two tissues which are commonly found at thatqudati pixel location.On the
right is the result of adding an independent bias field to each im&gearticular, the
spread, or entropy, of the pixel distribution increaseghiswork, we seek to remove bias
fields by seeking to reduce the entropy of the pixel-stackiligion to its original state.

in the joint process. It is in this sense that our method isltirnasolution”, proceeding
from a smooth optimization in the beginning to a sharper @@ the end of the process.

We now summarize the algorithm:

1. Initialize the bias field coefficients for each image to Gthwthe exception of
the coefficient for the DC-offset (the constant bias field poment), which is
initialized to 1. Initialize the gradient descent step $526 some value.

2. Compute the summed pixelwise entropies for the set of @mnagth initial “neu-
tral” bias field corrections. (See below for method of conagion.)

3. Iterate the following loop until no further changes ocituthe images.

(a) For each image:

i. Calculate the numerical gradienit HyasicekOf (8) with respect to the bias
field coefficients ¢;’s) for the current image.

ii. Seta = a + 80qHvasicek
(b) Updated (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has beecegds much as possible by
changing the bias fields, unless one or more of the gradiecedés is stuck in a local min-
imum. Empirically, the likelihood of sticking in local mimia is dramatically reduced by
increasing the number of imagéds)(in the optimization. In our experiments described be-
low with only 21 real infant brains, the algorithm appearbawe found a global minimum
of all bias fields, at least to the extent that this can be dmszkvisually.

Note that for a set afdenticalimages, the pixel-stack entropies are not increased by mul-
tiplying each image by the same bias field (since all imagdisstili be the same). More
generally, when images are approximately equivalenty thigel-stack entropies are not
signficantly affected by a “common” bias field, i.e. one the¢wrs in all of the images.
This means that the algorithm cannot, in general, elimin#teias fields from a set of im-
ages, but can onlget all of the bias fields to be equivaleMe refer to any constant bias
field remaining in all of the images after convergence asekigual bias field

2Actually, multiplying each image by a bias field of small magnitude can artificiajuce the
entropy of a pixel-stack, but this is only the result of the brightness valliesking towards zero.
Such artificial reductions in entropy can be avoided by normalizing a disiiib to unit variance
between iterations of computing its entropy, as is done in this work.



Fortunately, there is an effect that tends to minimize thpaat of the residual bias field
in many test cases. In particular, the residual bias fields¢a consist of components for
eacha; that approximate the mean of that component across imagegxample, if half
of the observed images have a positive value for a particaiarponent’s coefficient, and
half have a negative coefficient for that component, thaltedibias field will tend to have
a coefficient near zero for that component. Hence, the dlgomaturally eliminates bias
field effects that are non-systematic, i.e. that are noteshacross images.

If the same type of bias field component occurs in a majorithefimages, then the algo-
rithm will not remove it, as the component is indistinguistea under our model, from the
underlying anatomy. In such a case, one could resort to nvithage methods to further
reduce the entropy. However, there is a risk that such msthdltiremove components
that actually represent smooth gradations in the anatorhis dan be seen in the bottom
third of Figure 4, and will be discussed in more detail below.

4 Experiments

To test our algorithm, we ran two sets of experiments, theé dinssynthetic images for
validation, and the second on real brain images. We obtapethetic brain images from
the BrainWeb project [8, 9] such as the one shown on the |éfigafre 1. These images can
be considered “idealized” MR images in the sense that tighbress values for each tissue
are constant (up to a small amount of manually added isatrogse). That is, they contain
no bias fields. The initial goal was to ensure that our alboritould remove synthetically
added bias fields, in which the bias field coefficients wereamoUsingK copies of a
single “latent” image, we added known but different biasdéeio each one. For as few as
five images, we could reliably recover the known bias fieldfagients, up to a fixed offset
for each image, to within 1% of the power of the original biaefticients.

More interesting are the results on real images, in whichlabent images come from
different patients. We obtained 21 pre-registéradant brain images (top of Figure 4)
from Brigham and Women'’s Hospital in Boston, Massachuseitsge bias fields can be
seen in many of the images. Probably the most striking is mfréike” bias field in the
sixth image of the second row. (The top of the brain is tooHirig/hile the bottom is too
dark.) Because the brain’s white matter is not fully develbm these infant scans, it is
difficult to categorize tissues into a fixed number of classess typically done for adult
brain images; hence, these images are not amenable to radihedd on specific tissue
models developed for adults (e.g. [7]).

The middle third of Figure 4 shows the results of our algonithn the infant brain images.
(These results must be viewed in color on a good monitor iy &ppreciate the results.)
While a trained technician can see small imperfections isghenages, the results are
remarkably good. All major bias artifacts have been removed

Itis interesting to compare these results to a method tllatces the entropy of each image
individually, without using constraints between imagesing the results of our algorithm
as a starting point, we continued to reduce the entropy oftkels within each image
(using a method akin to Viola’s [10]), rather than acrossgesa These results are shown
in the bottom third of Figure 4. Carefully comparing the cahbrain regions in the middle
section of the figure and the bottom section of the figure, @resee that the butterfly
shaped region in the middle of the brain, which represenigldping white matter, has

3|t is interesting to note that registration is not strictly necessary for thisighgoto work. The
proposed MAP method works under very broad conditions, the maiditiamm being that the bias
fields do not span the same space as parts of the actual medical inégase, however, that as the
latent images become less registered or differ in other ways, that alangein number of images is
needed to get good estimates of the pixel-stack distributions.



been suppressed in the lower images. This is most likelyusecthe entropy of the pixels
within a particular imagecan be reduced by increasing the bias field “correction” & th
central part of the image. In other words, the algorithnmvegrito make the image more
uniform by removing the bright part in the middle of the imadgitowever, our algorithm,
which compares pixels across images, does not suppressrégsstructures, since they
occur across images. Hence coupling across images cangaredperior results.

5 Discussion

The idea of minimizing pixelwise entropies to remove nuEawariables from a set of im-
ages is not new. In particular, Miller et al. [4, 5] preserd@chpproach they catbngealing
in which the sum of pixelwise entropies is minimizeddgparate affine transfornapplied
to each image. Our method can thus be considered an extarfdtom congealing process
to non-spatial transformations. Combining such approatheo registration and bias re-
moval simulataneously, or registration and lighting féetion of faces, for example, is an
obvious direction for future work.

This work uses information unused in other methods, i.arimation across images. This
suggests an iterative scheme in which both types of infaomaboth within and across
images, are used. Local models could be based on weightgldbmehoods of pixelgixel
cylinders rather than single pixel-stacks, in sparse data scendfms‘easy” bias correc-
tion problems, such an approach may be overkill, but fordiffiproblems in bias correc-
tion, where the bias field is difficult to separate from theenhdng tissue, as discussed in
[1], such an approach could produce critical extra leverage
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Figure 4:NOTE: This image must be viewed in color (preferably on a brigptiy) for

full effect. Top. Original infant brain imagesviddle. The same images after bias removal
with our algorithm. Note that developing white matter (bufty-like structures in middle
brain) is well-preservedBottom. Bias removal using a single image based algorithm.
Notice that white matter structures are repressed.



