
The Computational Complexity Column

Eric Allender

Rutgers University� Department of Computer Science
Piscataway� NJ ���������� USA
allender�cs�rutgers�edu

Exploration of the connections between computational complexity� de�
scriptive complexity� and logic remains one of the most active and important
areas of theoretical computer science� In this edition of the Computational
Complexity Column� we hear from one of the leaders in this area�

Progress in Descriptive Complexity
Neil Immerman

�

�� Introduction

In the beginning� there were two measures of computational complexity	
time and space� From an engineering standpoint� these were very natu�
ral measures� quantifying the amount of physical resources needed to per�
form a computation� From a mathematical viewpoint� time and space were
somewhat less satisfying� since neither appeared to be tied to the inherent
mathematical complexity of the computational problem�

In ��
�� Ron Fagin changed this� He showed that the complexity class
NP � those problems computable in nondeterministic polynomial time �
is exactly the set of problems describable in second�order existential logic�
This was a remarkable insight� for it demonstrated that the computational
complexity of a problem can be understood as the richness of a language
needed to specify the problem� Time and space are not model�dependent
engineering concepts� they are more fundamental�

Although few programmers consider their work in this way� a computer
program is a completely precise description of a mapping from inputs to
outputs� We follow database terminology and call such a map a query from
input structures to output structures� Typically a program describes a pre�
cise sequence of steps that compute a given query� However� we may choose
to describe the query in some other precise way� For example� we may
describe queries in variants of �rst� and second�order mathematical logic�

Fagin
s Theorem gave the �rst such connection� Using �rst�order lan�
guages� this approach� commonly called descriptive complexity� demonstrated
that virtually all measures of complexity can be mirrored in logic� Further�
more� as we will see� the most important classes have especially elegant and
clean descriptive characterizations�

In this column I will survey a few of the connections between descriptive
and computational complexity� I will also describe some recent progress and
applications� Further detail can be found in �����

�Comp� Sci� Dept�� UMass� Amherst ������ USA� immerman�cs�umass�edu�

http���www�cs�umass�edu��immerman� Research supported by NSF CCR��������
�



�� Notation and Logical Background

In Descriptive Complexity we view inputs as �nite logical structures�
e�g�� a binary string w � w�w� � � � wjwj is coded as

Kw � hf�� �� � � � � jwjg�Mw ��i

consisting of a universe jKwj � f�� �� � � � � jwjg of bit positions in the string�
the monadic relation Mw de�ned so that Mw�i� holds i� bit i of w is one�
and � is the usual total ordering on jKwj� We write jjKwjj to denote the
cardinality of the universe of structure Kw�

Recall that in �rst�order logic we can quantify over the universe� We can
say� for example� that a string ends in a one� The following sentence does
this by asserting the existence of a string position x that is the last position
and asserting M�x�� i�e�� the bit at that position is a one	

��x���y��y � x � M�x��

A graph is a logical structure G � hf�� �� � � � � vg� EGi whose universe
is the set of vertices and EG is the binary edge relation� This �rst�order
formula says that every vertex exactly two outgoing edges	

��x���yz���w��y �� z �E�x� y� �E�x� z� � �E�x�w� � w � y � w � z��

We next show that addition of natural numbers is �rst�order expressible�
We will see that the �rst�order queries characterize the problems computable
in constant parallel time� Thus the following may be thought of as an
addition algorithm that runs in constant parallel time�

Proposition �� Addition of natural numbers� represented in binary� is

�rst�order expressible�

Proof� We use the well�known �carry�look�ahead� algorithm� In order
to express addition� we �rst express the carry bit�

�carry�x� � ��y�x � y��A�y� �B�y� � ��z�x � z � y�A�z� �B�z��

The formula �carry�x� holds if there is a position y to the right of x
where A�y� and B�y� are both one �i�e� the carry is generated� and for all
intervening positions z� at least one of A�z� and B�z� holds �that is� the
carry is propagated�� Let � be an abbreviation for the commutative and
associative �exclusive or� operation�

We can express �add as follows�

�� � � �	 
�

�add�x� � A�x��B�x�� �carry�x�

Note that the formula �add�x� has the free variable x� Thus� �add is a
description of n bits	 one for each possible value of x�

In second�order logic we also have variables Xi that range over relations
over the universe� These variables may be quanti�ed�



A second�order existential formula �SO�� begins with second order ex�
istential quanti�ers and is followed by a �rst�order formula� As an example�
the following second�order existential sentence� says that the graph in ques�
tion is three�colorable� It does this by asserting that there are three unary
relations� Red �R�� Yellow �Y�� and Blue �B�� de�ned on the universe of
vertices� It goes on to say that every vertex has some color and no two
adjacent vertices have the same color�

��R���Y ���B���x�
h�
R�x� � Y �x� �B�x�

�
� ��y�

�
E�x� y� �



�
R�x� �R�y�

�
� 


�
Y �x� � Y �y�

�
� 


�
B�x� �B�y�

��i

A query is a polynomially bounded mapping from the set of �nite struc�
tures of one vocabulary to those of another vocabulary� For example� the
formula �add from Proposition � de�nes a query from pairs of strings to
strings� A boolean query is a set of �nite structures of some vocabulary� A
complexity class is a set of boolean queries	 those queries that can be rec�
ognized in a given amount of computation� Descriptive Complexity began
with Fagin
s descriptive characterization of the complexity class NP�

Theorem � ������ A boolean query T is in NP i� there exists a second�

order existential formula� � such that T �
�
K

�� K j� �
�
�

To capture complexity classes P and below� �rst�order logic is more
appropriate� In order to characterize complexity classes as in Fagin
s the�
orem but via �rst�order logics� one must look at the coding of inputs� A
graph or other structure is given to a computer in some order� e�g� vertices
v�� v�� � � � � vn� Furthermore� algorithms may use the ordering� e�g�� searching
through each vertex in turn� To simulate the machine� the logical languages
need access to the ordering� �This was also necessary for Fagin
s theorem�
but in SO� we may existentially quantify a total ordering on the universe��
From now on� we will assume that all �rst�order languages include a binary
relation symbol ��� denoting a total ordering on the universe� With this
proviso� we can relate computational complexity to �rst�order descriptive
complexity�

We will see that the set of �rst�order de�nable boolean queries is a weak
complexity class� One way to increase the power of �rst�order logic is by
allowing inductive de�nitions� This is formalized via a least �xed point
operator �LFP��

As an example� suppose that we want to de�ne the transitive closure of
the edge relation of a graph� This would be useful if we were given a directed
graph G � �V G� EG� s� t� and we wanted to assert that there is a path from
s to t� Let E� be the re�exive� transitive closure of the edge relation E�
Given E� we can describe the reachability property simply� �E��s� t��� We
can de�ne E� inductively as follows	



E��x� y� � x � y �E�x� y� � ��z��E��x� z� �E��z� y�� ���

Consider the following map � 	 R �� ��R� on binary relations	

��R� x� y� � E�x� y� � ��z��R�x� z� �R�z� y�� ���

Since R appears only positively in �� this operator has a least �xed point
which we take as the meaning of the inductive de�nition ���� Thus� we can
write� E� � �LFPR�x�y ���

LFP��� is the union of the sequence	 ���� 
 ������� 
 ���������� 

� � � � Since the sequence is monotone� and there are at most nk tuples in a
k�ary relation� LFP is in fact a polynomial iterator of formulas�

We can transform formulas such as � ��� into a block of restricted quan�
ti�ers� Iterating � then just corresponds to writing another copy of this
quanti�er block� We write FO�t�n�� to denote those properties expressible
for structures of size n by formulas that consist of a block of restricted quan�
ti�ers repeated t�n� times� Such a formula no matter what the length has a
�xed number of variables � the same variables that appear in ��

The following theorem says that if we add to �rst�order logic the power to
de�ne new relations by induction� then we can express exactly the properties
that are checkable in polynomial time� This is exciting because a very nat�
ural descriptive class � �rst�order logic plus inductive de�nitions � captures
a natural and important complexity class� Polynomial time is characterized
using only basic logical notions and no mention of computation�

Theorem � ����� ��� ����� A query is in polynomial time i� it is de�

scribable in �rst�order logic with the addition of the least �xed point operator�

This is equivalent to being expressible by a �rst�order formula iterated poly�

nomially many times� In symbols� P � FO�LFP� � FO�nO�����

Theorems � and � cast the P ��NP question in a di�erent light� �In the
following we are using the fact that if P were equal to NP� then NP would be
closed under complementation� It would then follow that every second�order
formula would be equivalent to a second�order existential one��

Corollary �� P is equal to NP i� every second�order expressible prop�

erty over �nite� ordered structures is already expressible in �rst�order logic

using inductive de�nitions� In symbols� �P � NP� � FO�LFP� � SO�

We mention two other natural operators that let us capture important
complexity classes� Let ��x�� � � � � xr� x

�
�� � � � x

�
r� be a formula with �r free

variables� We can think of � as representing an edge relation over a vertex
set V � jKjr consisting of all r�tuples from the universe of K� De�ne
the transitive closure operator� �TC�x�x���� denoting the re�exive� transitive
closure of the binary relation �� NSPACE�log n� is an important complexity
class that includes most path queries� The following theorem says that this
complexity class is captured by FO�TC�� �Note that transitive closures are
a special kind of inductive de�nition� see Equation �� Every time we reapply



the inductive equation� the paths considered double in length� That is why
FO�TC� 
 FO�log n���

Theorem 
 ����� ����� The complexity class nondeterministic logarith�

mic space is equal to the set of boolean queries describable in �rst�order logic

with the addition of a transitive closure operator� This is a subclass of the

set of queries describable by �rst�order formulas iterated log n times� In

symbols�

NSPACE�log n� � FO�TC� 
 FO�log n�

Suppose we are given a �rst�order formula ��R� x�� � � � xr�� where R is a
new relation variable� but in which R need not occur only positively� Then
the least �xed point of � may not exist� However� we may describe its
�partial �xed point� �PFP� which is equal to the �rst �xed point in the
sequence ����� ������ � � � � or � if there is no such �xed point� Since this
sequence must repeat after at most �n

r

steps� PFP may be thought of as an
exponential iterator�

The following theorem shows that the arbitrary iteration of �rst�order
formulas � which is the same as iterating them exponentially � allows the
description of exactly all properties computable using a polynomial amount
of space�

Theorem � ����� ��� ����� A query is in polynomial space i� it is de�

scribable in �rst logic with the addition of the partial �xed point operator�

This is equivalent to being expressible by a �rst�order formula iterated expo�

nentially� or by a second�order formula iterated polynomially� In symbols�

PSPACE � FO�PFP� � FO��n
O���

� � SO�TC� � SO�nO����

�� Parallel Complexity

Quanti�cation is a parallel operation� The query ��x�M�x� can be ex�
ecuted using n processors in constant parallel time� Processor pi checks
whether M�i� holds for i � �� �� � � � � n � �� Any pi for which M�i� does
hold should write a one into a speci�ed location in global memory that was
originally zero�

A concurrent random access machine �CRAM� consists of a large number
of processors� all connected to a common� global memory� The processors
are identical except that they each contain a unique processor number� At
each step� any number of processors may read or write any word of global
memory� If several processors try to write the same word at the same time�
then the lowest numbered processor succeeds�

The CRAM is a special case of the concurrent read� concurrent write�
parallel random access machine �CRCW�PRAM�� Let CRAM�t�n�� be the
set of queries computable in parallel time O�t�n� by a CRAM using at most
polynomially many processors�



Theorem �� ���	�� For all polynomially bounded� constructible t�n��

FO�t�n�� � CRAM�t�n�� �

This means that the quanti�er depth of an optimal description of a query
corresponds exactly to the parallel time needed to compute the query� using
polynomially much hardware� Parallel time � one of the most fundamental
computational resources � is quanti�er depth�

The amount of hardware needed to compute a query is closely tied to
the number of variables needed to describe the query� When the amount of
hardware is measured purely as space� this result is tight�

Theorem ��� ��
� For k � �� �� � � � � DSPACE�nk� � VAR�k � ���

The fundamental mysteries of complexity theory are the tradeo�s be�
tween parallel time and hardware� A consequence of Theorems � and ��
is that these mysteries can all be understood as the descriptive tradeo�
between quanti�er depth and number of variables�

Complementation� One of the early successes of descriptive complex�
ity was in response to questions concerning database query languages� A
very popular model of databases is the relational model� In this model�
databases are exactly �nite logical structures� Furthermore� query languages
are based on �rst�order logic�

As an example� suppose that we have an airline database� One of its
relations might be FLIGHTS� with arguments	 �ight number� origin� depar�
ture time� destination� arrival time� The query� �What are the direct �ights
from JFK to LAX leaving in the morning�� could be phrased as	

��td� ta��td � �� � FLIGHTS�x� JFK� td�LAX� ta��

Note that this query has one free variable� x� The response to the query
should be the set of x
s such that x is the �ight number of a direct �ight
from JFK to LAX that leaves before noon�

Of course not all queries that we might want to express are �rst�order�
For example� the reachability query � is there a route� with no �xed limit on
the number of hops� taking me from s to t� � is not �rst�order� For this and
related reasons� Chandra and Harel proposed a hierarchy of query languages
above �rst�order logic based on alternating applications of quanti�cation�
negation� and the least �xed point operator ���� It was known that for
in�nite structures this gave a strict hierarchy ����� the same was conjectured
for �nite structures�

There is a big di�erence between in�nite and �nite structures� Over
an in�nite structure� a least �xed point might never reach a stage of the
induction at which it has completed� Over a �nite structure� there is a �nite
stage where the �xed point is realized� Furthermore� one can verify within
the induction that this stage has been reached� Thus� by saying that we
have reached the �nal stage and that tuple �t is not present� we can express
the negation of �LFP����t�� It follows that the �hierarchy� proposed by



Chandra and Harel is not a hierarchy at all� Every formula in FO�LFP� is
expressible as a single �xed point of a �rst�order formula� We say that the
�hierarchy� collapses to its �rst level�

Theorem �� ������� Every formula in �rst�order logic with the addition

of the least �xed point operator is equivalent to a single application of least

�xed point to a �rst�order formula�

A related question could be asked about a proposed hierarchy of FO�TC��
In fact the transitive closure �hierarchy� also collapses to its �rst�level�

Theorem �� ������� Every formula in �rst�order logic with the addi�

tion of the transitive closure operator is equivalent to a single application of

transitive closure to a �rst�order formula�

Deterministic complexity classes are closed under complementation� It
had been long believed that nondeterministic space is a �one�sided� class�
not closed under complementation� Thus the following corollary of Theorem
�� was quite surprising�

Corollary �� ����� ����� For s�n� � log n� NSPACE�s�n�� is closed

under complementation�

�� Lower Bounds and Ordering

Theorems �� �� 
� and � hold out the prospect that we might settle
questions such as P ��NP via logical methods� In particular� there are
quanti�er games due to Ehrenfeucht and Fra !ss"e that characterize the ex�
pressive power of logical languages� Ehrenfeucht�Fra !ss"e games are played
on a pair of structures� A�B� There are two players� Samson and Delilah�
At each move� Samson chooses some element of the universe of one of the
structures and Delilah must respond with an element from the other struc�
ture� If at the end of the game the map from the elements chosen from A to
those chosen from B is an isomorphism of the induced substructures then
Delilah wins� otherwise Samson wins� For most logical languages L there is
a corresponding game GL with the following fundamental property� Write
A �L B to mean that for all � � L� A j� � i� B j� ��

�Delilah has a winning strategy for game GL�A�B�� � A �L B ����

We use Ehrenfeucht�Fra !ss"e games to prove that certain properties are
not expressible in certain logics� If A and B disagree on property � and yet
we can construct a winning strategy for Delilah on GL�A�B� then we have
proved that � is not expressible in L�

Consider the following lower bound on quanti�er�depth for the reacha�
bility query for and�or graphs �REACHa�� a natural P�complete query�

Theorem �� ������� REACHa is describable by linear�size �rst�order

formulas that do not include the ordering relation� However� it is not de�

scribable by such formulas of size less than �
p
log n�



If Theorem �� could be shown with ordering it would follow thatREACHa

is not in FO��log n�� and thus that P strictly contains NSPACE�log n��
The Ehrenfeucht�Fra !ss"e games become much less useful as a proof tech�

nique when working with ordered graphs� This is because in a fairly weak
ordered language we can express the property of a vertex vi that it is vertex
i in the ordering� Once a language has this strength� two structures will
be equivalent i� they are identical� �If we can assert about a graph G that
vertex �
 has an edge to vertex ���� then any graph that agrees on all such
sentences is identical to G��

On the other hand� if we just remove the ordering� then Theorems ��

� and � all fail� For example� it is easy to show that without an ordering
we cannot count� In fact� if EVEN represents the query� �The size of the
universe is even�� then	

Theorem �� ������ In the absence of the ordering relation� �rst�order

logic with the addition of the �xed point operator cannot describe the problem

EVEN�

All the graph properties that we want to express are order independent�
Thus� it would be very nice to have a language that captures all polynomial�
time computable order�independent properties� This would be analogous to
Theorem � which says that FO�LFP� captures polynomial time for ordered
structures�

Consider the language FO�wo���LFP� C� in which structures are two�
sorted	 their universe is partitioned into an unordered domainD � fd�� d�� � � � � dng
and a separate number domain	 N � f�� �� � � � � ng� We have the database
predicates de�ned on D and the standard ordering de�ned on N � The two
sorts are combined via counting quanti�ers� ��i x���x�� meaning that there
exist at least i elements x such that ��x�� Here i is a number variable and
x is a domain variable�

It was conjectured that FO�wo���LFP� C� is equal to order independent
P� Instead� in ��� it was proved that FO�wo���LFP� C� is strictly contained
in order�independent P� In the following lower bound� the graphs are �al�
most ordered�� They consist of n�� groups of � vertices each and there is a
given total ordering on the groups�

Theorem �
 ������ There is an order�independent property of graphs�

T � that is very easy to compute � in a complexity class well below P � but�

in the absence of ordering� is not expressible in �rst�order logic with the

addition of the �xed point operator and counting quanti�ers�

Some beautiful work by Martin Grohe and his students has shown that
there are large and important classes of graphs on which the language
FO�wo���LFP� C� does capture order independent P ���� 	� �
�� For these
classes of graphs� isomorphism is testable in polynomial time using the nat�
ural algorithm for equivalence in a sublanguage of FO�wo���LFP� C�� These
results include natural classes of graphs for which no polynomial�time graph
isomorphism algorithm had been previously known�



Most important complexity classes below P have had their languages
without ordering� or with some partial orderings� separated ���� ��� �� �� ���
No such separation had been proved for the languages FO�wo���LFP� and
FO�wo���PFP�� In ���� Abiteboul and Vianu explained why by proving

Theorem �� ������ The following conditions are equivalent�

�� FO�wo���LFP� � FO�wo���PFP�
�� FO�LFP� � FO�PFP�
�� P � PSPACE

Theorem �� is proved by showing that if two structures G and H are
FO�wo���LFP��equivalent� then they are FO�wo���PFP��equivalent as well�
Thus� ordering is not the problem� but Ehrenfeucht�Fra !ss"e games are un�
likely to help separate P from PSPACE�

�� Model Checking

Descriptive Complexity has been applied recently to computer�aided ver�
i�cation� When we design a program� distributed protocol� or circuit� we
do so in a formal language� This might be a programming language such
as Java or a circuit design language such as VHDL� or a software design
language such as Statecharts�

Such a formal design determines a logical structure�K � hS� p�� � � � � pk� Ri�
called a Kripke structure or transition system� Here S consists of the set of
possible global states of the design� the set of all possible gate values for the
circuit� or all possible assignments of values to the variables of a program�
or all possible assignments of states to each processor in the distributed pro�
tocol� Binary relation R is the next move relation	 R�s� s�� means that the
move from s to s� is a possible atomic transition of the circuit or program�

The size of S is often exponential in the size of the design� This phe�
nomenon is called the state explosion problem� For this reason� structure K
is often represented symbolically�

Once we have our formal design� a representation of the transition system
can be automatically generated� We may now wish to write some simple
correctness conditions in a formal language� For example� we might want to
express the following	

�� If the Restart button is pressed� we eventually restart�
�� Doors are not opened between stations�
�� Division is performed correctly�
�� The motor is not turned on during maintenance�

These conditions express the fact that ��� if we press the Restart button
on a personal computer it will eventually restart � without our having
to unplug it and plug it in again� ��� the subway train controller meets
some simple safety conditions� ��� Intel
s new processor does its arithmetic
correctly� and ��� the mixer in a nuclear waste storage container �which is
designed to keep its contents mixed and thus less volatile� cannot turn on
�and thus cause injury� during maintenance�



Now that we have formally expressed our design and our statement con�
cerning its behavior� we can simply press a button and be told whether or
not K j� �� that is� does the design satisfy the desired property�

This is the model checking problem	 given K and �� test whether K
satis�es �� Model checkers are currently being hailed as great debugging
aides� This they are� We can write a simple property that our system
should satisfy and press the button� If it does not satisfy the property then
we will be told so� Typical model checking programs will present a counter�
example run of the system� i�e�� they produce the explicit bug� If the model
does satisfy the property� then we will be told so� Note that this is better
than just not �nding a bug� Our model checker has automatically proved
that our design has a certain desirable property�

The connection between model checking and descriptive complexity is
clear� Since the models involved are huge� it is useful to write queries in
languages that only express feasible queries� A popular and quite expressive
temporal logic for model checking is CTL�� The model checking problem
for CTL� is PSPACE complete and that is PSPACE in the size of the huge
Kripke structure� However� it was shown in ���� that CTL� can be embed�
ded in linear time in the simple language FO��TC� � the sublanguage of
FO�TC� in which there are at most two domain variables� The catch is that
for very complex formulas in CTL�� the translation might also include a
linear number of boolean variables� However� in practice� most queries that
people seem to want to write involve zero or very close to zero booleans�

In ���� it is shown that the embedding of CTL� in FO��TC� lands in a
fragment that can be e#ciently model checked in time O�jjKjjj�j�nb�	 linear
in the size of the structure and the formula� but exponential in the number
of booleans in the formula�

This is useful� both because nb tends to be tiny� and because the language
involved is closely tied to reachability queries which are the bread and butter
of model checking� One nice feature is that we can look at the formula� count
the number of booleans� and automatically say whether the query can be
checked e#ciently or not�

In summary� descriptive complexity reveals a simple and elegant view
of computation� New insights and even practical algorithms have resulted
from this approach�

References

��� S	 Abiteboul and V	 Vianu
 �Generic Computation And Its Complexity
� ��rd ACM

STOC 
�����
 �������	
��� N	 Alechina and N	 Immerman
 �E�cient Fragment of Transitive Closure Logic
�

manuscript
 ����	
��� J	 Cai
 M	 F�urer
 N	 Immerman
 �An Optimal Lower Bound on the Number of

Variables for Graph Identi�cation
� Combinatorica� 
����� 
�����
 �������	
��� A	 Chandra and D	 Harel
 �Structure and Complexity of Relational Queries
� ��st

Symp� on Foundations of Computer Science� ����
 
��������	 Also appeared in a
revised form in JCSS ��
 ����
 
�������	



��� K	 Etessami and N	 Immerman
 �Tree Canonization and Transitive Closure
� IEEE

Symp� Logic In Comput� Sci� 
�����
 �������	
��� K	 Etessami and N	 Immerman
 �Reachability and the Power of Local Ordering
�

Eleventh Symp� Theoretical Aspects Comp� Sci� 
�����
 ��� � ���	
��� R	 Fagin
 �Generalized First�Order Spectra and Polynomial�Time Recognizable Sets
�

in Complexity of Computation� 
ed	 R	 Karp�
 SIAM�AMS Proc� �� ����
 
������	
��� M	 Frick and M	 Grohe
 �Checking First�Order Properties of Locally Tree�

Decomposable Graphs
� 
�����	
��� E	 Gr�adel and G	 McColm
 �On the Power of Deterministic Transitive Closures
�

Information and Computation 
������ 
�����
 �������	
���� M Grohe and J	 Mari�no
 �De�nability and Descriptive Complexity on Databases of

Bounded Tree�Width
� to appear in Intl� Conf� on Database Theory
�����
���� M	 Grohe
 �Finite Variable Logics in Descriptive Complexity Theory
� Bulletin of

Symbolic Logic 
 �
�� 
�����
 ���� ���	
���� N	 Immerman
 Descriptive Complexity
 ����
 Springer Graduate Texts in Computer

Science
 New York	
���� N	 Immerman
 �Number of Quanti�ers is Better than Number of Tape Cells
� JCSS


����� 
�����
 �����	
���� N	 Immerman
 �Upper and Lower Bounds for First Order Expressibility
� JCSS ��


No	 � 
�����
 �����	
���� N	 Immerman
 �Relational Queries Computable in Polynomial Time
� Information

and Control� �� 
�����
 ������	
���� N	 Immerman
 �Languages That Capture Complexity Classes
� SIAM J� Comput�

��
 No	 � 
�����
 �������	
���� N	 Immerman
 �Nondeterministic Space is Closed Under Complementation
� SIAM

J� Comput� ��
 No	 � 
�����
 �������	
���� N	 Immerman
 �Expressibility and Parallel Complexity
� SIAM J� of Comput� ��


�����
 �������	
���� N	 Immerman
 �Descriptive and Computational Complexity
� in Computational Com�

plexity Theory� ed	 J	 Hartmanis
 Proc� Symp� in Applied Math�� ��
 American Math�
ematical Society 
�����
 �����	

���� N	 Immerman
 �DSPACE�nk� � VAR�k � ��
� Sixth IEEE Structure in Complexity

Theory Symp� 
�����
 �������	
���� N	 Immerman and M	 Vardi	 Model Checking and Transitive Closure Logic	 Proc� �th

Int�l Conf� on Computer�Aided Veri	cation 
CAV����
 Lecture Notes in Computer
Science
 Springer�Verlag ��� � ���
 ����	

���� Yiannis N	 Moschovakis
 Elementary Induction on Abstract Structures� North Hol�
land
 ����	

���� R	 Szelepcs�enyi
 �The Method of Forced Enumeration for Nondeterministic Au�
tomata
� Acta Informatica �� 
�����
 �������	

���� M	 Vardi
 �Complexity of Relational Query Languages
� �
th ACM STOC Symp��


�����
 �������	


