The Computational Complexity Column

Eric Allender
Rutgers University, Department of Computer Science
Piscataway, NJ 08854-8019 USA
allender@cs.rutgers.edu

Exploration of the connections between computational complexity, de-
scriptive complexity, and logic remains one of the most active and important
areas of theoretical computer science. In this edition of the Computational
Complexity Column, we hear from one of the leaders in this area.

Progress in Descriptive Complexity
Neil Immerman'

1. Introduction

In the beginning, there were two measures of computational complexity:
time and space. From an engineering standpoint, these were very natu-
ral measures, quantifying the amount of physical resources needed to per-
form a computation. From a mathematical viewpoint, time and space were
somewhat less satisfying, since neither appeared to be tied to the inherent
mathematical complexity of the computational problem.

In 1974, Ron Fagin changed this. He showed that the complexity class
NP — those problems computable in nondeterministic polynomial time —
is exactly the set of problems describable in second-order existential logic.
This was a remarkable insight, for it demonstrated that the computational
complexity of a problem can be understood as the richness of a language
needed to specify the problem. Time and space are not model-dependent
engineering concepts, they are more fundamental.

Although few programmers consider their work in this way, a computer
program is a completely precise description of a mapping from inputs to
outputs. We follow database terminology and call such a map a query from
input structures to output structures. Typically a program describes a pre-
cise sequence of steps that compute a given query. However, we may choose
to describe the query in some other precise way. For example, we may
describe queries in variants of first- and second-order mathematical logic.

Fagin’s Theorem gave the first such connection. Using first-order lan-
guages, this approach, commonly called descriptive complexity, demonstrated
that virtually all measures of complexity can be mirrored in logic. Further-
more, as we will see, the most important classes have especially elegant and
clean descriptive characterizations.

In this column I will survey a few of the connections between descriptive
and computational complexity. I will also describe some recent progress and
applications. Further detail can be found in [12].

1Comp. Sci. Dept., UMass, Amherst 01003, USA, immerman@cs.umass.edu,

http://www.cs.umass.edu/~immerman. Research supported by NSF CCR-9505446
1

2. Notation and Logical Background

In Descriptive Complexity we view inputs as finite logical structures,
e.g., a binary string w = wywsg ... wy,| is coded as

K, = ({L2,...,|w|},M", <)

consisting of a universe |K,,| = {1,2,... ,|w|} of bit positions in the string,
the monadic relation M™ defined so that M™ (i) holds iff bit ¢ of w is one,
and < is the usual total ordering on |K,|. We write |K,| to denote the
cardinality of the universe of structure K.

Recall that in first-order logic we can quantify over the universe. We can
say, for example, that a string ends in a one. The following sentence does
this by asserting the existence of a string position z that is the last position
and asserting M (z), i.e., the bit at that position is a one:

(Fz)(Vy)(y <z A M(z))

A graph is a logical structure G = ({1,2,... ,v}, E“) whose universe
is the set of vertices and E¢ is the binary edge relation. This first-order
formula says that every vertex exactly two outgoing edges:

(Vx)(Jyz)(Vw)(y # z AN E(z,y) AN E(z,2) A (E(z,w) > w=yVw=2z))

We next show that addition of natural numbers is first-order expressible.
We will see that the first-order queries characterize the problems computable
in constant parallel time. Thus the following may be thought of as an
addition algorithm that runs in constant parallel time.

PROPOSITION 1. Addition of natural numbers, represented in binary, is
first-order expressible.

Proor. We use the well-known “carry-look-ahead” algorithm. In order
to express addition, we first express the carry bit,

Pearry(®) = (By-x <y)[Ay) A By) A (Vz.o < 2z <y)A(z) V B(2)]

The formula @¢qrry(z) holds if there is a position y to the right of z
where A(y) and B(y) are both one (i.e. the carry is generated) and for all
intervening positions z, at least one of A(z) and B(z) holds (that is, the
carry is propagated). Let & be an abbreviation for the commutative and
associative “exclusive or” operation.

We can express @qqq as follows,

a®df = a+< p
(padd(x) = A(:E) @ B(:E) D (Pcarry(x)
Note that the formula @,44(x) has the free variable x. Thus, .44 is a
description of n bits: one for each possible value of x. O

In second-order logic we also have variables X; that range over relations
over the universe. These variables may be quantified.

A second-order existential formula (SO3) begins with second order ex-
istential quantifiers and is followed by a first-order formula. As an example,
the following second-order existential sentence, says that the graph in ques-
tion is three-colorable. It does this by asserting that there are three unary
relations, Red (R), Yellow (Y), and Blue (B), defined on the universe of
vertices. It goes on to say that every vertex has some color and no two
adjacent vertices have the same color.

(BR)(3Y)(3B)(va)[(R() VY (2) v B()) A (V) (E(z.y) —
~(R(@) ARW) A ~(Y (@) AY () A ~(B) A B(y))]

A query is a polynomially bounded mapping from the set of finite struc-
tures of one vocabulary to those of another vocabulary. For example, the
formula ¢,qq from Proposition 1 defines a query from pairs of strings to
strings. A boolean query is a set of finite structures of some vocabulary. A
complexity class is a set of boolean queries: those queries that can be rec-
ognized in a given amount of computation. Descriptive Complexity began
with Fagin’s descriptive characterization of the complexity class NP.

THEOREM 2 ([7]). A boolean query T is in NP iff there exists a second-
order existential formula, ® such that T = {K ‘ K | @}.

To capture complexity classes P and below, first-order logic is more
appropriate. In order to characterize complexity classes as in Fagin’s the-
orem but via first-order logics, one must look at the coding of inputs. A
graph or other structure is given to a computer in some order, e.g. vertices
V1, V2, ... ,Uy. Furthermore, algorithms may use the ordering, e.g., searching
through each vertex in turn. To simulate the machine, the logical languages
need access to the ordering. (This was also necessary for Fagin’s theorem,
but in SO3 we may existentially quantify a total ordering on the universe.)
From now on, we will assume that all first-order languages include a binary
relation symbol “<” denoting a total ordering on the universe. With this
proviso, we can relate computational complexity to first-order descriptive
complexity.

We will see that the set of first-order definable boolean queries is a weak
complexity class. One way to increase the power of first-order logic is by
allowing inductive definitions. This is formalized via a least fixed point
operator (LFP).

As an example, suppose that we want to define the transitive closure of
the edge relation of a graph. This would be useful if we were given a directed
graph G = (VY EY s t) and we wanted to assert that there is a path from
s to t. Let E* be the reflexive, transitive closure of the edge relation F.
Given E* we can describe the reachability property simply, “E*(s,t)”. We
can define E* inductively as follows:

EX(z,y) = z=yVEy) vV (3)(E(z,2) NE*(2,9)) (3)

Consider the following map ¢ : R — (R) on binary relations:
p(R,z,y) = E(z,y)V(32)(R(z,2) A R(z,y)) (4)

Since R appears only positively in ¢, this operator has a least fixed point
which we take as the meaning of the inductive definition (3). Thus, we can
write, E* = (LFPr4y ¢).

LFP(y) is the union of the sequence: ¢() C p(p(0)) C p(p(p(0))) C
... Since the sequence is monotone, and there are at most n* tuples in a
k-ary relation, LFP is in fact a polynomial iterator of formulas.

We can transform formulas such as ¢ (4) into a block of restricted quan-
tifiers. Iterating ¢ then just corresponds to writing another copy of this
quantifier block. We write FO[t(n)] to denote those properties expressible
for structures of size n by formulas that consist of a block of restricted quan-
tifiers repeated ¢(n) times. Such a formula no matter what the length has a
fixed number of variables — the same variables that appear in .

The following theorem says that if we add to first-order logic the power to
define new relations by induction, then we can express exactly the properties
that are checkable in polynomial time. This is exciting because a very nat-
ural descriptive class — first-order logic plus inductive definitions — captures
a natural and important complexity class. Polynomial time is characterized
using only basic logical notions and no mention of computation.

THEOREM 5 ([14, 15, 24]). A query is in polynomial time iff it is de-
scribable in first-order logic with the addition of the least fixed point operator.

This is equivalent to being expressible by a first-order formula iterated poly-
nomially many times. In symbols, P = FO(LFP) = FO[R°W)].

Theorems 2 and 5 cast the P =?NP question in a different light. (In the
following we are using the fact that if P were equal to NP, then NP would be
closed under complementation. It would then follow that every second-order
formula would be equivalent to a second-order existential one.)

COROLLARY 6. P is equal to NP iff every second-order expressible prop-
erty over finite, ordered structures is already expressible in first-order logic
using inductive definitions. In symbols, (P = NP) < FO(LFP) = SO.

We mention two other natural operators that let us capture important
complexity classes. Let o(z1,...,2,,2,...2}) be a formula with 2r free
variables. We can think of ¢ as representing an edge relation over a vertex
set V = |K|" consisting of all r-tuples from the universe of K. Define
the transitive closure operator, (TCzz), denoting the reflexive, transitive
closure of the binary relation . NSPACEllog n| is an important complexity
class that includes most path queries. The following theorem says that this
complexity class is captured by FO(TC). (Note that transitive closures are
a special kind of inductive definition, see Equation 3. Every time we reapply

the inductive equation, the paths considered double in length. That is why
FO(TC) C FO[logn].)

THEOREM 7 ([16, 17]). The complezity class nondeterministic logarith-
mic space is equal to the set of boolean queries describable in first-order logic
with the addition of a transitive closure operator. This is a subclass of the
set of queries describable by first-order formulas iterated logn times. In
symbols,

NSPACE[logn] = FO(TC) C FOllogn]

Suppose we are given a first-order formula ¢(R, z1,...z,), where R is a
new relation variable, but in which R need not occur only positively. Then
the least fixed point of ¢ may not exist. However, we may describe its
“partial fixed point” (PFP) which is equal to the first fixed point in the
sequence ¢(0),p?(D),..., or @ if there is no such fixed point. Since this
sequence must repeat after at most 2" steps, PFP may be thought of as an
exponential iterator.

The following theorem shows that the arbitrary iteration of first-order
formulas — which is the same as iterating them exponentially — allows the
description of exactly all properties computable using a polynomial amount
of space.

THEOREM 8 ([13, 14, 24]). A query is in polynomial space iff it is de-
scribable in first logic with the addition of the partial fixed point operator.
This is equivalent to being expressible by a first-order formula iterated expo-
nentially, or by a second-order formula iterated polynomially. In symbols,

o(1)

PSPACE = FO(PFP) = FO[2" '] = SO(TC) = SO[R°M)]

3. Parallel Complexity

Quantification is a parallel operation. The query (Jz)M (z) can be ex-
ecuted using n processors in constant parallel time. Processor p; checks
whether M (i) holds for 7 = 0,1,... ,n — 1. Any p; for which M (i) does
hold should write a one into a specified location in global memory that was
originally zero.

A concurrent random access machine (CRAM) consists of a large number
of processors, all connected to a common, global memory. The processors
are identical except that they each contain a unique processor number. At
each step, any number of processors may read or write any word of global
memory. If several processors try to write the same word at the same time,
then the lowest numbered processor succeeds.

The CRAM is a special case of the concurrent read, concurrent write,
parallel random access machine (CRCW-PRAM). Let CRAM][t(n)] be the
set of queries computable in parallel time O(¢t(n) by a CRAM using at most
polynomially many processors.

THEOREM 9. ([18]) For all polynomially bounded, constructible t(n),
FO[t(n)] = CRAM]t(n)].

This means that the quantifier depth of an optimal description of a query
corresponds exactly to the parallel time needed to compute the query, using
polynomially much hardware. Parallel time — one of the most fundamental
computational resources — is quantifier depth.

The amount of hardware needed to compute a query is closely tied to
the number of variables needed to describe the query. When the amount of
hardware is measured purely as space, this result is tight.

THEOREM 10. [20] For k=1,2,..., DSPACE[n*] = VAR[k + 1].

The fundamental mysteries of complexity theory are the tradeoffs be-
tween parallel time and hardware. A consequence of Theorems 9 and 10
is that these mysteries can all be understood as the descriptive tradeoff
between quantifier depth and number of variables.

Complementation. One of the early successes of descriptive complex-
ity was in response to questions concerning database query languages. A
very popular model of databases is the relational model. In this model,
databases are exactly finite logical structures. Furthermore, query languages
are based on first-order logic.

As an example, suppose that we have an airline database. One of its
relations might be FLIGHTS, with arguments: flight number, origin, depar-
ture time, destination, arrival time. The query, “What are the direct flights
from JFK to LAX leaving in the morning?” could be phrased as:

(3ta, ta)(ty < 12 AFLIGHTS(z, JFK, t4, LAX, t,))

Note that this query has one free variable, z. The response to the query
should be the set of x’s such that = is the flight number of a direct flight
from JFK to LAX that leaves before noon.

Of course not all queries that we might want to express are first-order.
For example, the reachability query — is there a route, with no fixed limit on
the number of hops, taking me from s to t? — is not first-order. For this and
related reasons, Chandra and Harel proposed a hierarchy of query languages
above first-order logic based on alternating applications of quantification,
negation, and the least fixed point operator [4]. It was known that for
infinite structures this gave a strict hierarchy [22]; the same was conjectured
for finite structures.

There is a big difference between infinite and finite structures. Over
an infinite structure, a least fixed point might never reach a stage of the
induction at which it has completed. Over a finite structure, there is a finite
stage where the fixed point is realized. Furthermore, one can verify within
the induction that this stage has been reached. Thus, by saying that we
have reached the final stage and that tuple ¢ is not present, we can express
the negation of (LFP ¢)(¢). It follows that the “hierarchy” proposed by

Chandra and Harel is not a hierarchy at all. Every formula in FO(LFP) is
expressible as a single fixed point of a first-order formula. We say that the
“hierarchy” collapses to its first level.

THEOREM 11 ([15]). Every formula in first-order logic with the addition
of the least fized point operator is equivalent to a single application of least
fized point to a first-order formula.

A related question could be asked about a proposed hierarchy of FO(TC).
In fact the transitive closure “hierarchy” also collapses to its first-level.

THEOREM 12 ([17]). Every formula in first-order logic with the addi-
tion of the transitive closure operator is equivalent to a single application of
transitive closure to a first-order formula.

Deterministic complexity classes are closed under complementation. It
had been long believed that nondeterministic space is a “one-sided” class,
not closed under complementation. Thus the following corollary of Theorem
12 was quite surprising.

COROLLARY 13 ([17, 23]). For s(n) > logn, NSPACE[s(n)] is closed
under complementation.

4. Lower Bounds and Ordering

Theorems 2, 5, 7, and 8 hold out the prospect that we might settle
questions such as P =7NP via logical methods. In particular, there are
quantifier games due to Ehrenfeucht and Fraissé that characterize the ex-
pressive power of logical languages. Ehrenfeucht-Fraissé games are played
on a pair of structures, A, B. There are two players, Samson and Delilah.
At each move, Samson chooses some element of the universe of one of the
structures and Delilah must respond with an element from the other struc-
ture. If at the end of the game the map from the elements chosen from A to
those chosen from B is an isomorphism of the induced substructures then
Delilah wins, otherwise Samson wins. For most logical languages L there is
a corresponding game G with the following fundamental property. Write
A =, B to mean that for all p € L, A |= ¢ iff B = ¢.

(Delilah has a winning strategy for game G1(A,B)) < A= B (14)

We use Ehrenfeucht-Fraissé games to prove that certain properties are
not expressible in certain logics. If A and B disagree on property ® and yet
we can construct a winning strategy for Delilah on G, (A, B) then we have
proved that ® is not expressible in L.

Consider the following lower bound on quantifier-depth for the reacha-
bility query for and-or graphs (REACH,), a natural P-complete query.

THEOREM 15 ([13]). REACH, is describable by linear-size first-order
formulas that do not include the ordering relation. However, it is not de-
scribable by such formulas of size less than 2V1°8™,

If Theorem 15 could be shown with ordering it would follow that REACH,
is not in FO[(logn)] and thus that P strictly contains NSPACE[log n].

The Ehrenfeucht-Fraissé games become much less useful as a proof tech-
nique when working with ordered graphs. This is because in a fairly weak
ordered language we can express the property of a vertex v; that it is vertex
¢ in the ordering. Once a language has this strength, two structures will
be equivalent iff they are identical. (If we can assert about a graph G that
vertex 17 has an edge to vertex 289, then any graph that agrees on all such
sentences is identical to G.)

On the other hand, if we just remove the ordering, then Theorems 5,
7, and 8 all fail. For example, it is easy to show that without an ordering
we cannot count. In fact, if EVEN represents the query, “The size of the
universe is even,” then:

THEOREM 16 ([4]). In the absence of the ordering relation, first-order

logic with the addition of the fized point operator cannot describe the problem
EVEN.

All the graph properties that we want to express are order independent.
Thus, it would be very nice to have a language that captures all polynomial-
time computable order-independent properties. This would be analogous to
Theorem 5 which says that FO(LFP) captures polynomial time for ordered
structures.

Consider the language FO(wo<)(LFP,C) in which structures are two-
sorted: their universe is partitioned into an unordered domain D = {d;,dy, . ..
and a separate number domain: N = {1,2,... ,n}. We have the database
predicates defined on D and the standard ordering defined on N. The two
sorts are combined via counting quantifiers, (3i z)¢(z), meaning that there
exist at least 7 elements x such that p(z). Here i is a number variable and
z is a domain variable.

It was conjectured that FO(wo<)(LFP, C) is equal to order independent
P. Instead, in [3] it was proved that FO(wo<)(LFP, C) is strictly contained
in order-independent P. In the following lower bound, the graphs are “al-
most ordered.” They consist of n/4 groups of 4 vertices each and there is a
given total ordering on the groups.

THEOREM 17 ([3]). There is an order-independent property of graphs,
T, that is very easy to compute — in a complezity class well below P — but,
in the absence of ordering, is not expressible in first-order logic with the
addition of the fized point operator and counting quantifiers.

Some beautiful work by Martin Grohe and his students has shown that
there are large and important classes of graphs on which the language
FO(wo<)(LFP, C) does capture order independent P [11, 8, 10]. For these
classes of graphs, isomorphism is testable in polynomial time using the nat-
ural algorithm for equivalence in a sublanguage of FO(wo<)(LFP, C). These
results include natural classes of graphs for which no polynomial-time graph
isomorphism algorithm had been previously known.

ydn}

Most important complexity classes below P have had their languages
without ordering, or with some partial orderings, separated [13, 14, 9, 6, 5].
No such separation had been proved for the languages FO(wo<)(LFP) and
FO(wo<)(PFP). In 1991 Abiteboul and Vianu explained why by proving

THEOREM 18 ([1]). The following conditions are equivalent:
1. FO(wo<)(LFP) = FO(wo<)(PFP)

2. FO(LFP) = FO(PFP)

3. P = PSPACE

Theorem 18 is proved by showing that if two structures G and H are
FO(wo<)(LFP)-equivalent, then they are FO(wo<)(PFP)-equivalent as well.
Thus, ordering is not the problem, but Ehrenfeucht-Fraissé games are un-
likely to help separate P from PSPACE.

5. Model Checking

Descriptive Complexity has been applied recently to computer-aided ver-
ification. When we design a program, distributed protocol, or circuit, we
do so in a formal language. This might be a programming language such
as Java or a circuit design language such as VHDL, or a software design
language such as Statecharts.

Such a formal design determines a logical structure, K = (S,p1,... ,px, R),
called a Kripke structure or transition system. Here S consists of the set of
possible global states of the design, the set of all possible gate values for the
circuit, or all possible assignments of values to the variables of a program,
or all possible assignments of states to each processor in the distributed pro-
tocol. Binary relation R is the next move relation: R(s,s’) means that the
move from s to s’ is a possible atomic transition of the circuit or program.

The size of S is often exponential in the size of the design. This phe-
nomenon is called the state explosion problem. For this reason, structure K
is often represented symbolically.

Once we have our formal design, a representation of the transition system
can be automatically generated. We may now wish to write some simple
correctness conditions in a formal language. For example, we might want to
express the following:

1. If the Restart button is pressed, we eventually restart.
2. Doors are not opened between stations.

3. Division is performed correctly.

4. The motor is not turned on during maintenance.

These conditions express the fact that (1) if we press the Restart button
on a personal computer it will eventually restart — without our having
to unplug it and plug it in again; (2) the subway train controller meets
some simple safety conditions; (3) Intel’s new processor does its arithmetic
correctly; and (4) the mixer in a nuclear waste storage container (which is
designed to keep its contents mixed and thus less volatile) cannot turn on
(and thus cause injury) during maintenance.

Now that we have formally expressed our design and our statement con-
cerning its behavior, we can simply press a button and be told whether or
not K |= ¢, that is, does the design satisfy the desired property?

This is the model checking problem: given K and ¢, test whether K
satisfies . Model checkers are currently being hailed as great debugging
aides. This they are. We can write a simple property that our system
should satisfy and press the button. If it does not satisfy the property then
we will be told so. Typical model checking programs will present a counter-
example run of the system, i.e., they produce the explicit bug. If the model
does satisfy the property, then we will be told so. Note that this is better
than just not finding a bug. Our model checker has automatically proved
that our design has a certain desirable property.

The connection between model checking and descriptive complexity is
clear. Since the models involved are huge, it is useful to write queries in
languages that only express feasible queries. A popular and quite expressive
temporal logic for model checking is CTL*. The model checking problem
for CTL* is PSPACE complete and that is PSPACE in the size of the huge
Kripke structure. However, it was shown in [21] that CTL* can be embed-
ded in linear time in the simple language FO?(TC) — the sublanguage of
FO(TC) in which there are at most two domain variables. The catch is that
for very complex formulas in CTL*, the translation might also include a
linear number of boolean variables. However, in practice, most queries that
people seem to want to write involve zero or very close to zero booleans.

In [2], it is shown that the embedding of CTL* in FO?(TC) lands in a
fragment that can be efficiently model checked in time O(|K||p|2™): linear
in the size of the structure and the formula, but exponential in the number
of booleans in the formula.

This is useful, both because ny tends to be tiny, and because the language
involved is closely tied to reachability queries which are the bread and butter
of model checking. One nice feature is that we can look at the formula, count
the number of booleans, and automatically say whether the query can be
checked efficiently or not.

In summary, descriptive complexity reveals a simple and elegant view
of computation. New insights and even practical algorithms have resulted
from this approach.

References

[1] S. Abiteboul and V. Vianu, “Generic Computation And Its Complexity,” 28rd ACM
STOC (1991), 209-219.

[2] N. Alechina and N. Immerman, “Efficient Fragment of Transitive Closure Logic,”
manuscript, 1999.

[3] J. Cai, M. Fiirer, N. Immerman, “An Optimal Lower Bound on the Number of
Variables for Graph Identification,” Combinatorica, (12:4) (1992), 389-410.

[4] A. Chandra and D. Harel, “Structure and Complexity of Relational Queries,” 21st
Symp. on Foundations of Computer Science, 1980, (333-347). Also appeared in a
revised form in JOSS 25, 1982, (99-128).

[5]

[22]
23]

[24]

K. Etessami and N. Immerman, “Tree Canonization and Transitive Closure,” IEEE
Symp. Logic In Comput. Sci. (1995), 331-341.

K. Etessami and N. Immerman, “Reachability and the Power of Local Ordering,”
Eleventh Symp. Theoretical Aspects Comp. Seci. (1994), 123 - 135.

R. Fagin, “Generalized First-Order Spectra and Polynomial-Time Recognizable Sets,”
in Complezity of Computation, (ed. R. Karp), STAM-AMS Proc. 7, 1974, (27-41).
M. Frick and M. Grohe, “Checking First-Order Properties of Locally Tree-
Decomposable Graphs,” (1999).

E. Gridel and G. McColm, “On the Power of Deterministic Transitive Closures,”
Information and Computation (119:1) (1995), 129-135.

M Grohe and J. Marifio, “Definability and Descriptive Complexity on Databases of
Bounded Tree-Width,” to appear in Intl. Conf. on Database Theory(1999)

M. Grohe, “Finite Variable Logics in Descriptive Complexity Theory,” Bulletin of
Symbolic Logic , 4(4) (1998), 345- 398.

N. Immerman, Descriptive Complezity, 1998, Springer Graduate Texts in Computer
Science, New York.

N. Immerman, “Number of Quantifiers is Better than Number of Tape Cells,” JCSS
(22:3) (1981), 65-72.

N. Immerman, “Upper and Lower Bounds for First Order Expressibility,” JCSS 25,
No. 1 (1982), 76-98.

N. Immerman, “Relational Queries Computable in Polynomial Time,” Information
and Control, 68 (1986), 86-104.

N. Immerman, “Languages That Capture Complexity Classes,” SIAM J. Comput.
16, No. 4 (1987), 760-778.

N. Immerman, “Nondeterministic Space is Closed Under Complementation,” SIAM
J. Comput. 17, No. 5 (1988), 935-938.

N. Immerman, “Expressibility and Parallel Complexity,” SIAM J. of Comput. 18
(1989), 625-638.

N. Immerman, “Descriptive and Computational Complexity,” in Computational Com-
plexity Theory, ed. J. Hartmanis, Proc. Symp. in Applied Math., 38, American Math-
ematical Society (1989), 75-91.

N. Immerman, “DSPACE[n*] = VAR[k + 1],” Sizth IEEE Structure in Complezity
Theory Symp. (1991), 334-340.

N. Immerman and M. Vardi. Model Checking and Transitive Closure Logic. Proc. 9th
Int’l Conf. on Computer-Aided Verification (CAV’97), Lecture Notes in Computer
Science, Springer-Verlag 291 - 302, 1997.

Yiannis N. Moschovakis, Elementary Induction on Abstract Structures, North Hol-
land, 1974.

R. Szelepcsényi, “The Method of Forced Enumeration for Nondeterministic Au-
tomata,” Acta Informatica 26 (1988), 279-284.

M. Vardi, “Complexity of Relational Query Languages,” 14th ACM STOC Symp.,
(1982), 137-146.

