
Unikernels as Processes

Dan Williams
IBM T.J. Watson Research Center

djwillia@us.ibm.com

Ricardo Koller
IBM T.J. Watson Research Center

kollerr@us.ibm.com

Martin Lucina
robur.io / Center for the Cultivation of Technology

martin@lucina.net

Nikhil Prakash
BITS Pilani

niks3089@gmail.com

ABSTRACT

System virtualization (e.g., the virtual machine abstraction)
has been established as the de facto standard form of isola-
tion in multi-tenant clouds. More recently, unikernels have
emerged as a way to reuse VM isolation while also being light-
weight by eliminating the general purpose OS (e.g., Linux)
from the VM. Instead, unikernels directly run the applica-
tion (linked with a library OS) on the virtual hardware. In
this paper, we show that unikernels do not actually require a
virtual hardware abstraction, but can achieve similar levels
of isolation when running as processes by leveraging existing
kernel system call whitelisting mechanisms. Moreover, we
show that running unikernels as processes reduces hardware
requirements, enables the use of standard process debugging
and management tooling, and improves the already impres-
sive performance that unikernels exhibit.

CCS CONCEPTS

• Security and privacy → Virtualization and security;
• Computer systems organization → Cloud computing ;
• Software and its engineering → Operating systems;

KEYWORDS

unikernels, cloud computing, security, virtualization

ACM Reference Format:

Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash.
2018. Unikernels as Processes. In Proceedings of SoCC ’18: ACM
Symposium on Cloud Computing, Carlsbad, CA, USA, October
11–13, 2018 (SoCC ’18), 13 pages.
https://doi.org/10.1145/3267809.3267845

1 INTRODUCTION

Unikernels have emerged as a lightweight way to run appli-
cations in isolation from one another in a cloud environment.
They consist of an application linked against only those parts

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267845

of a library OS that the application needs to run directly on
a virtual hardware abstraction, thereby inheriting the de-
sirable isolation properties of virtual machines (VMs). Al-
though originally limited to OCaml-based applications with
MirageOS [34], unikernel communities have now emerged
around many different languages [2, 3, 10, 18, 42] and some
even support common applications and runtimes [9, 27] like
nginx, redis, Node.js express, Python, etc. Due to their
lightweight characteristics and strong isolation, unikernels
are well suited for microservices [23, 44], network function
virtualization [36], or emerging highly-responsive cloud work-
loads like so-called “serverless computing” [1, 7], where mul-
tiple mistrusting cloud users run small snippets of code in
an event-based manner [29].

However, despite the isolation benefits, adopting VM-
like characteristics introduces several issues. First, existing
tooling for VMs was not designed for lightweight, highly-
responsive cloud services and requires redesign for unikernels
or lightweight VMs [35] to address memory density, perfor-
mance, and startup time. Second, unikernels are like black-
box VMs, which raises questions of how to debug them in
production [19]. Finally, unikernels running as VMs cannot
be deployed on top of—and take advantage of the elasticity
properties of—already virtualized infrastructure without the
performance, complexity and security implications of nested
virtualization [17].

In this paper, we describe a technique to run unikernels as
processes, while retaining their VM-like isolation properties.
We believe that running unikernels as processes is an impor-
tant step towards running them in production, because, as
processes, they can reuse lighter-weight process or container
tooling, be debugged with standard process debugging tools,
and run in already-virtualized infrastructure.

Our approach is based on two observations. First, uniker-
nels are more like applications than kernels and, as such, do
not require supervisor-level hardware features (e.g., ring 0 on
x86). Second, if isolation is achieved for VMs by sufficiently
limiting access to the underlying host via a thin hypercall
interface, then it should also be achievable for processes by
sufficiently limiting access to the underlying host. To this
point, kernel mechanisms exist (e.g., seccomp in Linux [24])
that can restrict the system call interface for processes.

We demonstrate unikernels running as processes by modi-
fying the open-source ukvm unikernel monitor.1 After setting
up virtual device access with the host, instead of launching

1https://github.com/solo5/solo5

199

https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

the unikernel as a guest VM, the monitor dynamically loads
the unikernel into its own address space. The modified moni-
tor, dubbed a tender, then switches to a restricted execution
mode before jumping into the unikernel code. Importantly,
we show there is a simple and direct mapping between hy-
percalls and system calls, which results in similar levels of
isolation.

We evaluate the isolation of unikernels as processes on fa-
miliar cloud applications and runtimes and compare them to
their virtualized equivalents, tracing system call and kernel
execution in the host system. We find that when running
as processes, unikernels invoke fewer system calls and sub-
sequently access 50% fewer host kernel functions than when
running as a VM. We also use fuzz testing to compare pos-
sible kernel access against normal processes, showing a 98%
reduction in accessible kernel functions. When evaluating the
performance of unikernels as processes, we find that running
unikernels as processes can increase throughput up to 245%,
reduce startup times by up to 73%, and increase memory
density by 20%.

2 UNIKERNEL ISOLATION

In a multi-tenant cloud environment, mutually mistrusting
cloud users share physical compute resources. On a single ma-
chine, we refer to isolation as the property that no cloud user
can read or write state belonging to another cloud user or
modify its execution. While isolation is built from hardware-
based protection (e.g., page tables) which we trust,2 we fo-
cus on deficiencies in the software exploitable through the
software interfaces. As such, our threat model is one of a
malicious tenant breaking out of its isolation through com-
promise of the interface below. Compromise is related to the
attack surface of the layer underneath; we assume that the
amount of code reachable through an interface is a metric
for its attack surface [30, 48]. We do not consider covert
channels, timing channels, or resource starvation.

In the remainder of this section, we review a typical uniker-
nel architecture that uses virtualization techniques, discuss
why it achieves isolation, and then identify some limitations
with using a virtualization-based approach.

2.1 Unikernel Architecture

Figure 1 shows the typical architecture for unikernels, us-
ing virtualization hardware for isolation. In the diagram, the
KVM module in the Linux kernel3 interfaces with virtualiza-
tion hardware (depicted VT-x) and exposes it to a userspace
monitor process. For this paper, we limit the discussion to
environments where the monitor process is a unikernel mon-
itor, such as ukvm [47], which can be viewed as similar to
QEMU, but specialized for running unikernels. While not
ubiquitous, ukvm is used by diverse unikernel ecosystems, in-
cluding MirageOS [34], IncludeOS [18], and Rumprun [9] on

2Additional discussion of trusting hardware appears in Section 5.1.3.
3Xen [16] is also a popular choice for unikernels, but we limit discus-
sion to Linux/KVM for clarity.

Figure 1: Unikernel isolation using a monitor process
with virtualization technology

multiple systems (Linux, FreeBSD, OpenBSD) and architec-
tures (x86 64 and ARM64).

The userspace monitor process has two main tasks: setup
and exit handling. Setup consists of allocating the memory
(typically specified on the command line) and virtual CPU
structures necessary to start the unikernel as a VM. During
setup, file descriptors are opened for system resources that
the unikernel will need during execution. For example, the
monitor may open a network tap device or a backing file for
a virtual block device. The monitor will communicate with
the KVM module in the kernel via system calls to actually
load and start running the unikernel.

During execution, the unikernel will exit to the monitor
via hypercalls, usually to perform I/O. For example, to send
a network packet, the unikernel will exit to the monitor, pass-
ing a reference to the packet. Subsequently, the monitor will
write the packet to the file descriptor associated with the
network tap device.

2.2 Are Unikernels Isolated?

When using virtualization technology, isolation is derived
from the interface between the unikernel and the monitor
process. This interface is thin: the unikernel can exit to ukvm

via at most 10 hypercalls.4 Of the 10 hypercalls possible in
ukvm, 6 are for I/O (read, write, and info for the network
and block device) and the other four are to get the time, poll
for events, output to the console, and halt (see Table 1).

When compared to the Linux system call interface, the
interface presented to the unikernel by the monitor is much
thinner and is thus considered better for isolation [35]: for
reference Linux has over 300 system calls, whereas Xen has
about 20 hypercalls, and ukvm has 10 hypercalls.

We note that isolation does not come from the interface
between the monitor and the host; indeed, the monitor is

4 This is an upper bound, because ukvm is modular and can be tailored
to a particular unikernel [47]. For example, unikernels that do not
need a network device use a monitor that does not expose a network
interface and therefore exposes fewer than 10 hypercalls.

200

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

a process on Linux, potentially with increased privilege to
communicate with the KVM module. If an attacker compro-
mised the monitor process, it would be able to launch attacks
across the entire Linux system call interface.

2.3 Limitations of Hardware
Virtualization

Despite being a convenient mechanism to construct a thin
interface for isolation, using hardware extensions for virtu-
alization has drawbacks including tooling, memory density,
performance, and hardware availability.

As VMs became the dominant unit of execution on the
cloud, common process-level tools, such as debugging tools,
were used within the guest OS. With unikernels, there is no
guest OS equipped with these familiar debugging tools [19].
While techniques traditionally used for kernel development
are possible, such as connecting a client to a gdb stub im-
plemented in the monitor, they are often cumbersome for
application development.

VMs have also struggled with memory density because
all guests typically perform file caching independently, even
if many guests utilize the same (read-only) system files.
To combat inefficient use of memory in VMs, techniques
like memory ballooning [45] and kernel samepage merging
(KSM) [8, 26] have been proposed that trade memory effi-
ciency for extra CPU cycles and complexity.

On the performance side, every hypercall involves a world
switch between the virtual CPU context and monitor con-
text. We found that this more than doubles the number of
cycles that a hypercall consumes when compared to a direct
function call. We note that this overhead will occur on ev-
ery hypercall. A detailed performance analysis appears in
Section 5.

Finally, while the physical availability of virtualization
hardware is no longer a concern in the modern data center,
existing infrastructure-as-a-service clouds are often used as
a base upon which to build new cloud offerings. For example,
the OpenWhisk [7] serverless infrastructure is typically de-
ployed on top of a collection of VMs. Unfortunately, nested
virtualization is rarely enabled by cloud providers, leaving
these VMs without hardware support for virtualization.

3 UNIKERNELS AS PROCESSES

When running on a unikernel monitor, unikernels appear
much more similar to applications than kernels. A running
unikernel is conceptually a single process that runs the same
code for its lifetime, so there is no need for it to manage page
tables after setup. Unikernels use cooperative scheduling and
event loops with a blocking call like poll to the underlying
system for asynchronous I/O, so they do not even need to
install interrupt handlers (nor use interrupts for I/O).5

5Some unikernels, like OSv [27], do not (yet) run on a unikernel mon-
itor and thus do not strictly fit this description. Determining whether
such unikernels could be ported to unikernel monitors is a subject of
future research.

Figure 2: Unikernel isolation using a tender process
with seccomp technology

In this section, we describe how, by leveraging existing sys-
tem call whitelist mechanisms in the kernel, unikernels can
maintain their isolation while running as processes, thereby
avoiding the limitations of using virtualization hardware.
We first provide background on these mechanisms, describe
the unikernel-as-process architecture, then highlight how the
unikernel changes to fit the process model.

3.1 Background: Linux and seccomp

Many modern operating systems have a notion of system call
whitelisting allowing processes to transition into a mode with
a more restricted system call interface available to them. For
example, Linux has seccomp [24], OpenBSD has pledge [39],
and FreeBSD has capsicum [46]. For clarity of exposition,
we will focus this discussion on Linux and seccomp.

seccomp is a system call filtering framework that has been
in Linux as of 2.6.12, since 2005 [24]. It was originally in-
tended for CPU sharing [21], in which a process makes a
one-way transition into secure computing mode. When a pro-
cess is in secure computing mode, it can only perform a lim-
ited set of system calls on file descriptors that have already
been opened. Furthermore, a process can register a custom
BPF[38] program to specify filters that run on every system
call.

A common problem with seccomp is that, in general, it
is difficult to determine what system calls an application
may use. An overly strict seccomp policy will result in un-
necessary program termination. Thus, in practice, default
seccomp policies tend to be large and overly permissive:
Docker runs containers under a default policy that allows
them to perform more than 250 system calls [11].

3.2 Unikernel/Process Architecture

Figure 2 shows an overview of how to run unikernels as pro-
cesses, by replacing the monitor with a similar component
we call a tender. Like the monitor in Figure 1, which relies
on KVM and virtualization hardware, the tender process has
two main tasks: setup and “exit” handling. In this case, the
setup step begins the same: file descriptors are opened for
I/O. However, instead of loading memory and register state

201

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

via the KVM module, the tender performs the following op-
erations.

First, the tender dynamically loads the unikernel code
into it’s own address space, just like any other dynamically-
loaded library. Note that the unikernel is self contained, ex-
cept for explicit hypercalls. It does not reuse any other func-
tions from the tender; for example, the unikernel has its own
implementation of libc and/or other libraries. The unikernel
will need heap space, so the tender allocates memory for the
unikernel, according to the amount of memory requested.6

There is no need to allocate register state or a temporary
stack for the unikernel because it will inherit them from the
tender. Starting execution of the unikernel is as simple as
calling the entry function of the (loaded) unikernel code with
boot time parameters (e.g., the size and location of memory)
as arguments.

Once started, the unikernel executes as usual, but instead
of invoking hypercalls when necessary, the unikernel simply
does a normal procedure call to the hypercall implementa-
tion in the tender. The hypercall implementation in the ten-
der is identical to the monitor implementation in the virtu-
alization case; the tender will likely perform a system call to
Linux, then return the result to the unikernel.

Importantly, before jumping to the entry point of the
unikernel, the tender must configure seccomp filters to only
allow system calls that correspond to unikernel exits for I/O
and make the one-way transition.

3.3 Are Unikernels as Processes Isolated?

Unlike VMs, in which isolation stems from the interface be-
tween the unikernel and the monitor, when running uniker-
nels as processes, isolation stems from the interface between
the tender and the host. This is because the tender essen-
tially becomes the unikernel when it first jumps to guest
code. It is crucial that the tender ensures that the appro-
priate seccomp rules are in place (via a one-way transi-
tion) before becoming the unikernel. Unlike the uncertainty-
ridden estimation-based approach of selecting an appropri-
ate seccomp policy used by most applications, the tender can
specify exactly which system calls should be allowed, based
on the mapping from hypercalls to system calls, since ukvm-
based unikernels only use those 10 hypercalls by design.

Table 1 shows the one-to-one mapping from hypercalls
to system calls for ukvm-based unikernels. The hypercalls
blkinfo and netinfo return information about devices that
were setup at boot time and thus do not need to make sys-
tem calls. Both walltime and halt are essentially directly
passed through to system calls without the monitor impos-
ing additional restrictions to arguments. The remaining calls
have a specific resource associated with them, usually implic-
itly enforced by the monitor. For example, the monitor will
ensure that a netwrite hypercall always results in a write

system call to the file descriptor that it set up for the network
device.

6The amount of memory is passed to the tender as a command-line
parameter, just like the memory parameter for starting guest VMs.

Hypercall System Call Resource

walltime clock gettime -

puts write stdout

poll ppoll net fd

blkinfo - -

blkwrite pwrite64 blk fd

blkread pread64 blk fd

netinfo - -

netwrite write net fd

netread read net fd

halt exit group -

Table 1: The entire set of ukvm hypercalls and the
system call/resource pair that correspond to them.

Fortunately, seccomp filters allow the tender to specify
such associations before it transitions to run the unikernel.
For example, at setup time, after the tender knows what file
descriptor corresponds to each device, it creates a seccomp

filter that checks that the file descriptor argument to the sys-
tem call matches the resources specified in Table 1. Explicit
checks, like ensuring every blkwrite is of a length equal to
some fixed sector size, can also be specified in the filter.

In every case, the checks that the monitor would implicitly
or explicitly perform in the virtualization case are performed
by the tender via its seccomp filters. We therefore consider
unikernels as processes to exhibit an equal degree of isola-
tion to unikernels as VMs. We provide further evaluation of
isolation in Section 5.

3.4 Other Benefits

The host system provides many benefits to processes. Uniker-
nels gain many of these benefits when run as processes. Re-
call that the tender loads a unikernel directly into its memory
space as a dynamically loaded library. With no modifications,
the host system can provide:

• Address space layout randomization (ASLR).
ALSR is inherited from the dynamic loader; a uniker-
nel (which is just a library) will be loaded at a different
offset on each execution, making it difficult for an at-
tacker to target known gadget addresses.

• Support for common tooling. When debugging,
there is no need for running a gdb server in the moni-
tor (as done in ukvm or QEMU), nor reloading the sym-
bol tables after the unikernels are loaded into memory.
The unikernel and the tender together make up a nor-
mal process albeit with some dynamic library loading.
Most process-based tools, like gdb, perf and valgrind

are able to handle dynamic libraries with no modifica-
tions.

• Memory sharing. If multiple copies of a unikernel
are executed on the same machine, the tender can
ensure that the memory containing the unikernel bi-
nary is automatically shared by the host (e.g., mmaping

202

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 3: The Solo5 unikernel ecosystem. We imple-
mented nabla as a new Solo5 binding and a new back-
end for the ukvm monitor.

the unikernel binary with MAP SHARED), rather than re-
sorting to tools such as KSM (kernel samepage merg-
ing) [8].

• Architecture independence. Processes do not need
architecture-dependent code for bootup, configuring
the MMU, or installing and handling interrupts, as is
common in typical unikernels running as VMs. Like
other applications, the problem is reduced to being
able to compile the application code for a different
architecture.

4 IMPLEMENTATION

We built a prototype system, called nabla,7 to demonstrate
unikernels running as processes. For the most part, nabla is
a straightforward implementation of the tender design dis-
cussed in Section 3.2. In this section, we 1) outline the ar-
chitecture, showing how our implementation fits with exist-
ing open-source components; 2) describe parts of the guest
unikernel code (e.g., the libOS) that we modified, specifically
thread-local storage; and 3) describe the tender’s loading
mechanism.

4.1 Architecture

We implemented nabla as part of the Solo5 unikernel ecosys-
tem [12], as shown in Figure 3. Solo5 is a unikernel base layer,
which provides an easy-to-port-to interface (see Table 1)
upon which various unikernel library OSes run, including Mi-
rageOS, includeOS, and Rumprun unikernels. Solo5 contains
bindings that allow it to run on different monitors, includ-
ing virtio-based monitors like QEMU or the ukvm unikernel
monitor. ukvm is essentially a direct “pass through” of the
Solo5 interface upon which unikernels run, and, as such, it is
distributed with Solo5. ukvm itself contains backends to run
on different systems and architectures, from Linux/KVM to
FreeBSD and OpenBSD, from x86 to ARM.

7The name nabla comes from the Greek symbol ∇, which evokes an
image of a thin interface under the unikernel (to the system below).

We extended Solo5 and ukvm in two ways. First, we added
a new Linux backend to the ukvm monitor, which enables it
to function as a tender. Second, we modified the Solo5 ukvm

binding to eliminate some hardware-specific setup and use a
function call mechanism rather than a hypercall mechanism
to access the tender. In all, our modifications resulted in 21
changed files with 1,586 additions and 64 deletions.

4.2 Thread-local storage

In Section 3, we claimed that unikernels are more like ap-
plications than kernels and that they do not need special
handling (like ring 0 or direct access to kernel-managed reg-
isters). However, in practice, we encountered one case where
this was not true. Specifically, Rumprun unikernels [9] make
use of segment-based thread local storage (TLS) as a conve-
nient mechanism for threads to access local data. Unfortu-
nately, on the AMD64 architecture, segment-based TLS re-
quires full management of the %fs register. However, Linux
processes need to make an arch prctl system call in order
to write into this register. Allowing unikernels as processes
to perform the arch prctl is undesirable because it violates
our one-to-one mapping between ukvm hypercalls and system
calls.

To solve this problem, we decided to eliminate segment-
based TLS from Rumprun. The unmodified NetBSD code
used in Rumprun already has support for multiple architec-
tures, including ones without segment-based TLS; we sim-
ply directed the build to disable TLS. In the other parts of
Rumprun, we manually replaced TLS accesses with explicit
calls to access thread-specific variables, a total change of 10
files with 49 insertions and 125 deletions. In Section 5.2, we
evaluate the performance implications of this implementa-
tion choice.

4.3 Dynamic unikernel loading

In our design, the nabla tender loads a unikernel directly
into its memory space as a dynamically loaded library.8 In
practice, however, unikernels are built as static binaries (they
are intended to run as VMs, after all). While it is possible
to traverse the various unikernel build systems to ensure all
code is compiled as position independent, this is cumbersome
and tedious. We followed this approach for MirageOS and
found that some libraries did not respect CFLAGS passed from
the build system; we patched them accordingly. Though we
didn’t encounter any in MirageOS or its libraries, we are
aware of some non-inline assembly code in Rumprun and
would have had to refactor it to build Rumprun unikernels
as position independent.

Instead, for our initial implementation, we sidestep the
effort of building dynamic binaries by dynamically load-
ing unikernels built as static binaries. All segments in the
unikernel ELF marked as loadable (PT LOAD) are memory
mapped with an mmap fixed to the respective address. These

8Ideally, the loading and parsing of the ELF headers would be done
entirely in userspace, after transitioning via seccomp, so that a mali-
ciously crafted unikernel binary cannot attack the system before the
transition occurs.

203

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

memory segments will be shared by all instances using the
same unikernel binary (e.g., by all node.js unikernels). The
unikernel expects memory to begin at address 0x0; if it is
loaded at 0x0, all of the addresses contained in the (statically-
built) unikernel remain valid. As a result, the monitor code
must reside above the unikernel in memory. We specify a cus-
tom linker-script to ensure the monitor is loaded at 1GB.9

Furthermore, we ensure the monitor code does not dynami-
cally load any other libraries to avoid conflicts with the re-
served unikernel. In practice, no unikernel pages are loaded
into the 0x0 address of the process because the unikernels
are linked with ‘.text‘ starting at 1 MB, leaving low memory
empty.

We plan to modify the unikernels for dynamic loading to
regain the ability to benefit from many process-like features
that the dynamic loading case enjoys, including out-of-the-
box ASLR, debugging support10 and memory sharing. To
date, we have modified the build process for only one class
of unikernels (MirageOS) to produce position-independent
unikernel binaries.

5 EVALUATION

We evaluate unikernels as processes in two dimensions: isola-
tion and performance. Throughout the evaluation, we use a
variety of unikernels, shown in Table 2, in which the applica-
tions are built both using virtualization with ukvm (v0.2.2)
and as processes with nabla. All applications use Rumpun
unless otherwise specified. For comparison points in some
experiments, we run the same application code as a native
Linux process or as a VM using the QEMU monitor (v2.5.0)
instead of ukvm.

For isolation, we find that even though there is indeed
a one-to-one mapping between system calls permitted by
nabla and the hypercall interface in ukvm, the kernel experi-
ences one fewer system call when running nabla unikernels,
surprisingly resulting in access to only half of the number of
kernel functions as ukvm under various workloads. We also
find that the nabla seccomp policy effectively reduces the
amount of accessible kernel functions by 98% compared to a
normal process.

For performance, we find that running unikernels as pro-
cesses (nabla) improves performance over virtualization-
based unikernels (ukvm) in all cases, up to over 245% in
terms of throughput. Furthermore, compared to ukvm, nabla
reduces CPU utilization by up to 12%, achieves 20% higher
memory density, and reduces the already impressive startup
times of ukvm by up to 73%.

5.1 Isolation Evaluation

As described in Section 2 and 3, isolation stems from a thin
interface to the host. In this subsection, we quantify 1) how
much of the host kernel a nabla unikernel (process) accesses

9 Due to limitations with the loader (ld), we were unable to specify a
higher loading address, so unikernels are limited to 1GB in size.
10While gdb can be used in our prototype, symbols for the unikernel
are not automatically loaded as is the case for dynamic loading.

Name Description

includeos-TCP IncludeOS TCP server (receiver side)

includeos-UDP IncludeOS UDP server (receiver side)

mirage-HTTP MirageOS web server (1KB static pages)

nginx nginx v1.8.0 (212B static pages)

nginx-large nginx (6.4KB png images)

redis-get redis v3.0.6 get tests of redis benchmark

redis-set redis set tests of redis benchmark

node-express Nodejs v4.3.0 (express v4.16.2 web server)

node-fib Nodejs asynch fibonacci calculator (stresses
green threads)

py-chameleon Chameleon from the Python benchmark

suite [13]

py-2to3 2to3 from the Python bench. suite (disk I/O in-
tensive)

py-tornado Tornado from the Python bench. suite (web
server and client run in the same pro-
cess/unikernel to stress localhost networking)

Table 2: Workloads used for the isolation and perfor-
mance evaluations. Unless otherwise specified, the
applications use Rumprun as their library OS.

as compared to a ukvm unikernel; and 2) how much of the
host kernel a nabla unikernel could possibly access given the
nabla isolation mechanism (its seccomp policy). Throughout
this evaluation, a mechanism is more isolated than another
if it has a thinner interface (e.g., uses less system calls) and
consequently has access to less kernel code.

5.1.1 How much kernel access is needed? To measure
which kernel functions were accessed by a unikernel, we use
the Linux kernel’s ftrace functionality [5]. ftrace is a kernel
facility that can be configured to produce a trace containing
a graph of kernel functions called by a specific process or set
of processes (specified as a list of PIDs).

We are most interested in the kernel functions that the
guest unikernel is able to access, not those that the monitor
or tender accesses during setup time. Thus, rather than us-
ing an existing tool like trace-cmd to start and stop the trac-
ing, we implemented a ftrace module for ukvm. The module
forks a tracing process from the unikernel process and han-
dles synchronization to ensure that the tracing is started
and stopped at the right times without introducing extra
system calls in the target. Once we obtain the function call
graph from a unikernel execution, we filter out function call
trees that are due to interrupts (smp irq work interrupt,
smp apic timer interrupt, etc.) which may contain kernel
work on behalf of other processes. The module works both
for ukvm and nabla unikernels. It is implemented in approx-
imately 400 lines of C code and is open source.11

For these experiments, in order to avoid contaminating
the trace, we ran both the unikernel and its monitor/tender
inside a Linux VM with a stock Ubuntu Linux kernel, ver-
sion 4.10.0-38-generic. We interact with the test Linux VM

11https://github.com/djwillia/solo5/tree/ftrace

204

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

ukvm nabla process

nginx 4 3 43

nginx-large 4 3 43

node-express 6 5 43

redis-get 4 3 36

redis-set 4 3 36

Table 3: Number of syscalls issued under various sys-
tems.

entirely through the serial console to avoid any tracing con-
tamination from SSH. We bridge the Linux test VM’s net-
work device with the unikernel’s tap interface. We note that
nested virtualization is in use on the host to support the
virtualization cases (ukvm) in the test VM.

For comparison, we also gather traces for the applica-
tions running as regular processes on Linux, as obtained by
trace-cmd and similarly filtering out interrupts.

System calls. As a first analysis of the trace data, we cal-
culate the number of system calls issued by the unikernel by
extracting top-level calls prefixed with sys (ignoring case).
Table 3 shows the results. For most of these applications, a
nabla unikernel issues 3 calls: ppoll, read and write. For
node-express, we see an additional two for block operations
(pread64 and pwrite64). In all cases, ukvm adds a single ex-
tra call: ioctl (KVM RUN) is used to restart the guest after a
hypercall. For comparison, nabla runs the applications using
8 to 14 times fewer system calls than native processes.

We also instrumented ukvm to compare with the hyper-
calls that are made in the ukvm case, as this is where ukvm

unikernels derive their isolation. We confirm the one-to-one
mapping between hypercalls and system calls, as described
in Table 1 in Section 3.

Total coverage. We count the number of unique function
calls in the traces and report them as the total number of
kernel functions accessed. Figure 4 shows the results of trac-
ing a variety of applications from Table 2 using this method.
Each bar shows the mean of 5 trials and the error bars show
the maximum and minimum number of functions observed.

Unlike the system call analysis, the difference in total ker-
nel functions accessed is dramatic: in all cases nabla uniker-
nels access about half of the number of functions accessed
by ukvm unikernels. Further inspection shows much of this
difference to be virtualization-related functions that nabla

avoids, for example 43 with kvm in the function name, 20
with vmx, 15 with vcpu, etc. For reference, processes access
about 5-6 times more kernel functions than nabla and 2-3
more times more than ukvm unikernels.

We also investigated functions that were in the nabla

trace but not in the ukvm trace. Specifically, we found that
seccomp filtering (for nabla) adds about five additional calls
are made to perform more checks, indicating a relatively low-
complexity (in terms of number of functions) implementa-
tion for seccomp.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

nginx
nginx-large

node-express

redis-get

redis-set

U
n
iq

u
e
 k

e
rn

e
l

fu
n
c
ti
o
n
s
 a

c
c
e
s
s
e
d process

ukvm
nabla

Figure 4: Unique kernel functions accessed when run-
ning applications as processes or ukvm/nabla uniker-
nels.

5.1.2 How much of the kernel is accessible? Up to this
point, we have been quantifying how much access to the
underlying host kernel a unikernel needs to function correctly.
However, to convince ourselves that a unikernel as a process
is isolated, we would like to know not just how much of
the kernel a unikernel needs to access, but how much of the
kernel a unikernel could possibly access through its interface.
This section describes experiments that employ fuzz testing
to demonstrate how little of the host kernel a unikernel as a
process can access.

We use trinity, a system call fuzzer, which is used to try
and find unexpected bugs in the Linux kernel [14]. Rather
than just calling completely random system calls with com-
pletely random arguments, trinity incorporates knowledge
of the types of each system call argument. For example,
trinity knows that a particular argument to a particular
system call expects a file descriptor. In addition, trinity
has a concept called an fd provider to further narrow down
the search space. File descriptors are created in a particu-
lar way from one or more fd providers. Whenever trinity

fuzzes a system call that expects a file descriptor, it obtains
a valid file descriptor from the fd providers.

In order to use trinity to examine the effectiveness of
nabla’s seccomp profile in isolating the unikernel as a pro-
cess, we made three additions/modifications to it:

• A mechanism to start each system call fuzz test in
its own subprocess. This is needed so that nabla’s
seccomp rules can be added before issuing the syscall,
without hindering the fuzzing framework from contin-
uing to the next system call.

• A mechanism to enable and disable kernel tracing at
the right times so that only the syscall under test is
traced, without the fuzzing framework polluting the
measurement. As before, we filter interrupts from the
ftrace results.

• A new nabla fd provider, which opens file descriptors
in the usual nabla way, then gives them to trinity

when necessary.

Throughout all of the fuzz tests, trinity occasionally en-
counters errors or otherwise misbehaves. We automatically

205

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

U
n
iq

u
e
 k

e
rn

e
l
fu

n
c
ti
o
n
s

accept
nabla
block

 0

 30

 0 10

Figure 5: Histogram of kernel function coverage
achieved through system call fuzzing with trinity.

perform sanity-checks on the test runs to filter out empty
traces and unexpected behavior. In practice, about 90% of
the tests are usable, resulting in slightly under 14000 data
points for each scenario in these experiments.

We examine three different seccomp policies: accept, which
accepts everything; nabla, which corresponds to a policy that
accepts only the system call and resource pairs that corre-
spond to the ukvm hypercalls (shown in Table 1); and block,
which blocks everything. In total, the three policies allow
trinity to access 2682, 44, and 6 unique kernel functions
respectively. The nabla policy reduces the amount of kernel
functions accessible by 98%.

To visualize the data, Figure 5 shows a histogram with
each system call on the x-axis with the total coverage
achieved (in number of functions) on the y-axis. The largest
(dark blue) region shows how much of the kernel trinity is
able to access. Notably, some system calls result in many
more kernel functions being accessed than others; these cor-
respond to the largest potential attack surface so can be
considered the most dangerous under this metric. For exam-
ple, the unshare call shows up as the worst (touching 608
unique kernel functions) because it is the call that is respon-
sible for the creation of all Linux namespaces, including the
network namespace.

The lightest (orange) region in Figure 5 is barely visible as
the lower bound for accessible kernel functions. It is fixed at
6 functions, which correspond to running the seccomp filter
and encountering a denial. In the bottom left-hand corner,
magnified in the graph insert, there are a few (light blue)
bars that rise above the (orange) baseline. These correspond
to the only system calls that are allowed by the nabla policy.
To better examine these, we perform a second, more targeted
experiment.

We configure trinity to only target the system calls per-
mitted by the nabla policy, with the exception of exit group.
The system calls permitted by the nabla policy only allow
for some specific arguments: like only permitting the disk
fd and count equal to 512 (bytes) for the pwrite64 system
call. Figure 6 shows the number of kernel functions trinity
was able to access when focusing all of its approximately

 0

 50

 100

 150

 200

clock_gettime

ppoll
pread64

pwrite64

read
write

U
n
iq

u
e
 k

e
rn

e
l
fu

n
c
ti
o
n
s

accept
nabla
block

Figure 6: Coverage of the kernel achieved through
targeted system call fuzzing of nabla system calls
with trinity.

14000 tests on these calls. Some calls, like clock gettime

are fully permitted, so the nabla policy matches the accept
policy. Others are much closer to the block policy. This is
because the nabla policy does not fully open system calls.
For example, although pwrite64 is the sixth most danger-
ous system call under the metric discussed above, trinity
was unable to find a set of arguments to the system call that
would be permitted by the nabla policy yet also touch many
kernel functions. Under the accept policy, when using all fd
providers, trinity can touch much more of the kernel than
the nabla policy will allow even through the same few system
calls.

5.1.3 Limitations. The analysis of isolation presented
here is based on an attack surface metric related to how
much of the kernel code is accessed/accessible. Some re-
searchers have proposed using more refined attack surface
metrics. Kurmus et al. proposes using call graphs (obtained
through static analysis) to count how many lines of code can
be reached from the set of allowed syscalls [30]. The metric
can be extended with weights given to each function; for ex-
ample, more weight can be given to complex code (e.g., with
the McCabe cyclomatic complexity measure [37]), code that
has historically led to more vulnerabilities (i.e., CVEs), or
based on a metric that distinguishes between popular and
unpopular kernel code paths [32].

Since our attack surface metric is based on code coverage,
it penalizes mechanisms that use additional code to improve
the handling and accounting of data in the kernel. For ex-
ample, Linux namespaces should improve these aspects but
will show an additional “cost” in our metrics.

Another limitation in our analysis is that it only exam-
ines direct system calls. We filter out interrupts, which may
provide more insight into the relative complexity of isolation
mechanisms. Furthermore, other entry points into the kernel
or kernel structures, for example through memory maps such
as vdso, may not be captured by these metrics.

Finally, as discussed in Section 2, we trust the hardware.
Recent hardware security vulnerabilities, like Spectre [28]
and Meltdown [33], have demonstrated that this trust may

206

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 80%

 100%

 120%

 140%

 160%

 180%

 200%

p
y
_
to

rn
a
d
o

p
y
_
c
h
a
m

e
le

o
n

n
o
d
e
_
fib

m
ira

g
e
_
H

T
T

P

p
y
_
2
to

3

n
o
d
e
_
e
x
p
re

s
s

n
g
in

x
_
la

rg
e

re
d
is

_
g
e
t

re
d
is

_
s
e
t

in
c
lu

d
e
o
s
_
T

C
P

n
g
in

x

in
c
lu

d
e
o
s
_
U

D
P

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

245

no I/O with I/O

ukvm
nabla
QEMU/KVM

Figure 7: Normalized throughput for all applications
in Table 2.

be misplaced. Our isolation analysis assumes that hardware
abstractions are sound, so does not capture differences in
hardware features that are intended to provide similar func-
tionality. For example, we assume that standard page ta-
bles are an effective way to isolate memory, as are extended
page tables (EPT). However, the meltdown attack success-
fully broke isolation in standard page tables but not EPT,
demonstrating that perhaps hardware specifics should be
considered when drawing conclusions about isolation.

5.2 Performance evaluation

We next investigate the performance implications of running
unikernels as processes, both in terms of how the application
implemented in the unikernel performs (e.g., throughput),
as well as how it affects resource utilization in the data cen-
ter (e.g., CPU utilization, memory utilization, and startup
time).

Experimental setup. We ran our tests on two set of ma-
chines. The throughput experiments were performed on
a pair of p50 Lenovo laptops with 4 i7-6820HQ CPU @
2.70GHz cores (8 threads), 32GBs of RAM, a SATA 6.0Gb/s
SSD, and both running Ubuntu 16.04.4 with kernel ver-
sion 4.13.0-38-generic. The client/server experiments used
these two p50s connected over 1Gbps Ethernet, except for
includeos-TCP and includeos-UDP (Table 2), which we ran
on a single machine to avoid the 1Gbps limit. The second set
of machines, used for boot time measurements, are 8 Intel(R)
Xeon(R) CPUs E5520 @ 2.27GHz cores (16 threads) run-
ning Red Hat Enterprise Linux 7 3.10.0-514.6.1.el7.x86 64
with 64GB of RAM. Once again, we use the workloads de-
tailed in Table 2. The web based workloads were exercised
with the wrk client using 100 concurrent connections and 8
threads (machine has 8 processors).

Throughput. Figure 7 shows the normalized maximum
throughput for all the applications and workloads described
above. nabla achieves higher throughput than ukvm in all

Workload Seconds Reduction

1T no TLS 9.10 ± 0.03
1T TLS 7.49 ± 0.14 -21.49%

2T no TLS 15.84 ± 0.14
2T TLS 14.59 ± 0.02 -8.46%

Table 4: Segment-based TLS increases the perfor-
mance of a simple microbenchmark by 21.49% with
a single thread (1T) and by 8.46% with two threads
(2T).

cases, from 101% in py-tornado up to 245% in includeos-TCP.
The workloads with the lowest performance improvements
are the non-I/O based ones: py-tornado, py-chameleon, and
node-fib. This can be explained by examining ukvm’s rate of
vmexits per second; without I/O, the only reasons for the
VM to exit are to get the time or to sleep. Conversely, I/O-
bounded workloads like includeos-TCP have the highest rate
of vmexits, and therefore get the biggest gains when running
on nabla, as compared to ukvm. We will later see the benefits
of avoiding vmexits in terms of CPU utilization.

The relative superiority of nabla for some benchmarks
is misleading because it hides the baseline performance of
ukvm, especially in terms of networking. ukvm makes a bold
design choice: in order to maintain its extremely thin and
simple interface, ukvm only allows a single packet to be sent
per hypercall. To put the performance in context, we also
run the unikernels on the QEMU/KVM monitor which uses
a virtio I/O interface that allows for batching and elim-
ination of memory copying. In most cases, ukvm performs
within a few percentage points of QEMU/KVM, even ex-
ceeding QEMU/KVM for workloads with little or no I/O.
However, the poor performance of ukvm for network I/O is
evident on workloads with heavy I/O: for example, nginx
on QEMU/KVM achieves 1.8× the throughput on ukvm. De-
spite this, even though it uses (and gets the isolation benefits
of) the thin ukvm interface, nabla performs well by avoid-
ing the expensive vmexit cost on every I/O operation. As
evidence, nabla is within 8% of the QEMU/KVM baseline
performance in all cases.

Effects of Thread Local Storage (TLS) on throughput.
To evaluate the performance implications of eliminating
segment-based TLS, we ran all macrobenchmarks listed in
Table 2 on ukvm with and without TLS. Note that this is
the original ukvm running on KVM (Linux version 4.15).
In every case, we observed no statistically significant differ-
ence in performance. To further investigate the worst-case
implications of avoiding segment-based TLS, we crafted a
microbenchmark application: a C program on Rumprun as
a ukvm unikernel which starts 1 or 2 pthreads, each exe-
cuting a loop consisting of a thread-local variable increment
followed by a sched yield call.

207

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

 0
 20
 40
 60
 80

 100
 120

(a
)

 C
P

U
 %

 0

 20

 40

 60

 80

 100

(b
)

 V
M

e
x
it
s
/m

s

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000

(c
)

 I
P

C
 (

in
s
/c

y
c
le

)

Requests/sec

nabla
ukvm

Figure 8: CPU utilization (single core) with an in-
creasing number of concurrent clients.

Table 4 (top two rows) shows the duration in seconds when
running the program with 1 thread. It shows that segment-
based TLS improves time from 9.10 to 7.49 (a 21.49% re-
duction). The no TLS case is expected to be slower as each
access to the thread control block has to go through multi-
ple steps of pointer indirection. With two threads, segment-
based TLS decreases the time from 15.84 to 14.59 (8.46%
decrease). The reduction is smaller when using 2 threads as
the 1T case spends most of the time doing pointer indirec-
tion (the 2 threads experiment amortizes some of that time
by switching threads).

We conclude that avoiding segment-based TLS when run-
ning unikernels as processes does not present performance
issues for unikernel-native applications (e.g., MirageOS or
IncludeOS-based) or for the selection of applications repre-
sentative of cloud workloads we tested in Table 2, which
make limited or no use of TLS on the critical path. For ap-
plications which make heavy use of TLS the performance
degradation will be at most 21%.

CPU utilization. To further investigate the effect of
vmexits on performance, we study the CPU utilization of
ukvm- and nabla-based unikernels under increasing load. We
used mirage-HTTP (Table 2) at an increasing number of con-
current connections, increasing the load on the server. Fig-
ure 8(a) shows the CPU utilization as a percentage versus
requests-per-second. The figure shows that nabla can reduce
CPU utilization up to 12% (at 12K requests-per-second).
This reduction is mostly due to the effect of vmexit rates
(Figure 8(b)) on the actual instructions executed per cycle
(IPC in Figure 8(c)). We measured IPC using the perf-kvm

Linux tool. Between the cycle overhead (as discussed in Sec-
tion 2.3) and the toll on CPU caches and TLBs, vmexits
reduce the speed at which instructions in the guest, monitor,
and host kernel are executed (IPC in Figure 8(c)), leading to

0 200 400 600 800 1000 1200 1400
Count

0.0

0.5

1.0

K
B
s
w
ri
tt
en

to
sw

ap
d
is
k

×109

QEMU/KVM

QEMU/KVM + KSM

ukvm

nabla

process

Figure 9: KBs written to swap and system CPU for
an increasing number of py-tornado web servers. One
way of reading the figure is: the system starts pag-
ing after about 900 nabla unikernel instances started
running.

more cycles spent to achieve the same load and faster CPU
saturation (at 17K requests-per-second).

Memory utilization. Memory density is a challenge for
VMs; in this experiment we measure the memory density
of ukvm unikernels vs nabla unikernels. To measure memory
density, we started an increasing number of self-contained py-
tornado unikernels (configured with 64MB of memory) and
measured host swap activity. Each unikernel ran a client and
server thread in which the client requested a page from the
server every 1 second, infrequently enough not to become
CPU bound. Unlike the other experiments, we configured
the test machine with only 8GBs of RAM, as the CPU cores
get bottlenecked before achieving 32GBs of total working set
usage.

Figure 9 shows the results of the experiment described
above. The important points to notice are the points of
inflection: the count after which the load starts to rapidly
increase. ukvm achieves 740 whereas nabla achieves 900 in-
stances, about a 20% improvement in memory density. The
main difference between the two is that nabla uses mmap dur-
ing its setup phase to map the unikernel binaries, and there-
fore inherits sharing from the host kernel. When disabling
mmap, nabla only achieves 760 instances (just 20 more than
ukvm).

For reference, regular processes can scale up to 1050 in-
stances. This can be explained by examining the working
set sizes. The referenced pages over one minute (a measure
of working set size) of nabla were 6168 KBs of anonymous
memory, and 2840 KBs of shared file system pages (from
the unikernel image)12. The regular process does not pre-
allocate memory. It has a smaller working set, referencing
5396 KBs of anonymous memory and 2508 KBs of shared
file system pages, because it also loads python modules as

12Referenced memory was measured using /proc/PID/clear refs and
/proc/PID/smaps. This technique is not applicable to KVM virtual
machines and therefore we only show numbers for nabla and process

208

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

0

250

500

750

H
el
lo

w
o
rl
d

QEMU/KVM

0

10

20

30
ukvm

0

10

20

30
nabla

0

10

20

30
process

0

500

QEMU/KVM

ukvm

nabla

process

2 4 6 8 10 12 14 16
0

500

1000

1500

H
T
T
P

P
O
S
T

2 4 6 8 10 12 14 16
0

50

100

150

200

2 4 6 8 10 12 14 16

Number of cores

0

50

100

150

200

2 4 6 8 10 12 14 16
0

50

100

150

200

0 2 4 6 8 10 12 14

0

500

1000

1500

Figure 10: Startup and runtime in ms for an increasing number of cores running short instances sequentially
(per core).

shared libraries and does not need the extra data pages ref-
erenced by the nabla tender and rumprun (e.g., for thread
management).

Finally, we compare to unikernels using the QEMU mon-
itor, which can only achieve 350 instances. QEMU/KVM
does not achieve high density because there is no sharing be-
tween the pages. A further experiment using KSM (Kernel
Samepage Merging) deduplication shows that QEMU/KVM
can increase density to 750 instances, at the cost of increas-
ing CPU usage by 10%.

Startup time. We next measured and compared nabla

unikernel startup time. This metric is important for network
function virtualization (NFV) [36] and serverless workloads
in which a new unikernel instance is launched per request.
We measured the startup time of short lived instances, se-
quentially starting, running, and exiting on an increasingly
number of cores: no more than one instance per core. We
used two MirageOS applications:13 hello-world and HTTP-
POST. The HTTP-POST application posts one HTTP re-
quest to a local multithreaded HTTP server.

Figure 10 shows the startup and runtime for these two
actions. The HTTP-POST action has higher latency in all
cases because it requires the creation of a network tap de-
vice in all configurations except as a process (where it uses
the host’s local interface). Latency is between 30% to 370%
higher when using ukvm than nabla; this is due to the extra
cost of starting a KVM VCPU context, compared to start-
ing a process. Furthermore, increasing the number of cores

13We also performed some startup measurements with Rumprun
node.js and Python applications. For these, startup times for the run-
times (and node.js imports) alone range from 50ms to 200ms and
obscure the differences between nabla and ukvm.

increases startup time in all cases; but the effect is more pro-
nounced for ukvm than nabla (2.4× vs. 1.88×) because of
contention from the KVM module.

For reference, we also show results for starting a unikernel
on a general-purpose monitor (QEMU/KVM) and as a na-
tive process (recall MirageOS can be configured to produce
an OCaml binary rather than a unikernel [34]). The general-
purpose monitor results in an unacceptable startup time of
up to 1.6 seconds. The nabla unikernel is only as 1.5 − 3×
slower to start than a native process, compared to 2 − 10×
slower under ukvm.

6 RELATED WORK

Unikernels. Unikernel communities have emerged around
many different languages and use-cases: MirageOS for
OCaml [34], IncludeOS for C++ [18], LING for Erlang [3],
HalVM for Haskell [42], runtime.js for Javascript [10], Clive
for GO [2], and ClickOS for instances of the Click router [36].
More general-purpose unikernels include Rumprun [9] and
OSv [27]. As of now, nabla has been tested on unikernels
that run on ukvm (MirageOS, includeOS and Rumprun). Re-
search into whether concepts like multi-cores (used by e.g.,
OSv) can be supported by ukvm is ongoing and we believe
nabla will inherit any advances made by ukvm in this regard.

Running libOSes as processes. Drawbridge “picopro-
cesses” [40] are similar to unikernels as processes in that
they use library OS techniques inside processes. Like nabla,
they run atop a security monitor that restricts the available
system calls. Unlike nabla, picoprocesses focus on running
Microsoft Windows applications atop a slightly higher-level
system call interface than ukvm consisting of approximately
35 calls. Most similarly, frankenlibc [4] contains tooling
to execute rump kernels as processes and even contains a

209

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA D. Williams, R. Koller, M. Lucina, N. Prakash

set of seccomp rules to lock down the system call interface.
However, frankenlibc does not take advantage of the thin
ukvm interface, resulting in a more permissive seccomp pol-
icy: 29 system calls are permitted (at least in part) as com-
pared to the 7 system calls for nabla, including some of the
most dangerous as determined by our trinity-derived met-
ric (Section 5.1.2). The Chromium Native Client (NaCl) [50]
ensures isolation at compilation time via software fault iso-
lation. NaCl ensures memory is accessed within the allowed
boundaries and only makes a small set of system calls for
memory allocation and I/O on already opened sockets. Ze-
roVM [15] uses the Native Client (NaCl) as the sandboxing
mechanism, and implements a libc and an in-memory file sys-
tem. gVisor [6] is a recently-announced sandboxing approach
which uses ptrace in order to trap system calls and redirect
them to a secondary process which implements the libOS,
which makes lower-level system calls to the host. Each ap-
proach differs in how system calls are intercepted and what
is in the trusted computing base: seccomp in nabla’s case,
or another sandboxing mechanism in gVisor or NaCl.

Other forms of isolation. We have been looking at achiev-
ing isolation by reducing the attack surface to the kernel.
Other approaches toward isolation involve hardening mono-
lithic kernels or hypervisors. The “Nested Kernel Architec-
ture” [22] is a type of intra-kernel isolation where the ker-
nel is divided in two fault isolated pieces: one with, and
the other without read/write access to memory configura-
tion structures. Other similar work split the kernel in differ-
ent ways: Nooks [43] moves drivers code into less privileged
hardware levels. Other systems split the kernel at compi-
lation time using software fault isolation and control flow
integrity [20, 25]. The “Split Kernel” [31] generates kernel
images with two copies of each kernel function, one hardened
with additional processing. Hypervisors have been hardened
by reducing their size: KVM be moved to user-space, as in
DeHype [49]. CloudVisor [51] reduces the TCB by adding a
small nested hypervisor below an unmodified Xen hypervisor.
Nexen [41] splits the hypervisor (Xen in this case) into two
pieces, one with higher privileges and in charge of managing
the MMU.

7 CONCLUSION

The term “unikernel” is in some sense a misnomer, as the
fact that they contain kernel-like code is due to an unneces-
sary choice to run as a VM for isolation. In this paper, we
have shown that running unikernels as processes can improve
isolation over VMs, cutting their access to kernel functions
in half. At the same time, running unikernels as processes
moves them into the mainstream; unikernels as process in-
herit many process-specific characteristics—including high
memory density, performance, startup time, etc.—and tool-
ing that were previously thought to be necessary sacrifices
for isolation. Going forward, we believe this work provides
insight into how to more generally architect processes and
containers to be isolated in the cloud.

REFERENCES
[1] AWS Lambda. https://aws.amazon.com/lambda/. (Accessed on

2018-08-28).
[2] Clive: Removing (most of) the software stack from the cloud.

http://lsub.org/ls/clive.html. (Accessed on 2018-08-28).
[3] Erlang on Xen. http://erlangonxen.org. (Accessed on

2018-08-28).
[4] frankenlibc - tools for running rump unikernels in userspace.

https://github.com/justincormack/frankenlibc. (Accessed on
2018-08-28).

[5] ftrace - Function Tracer.
https://www.kernel.org/doc/Documentation/trace/ftrace.txt.
(Accessed on 2018-08-28).

[6] gvisor - Container Runtime Sandbox.
https://github.com/google/gvisor. (Accessed on 2018-08-28).

[7] IBM Cloud functions. https://www.ibm.com/cloud/functions.
(Accessed on 2018-08-28).

[8] Kernel Samepage Merging.
https://www.linux-kvm.org/page/KSM. (Accessed on
2018-08-28).

[9] The rumprun unikernel and toolchain for various platforms.
http://repo.rumpkernel.org/rumprun. (Accessed on
2018-08-28).

[10] runtime.js - javascript library operating system for the cloud.
http://runtimejs.org/. (Accessed on 2018-08-28).

[11] Seccomp security profiles for Docker.
https://docs.docker.com/engine/security/seccomp/. (Accessed
on 2018-08-28).

[12] Solo5 - A sandboxed execution environment for unikernels.
https://github.com/solo5/solo5. (Accessed on 2018-08-28).

[13] The Python Performance Benchmark Suite.
http://pyperformance.readthedocs.io/. (Accessed on
2018-08-28).

[14] Trinity - A Linux System call fuzz tester.
http://codemonkey.org.uk/projects/trinity/. (Accessed on
2018-08-28).

[15] Zerovm. http://www.zerovm.org/. (Accessed on 2018-08-28).
[16] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,

A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the
Art of Virtualization. In Proc. of ACM SOSP (Bolton Landing,
NY, Oct. 2003).

[17] Ben-Yehuda, M., Day, M. D., Dubitzky, Z., Factor, M., Har’El,

N., Gordon, A., Liguori, A., Wasserman, O., and Yassour, B.-A.
The turtles project: Design and implementation of nested
virtualization. In Proc. of USENIX OSDI (Vancouver, BC,
Canada, Oct. 2010).

[18] Bratterud, A., Walla, A.-A., Haugerud, H., Engelstad, P. E.,

and Begnum, K. IncludeOS: A minimal, resource efficient
unikernel for cloud services. In Proc. of IEEE CLOUDCOM
(Vancouver, BC, Canada, Nov. 2015).

[19] Cantrill, B. Unikernels are unfit for production.
https://www.joyent.com/blog/unikernels-are-unfit-for-production,
Jan. 2016. (Accessed on 2018-08-28).

[20] Castro, M., Costa, M., Martin, J.-P., Peinado, M., Akritidis,

P., Donnelly, A., Barham, P., and Black, R. Fast
byte-granularity software fault isolation. In Proc. of ACM
SOSP (Big Sky, MT, Oct. 2009).

[21] Corbet, J. Securely renting out your CPU with Linux.
https://lwn.net/Articles/120647/, Jan. 2005. (Accessed on
2018-08-28).

[22] Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., and

Adve, V. Nested kernel: An operating system architecture for
intra-kernel privilege separation.

[23] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. Microservices:
Yesterday, Today, and Tomorrow. Springer International
Publishing, Cham, 2017, pp. 195–216.

[24] Edge, J. A seccomp overview.
https://lwn.net/Articles/656307/, Sept. 2015. (Accessed on
2018-08-28).

[25] Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., and Necula,
G. C. XFI: Software guards for system address spaces. In Proc.
of USENIX OSDI (Seattle, WA, Nov. 2006).

[26] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A. C.,

Varghese, G., Voelker, G. M., and Vahdat, A. Difference
engine: Harnessing memory redundancy in virtual machines. In
Proc. of USENIX OSDI (San Diego, CA, Dec. 2008).

210

https://aws.amazon.com/lambda/
http://lsub.org/ls/clive.html
http://erlangonxen.org
https://github.com/justincormack/frankenlibc
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/google/gvisor
https://www.ibm.com/cloud/functions
https://www.linux-kvm.org/page/KSM
http://repo.rumpkernel.org/rumprun
http://runtimejs.org/
https://docs.docker.com/engine/security/seccomp/
https://github.com/solo5/solo5
http://pyperformance.readthedocs.io/
http://codemonkey.org.uk/projects/trinity/
http://www.zerovm.org/
https://www.joyent.com/blog/unikernels-are-unfit-for-production
https://lwn.net/Articles/120647/
https://lwn.net/Articles/656307/

Unikernels as Processes SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[27] Kivity, A., Laor, D., Costa, G., Enberg, P., HarEl, N., Marti,

D., and Zolotarov, V. OSv optimizing the operating system
for virtual machines. In Proc. of USENIX Annual Technical
Conf. (Philadelphia, PA, June 2014).

[28] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,

Schwarz, M., and Yarom, Y. Spectre attacks: Exploiting
speculative execution. In Proc. of IEEE Security and Privacy
(San Francisco, CA, May 2019).

[29] Koller, R., and Williams, D. Will serverless end the dominance
of linux in the cloud? In Proc. of ACM/SIGOPS HotOS
(Whistler, BC, Canada, May 2017).

[30] Kurmus, A., Tartler, R., Dorneanu, D., Heinloth, B.,

Rothberg, V., Ruprecht, A., Schröder-Preikschat, W.,
Lohmann, D., and Kapitza, R. Attack surface metrics and
automated compile-time os kernel tailoring. In Proc. of
Internet Society NDSS (San Diego, CA, Feb. 2013).

[31] Kurmus, A., and Zippel, R. A tale of two kernels: Towards
ending kernel hardening wars with split kernel. In Proc. of
ACM CCS (Nov. 2014).

[32] Li, Y., Dolan-Gavitt, B., Weber, S., and Cappos, J.
Lock-in-Pop: Securing privileged operating system kernels by
keeping on the beaten path. In Proc. of USENIX Annual
Technical Conf. (Santa Clara, CA, July 2017).

[33] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,

Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin, D.,
Yarom, Y., and Hamburg, M. Meltdown: Reading kernel
memory from user space. In Proc. of USENIX Security
Symposium (Baltimore, MD, Aug. 2018).

[34] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh,
B., Gazagnaire, T., Smith, S., Hand, S., and Crowcroft, J.
Unikernels: Library operating systems for the cloud. In Proc. of
ACM ASPLOS (Houston, TX, Mar. 2013).

[35] Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati,

S., Yasukata, K., Raiciu, C., and Huici, F. My VM is lighter
(and safer) than your container. In Proc. of ACM SOSP
(Shanghai, China, Oct. 2017).

[36] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M.,
Bifulco, R., and Huici, F. ClickOS and the art of network
function virtualization. In Proc. of USENIX NSDI (Seattle,
WA, Apr. 2014).

[37] McCabe, T. J. A complexity measure. IEEE Transactions on
Software Engineering SE-2, 4 (Dec 1976), 308–320.

[38] McCanne, S., and Jacobson, V. The BSD packet filter: A new
architecture for user-level packet capture. In Proc. of Winter
USENIX Conference (San Diego, CA, 1993).

[39] OpenBSD. PLEDGE(2) - restrict system operations OpenBSD
man page.

[40] Porter, D. E., Boyd-Wickizer, S., Howell, J., Olinsky, R., and

Hunt, G. C. Rethinking the library os from the top down. In
Proc. of ACM ASPLOS (Newport Beach, CA, Mar. 2011).

[41] Shi, L., Wu, Y., Xia, Y., Dautenhahn, N., Chen, H., Zang, B.,
Guan, H., and Li, J. Deconstructing xen. In Proc. of Internet
Society NDSS (San Diego, CA, Feb. 2017).

[42] Stengel, K., Schmaus, F., and Kapitza, R. Esseos:
Haskell-based tailored services for the cloud. In Proc. of
ACM/IFIP/USENIX ARM (Beijing, China, Dec. 2013).

[43] Swift, M. M., Bershad, B. N., and Levy, H. M. Improving the
Reliability of Commodity Operating Systems. ACM
Transactions on Computer Systems 23, 1 (Feb. 2005), 77–110.

[44] Thnes, J. Microservices. IEEE Software 32, 1 (Jan 2015),
116–116.

[45] Waldspurger, C. A. Memory resource management in VMware
ESX server. In Proc. of USENIX OSDI (Boston, MA, Dec.
2002).

[46] Watson, R. N., Anderson, J., Laurie, B., and Kennaway, K.
Capsicum: Practical capabilities for unix. In Proc. of USENIX
Security Symposium (Washington, DC, Aug. 2010).

[47] Williams, D., and Koller, R. Unikernel monitors: Extending
minimalism outside of the box. In Proc. of USENIX HotCloud
(Denver, CO, June 2016).

[48] Williams, D., Koller, R., and Lum, B. Say goodbye to
virtualization for a safter cloud. In Proc. of USENIX HotCloud
(Boston, MA, July 2018).

[49] Wu, C., Wang, Z., and Jiang, X. Taming hosted hypervisors
with (mostly) deprivileged execution. In Proc. of Internet
Society NDSS (San Diego, CA, Feb. 2013).

[50] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy,

T., Okasaka, S., Narula, N., and Fullagar, N. Native client: A
sandbox for portable, untrusted x86 native code. In Proc. of
IEEE Security and Privacy (Oakland, CA, May 2009).

[51] Zhang, F., Chen, J., Chen, H., and Zang, B. CloudVisor:
Retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In Proc. of ACM SOSP
(Cascais, Portugal, Oct. 2011).

211

	Abstract
	1 Introduction
	2 Unikernel Isolation
	2.1 Unikernel Architecture
	2.2 Are Unikernels Isolated?
	2.3 Limitations of Hardware Virtualization

	3 Unikernels as Processes
	3.1 Background: Linux and seccomp
	3.2 Unikernel/Process Architecture
	3.3 Are Unikernels as Processes Isolated?
	3.4 Other Benefits

	4 Implementation
	4.1 Architecture
	4.2 Thread-local storage
	4.3 Dynamic unikernel loading

	5 Evaluation
	5.1 Isolation Evaluation
	5.2 Performance evaluation

	6 Related Work
	7 Conclusion
	References

