
On the Data Path Performance of Leaf-Spine Datacenter Fabrics

Mohammad Alizadeh

Insieme Networks
San Jose, CA

malizadeh@insiemenetworks.com

Tom Edsall

Insieme Networks
San Jose, CA

edsall@insiemenetworks.com

Abstract—Modern datacenter networks must support a mul-
titude of diverse and demanding workloads at low cost and
even the most simple architectural choices can impact mission-
critical application performance. This forces network architects
to continually evaluate tradeoffs between ideal designs and
pragmatic, cost effective solutions. In real commercial envi-
ronments the number of parameters that the architect can
control is fairly limited and typically includes only the choice
of topology, link speeds, oversubscription, and switch buffer
sizes. In this paper we provide some guidance to the network
architect about the impact these choices have on data path
performance. We analyze Leaf-Spine topologies under realistic
traffic workloads via high-fidelity simulations and identify what
is important for performance and what is not important.

I. INTRODUCTION

Datacenter networks have been rapidly evolving in recent

years as the nature of their workloads have evolved. Unlike

traditional enterprise client-server workloads, the modern

datacenter’s workload is dominated by server-to-server traf-

fic [1]. This new workload requires intensive communication

across the datacenter network between tens to hundreds and

even thousands of servers, often on a per-job basis. Hence

network latency and throughput are extremely important for

application performance while packet loss can be unaccept-

ably detrimental [2], [3]. Accordingly, datacenter networks

no longer employ the traditional access, aggregation, core

architecture of the large enterprise. Instead, commercially

available switches are used to build the network in multi-

rooted Clos or Fat-Tree topologies [4], [5]. Generally, ar-

chitects are choosing smaller, dense, top-of-rack switches at

the leaf for server connectivity connected to larger, modular

switches in the spine, creating very flat, densely connected

networks. Liberal use of multipathing is used to scale

bandwidth. This Leaf-Spine architecture (shown in Fig. 1) is

designed to provide very scalable throughput in a uniform

and predictable manner [6] across thousands to hundreds

of thousands of ports. In effect, it approximates the ideal

network — a very large, non-blocking switch where all

servers are directly connected.

The network architect is trying to get as pragmatically

close to the ideal network as possible while at the same

time controlling costs. These cost considerations force most

networks to use some amount of oversubscription and for

the architect to continuously evaluate the link speed and

������

�	
����

������

����
���
���
�	���������

������
���
�	���������

����������
	��������

������
���
����
	��������

Figure 1. Leaf-Spine datacenter network architecture. Multiple leaf and
spine switches are connected in a full bipartite graph. The edge link speed
(CE) may be different from the fabric link speed (CF) and there may be
oversubscription at the leaf fabric links (MCF < NCE).

switch options available in the market. In this paper we

investigate the data path performance of the Leaf-Spine

architecture built using 10, 40, and 100 gigabit Ethernet

links. Our goal is to give insights to the network architect

regarding the implications of the different design decisions

they are making for the data path performance of their

networks. We ask how close they can get to the ideal network

while satisfying their commercial constraints of cost and

equipment availability.

Our approach is to take a pragmatic look at the Leaf-Spine

datacenter network and to study the tradeoffs considering
only those parameters that the network architect can easily
control such as link speed, oversubscription, and buffering

when trying to achieve a solution as close as possible

to the ideal. We do not assume the use of sophisticated

datacenter congestion control and transport mechanisms [3],

[7]–[9], active queue management [10], [11], Priority Flow

Control (PFC), or advanced load balancing algorithms [12]–

[14]. While the literature has shown that such mechanisms

improve performance in various scenarios, they are not

widely deployed today. Instead we focus only on standard,

widely deployed mechanisms: TCP/UDP transport, hash-

based ECMP for path selection, and drop-tail queuing as

typically found in most commercial datacenter switches.

We study the Leaf-Spine architecture’s performance via

high-fidelity packet-level simulations in the OMNET++ [15]

simulator. We use the Network Simulation Cradle [16] pack-

age to port the actual TCP source code from Linux 2.6.26

to our simulator. Since correctly capturing TCP behavior is

perhaps the most challenging aspect of simulating real net-

works, using unmodified code from a real operating system

2013 IEEE 21st Annual Symposium on High-Performance Interconnects

978-0-7695-5103-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HOTI.2013.23

71

gives us high confidence in our results. Our study mainly

focuses on flow completion time (FCT) [17] performance

for realistic dynamic workloads with a mix of small and

large flows and also bursty traffic patterns with the Incast [2]

problem. We derive our traffic patterns from empirically

observed workloads in production datacenters [3], [5]. The

key findings of our study are:

1) Using higher speed links in the fabric (between the

leaf and spine switches) relative to the edge (at the

servers) significantly improves the efficiency of Equal

Cost Multipath (ECMP) load-balancing. In particular,

we observe up to 40% degradation in FCT for large

flows relative to an ideal non-blocking switch when

both the edge and fabric links run at 10Gbps. However,

with 40Gbps or 100Gbps fabric links, the performance

is very close to ideal.

2) Oversubscription does not negatively impact perfor-

mance for moderate levels of load (e.g., up to 60%

of the available bisection bandwidth), but it makes the

network more fragile compared to non-oversubscribed

(or lesser oversubscribed) networks at high load.

3) The leaf switch uplink ports and spine switch ports

observe similar degrees of queue buildup. Hence, per-

port buffer sizes at the leaf and spine tiers should

generally be consistent to be effective. In particular,

having extremely large buffers (e.g., as afforded by off-

chip memory) in one tier is not useful if the buffers

in the other tiers are much smaller. At the same time,

we find that Incast problems (traffic bursts) are more

severe at the leaf switches than at the spine switches.

Therefore, increasing the buffer size in the leaf switches

mitigates Incast more than increasing the spine buffers.

We do not claim that all these findings are new. Indeed,

some of these issues have been previously observed in the

literature. However, in speaking with network designers, we

have found there is a lot of confusion regarding the impact

of different design choices on the data path performance of

datacenter fabrics. We hope the present paper will help shed

light on these issues and be useful to practitioners.

II. METHODOLOGY

Our goal is to understand how close the data path per-

formance of the Leaf-Spine architecture is to a large ideal

(non-blocking) switch for workloads commonly encountered

in practice. Specifically, the Leaf-Spine architecture differs

from an ideal switch in two important ways which may

reduce its performance: (i) inefficiencies in multipath load-

balancing may create hot-spots and reduce effective band-

width; and (ii) queue buildup in the spine of the network

may delay or, worse, cause drops for packets traversing the

spine (even traffic destined to non-congested ports). We now

briefly describe the setup we use to study these issues.

Simulation platform: We start with the INET frame-

work [18] that provides models of standard L2/L3 network-

ing protocols and make extensions to support multipath

routing via ECMP. We leverage the NSC [16] package to

port the Linux 2.6.26 TCP stack to our simulator and enable

Reno (with SACK) as the congestion control algorithm.

Topology: We use a Leaf-Spine topology (Fig. 1) with 100

10Gbps servers organized in 5 racks. We consider various

scenarios with different link speeds (10Gbps, 40Gbps, or

100Gbps) and different over-subscription ratios (1:1, 2.5:1,

and 5:1) for the fabric links between the leaf and spine

switches. The leaf switches are assumed to have a base

latency (without buffering) of 700ns and the spine switches

have a base latency of 2μs. The host networking stack adds

an additional latency of 10μs, for a total one-way socket-to-

socket latency of 25μs (round-trip time is 50μs).

Switches: We model all switches as shared-memory output-

queued switches. Unless otherwise specified, the total buffer-

ing at each switch is 10MB. Each switch queue has a

reserved buffer of 30KB and can grab up to half (5MB)

of the total buffer during congestion.

Workload: We simulate a dynamic workload with fore-

ground query traffic and background traffic. The query traffic

models traffic spawned by user queries in the backend of

a web application. Queries arrive according to a Poisson

arrival process with an average rate of 10 queries per

second per server. When making a query, a server requests a

1MB file from n other randomly chosen servers in parallel,

with each of the servers responding with 1/nth of the file

(the fanout, n, is chosen uniformly at random). The query

completes when the entire file is received. The transfers are

over persistent TCP connections; hence the query traffic is

very bursty and creates the TCP Incast [2] problem since

transfers start with the TCP window already open as opposed

to going through the slow-start algorithm.

The background flows are a mix of small and large flows

with the flow sizes drawn from distributions empirically

observed in production datacenters. We consider distribu-

tions from a web search [3] and a data mining [5] cluster.

In the interest of space, we only report the results for

the web search distribution (the results for the data-mining

distribution are qualitatively similar, though it generally

creates less congestion than the web search distribution). The

distribution exhibits common heavy-tailed characteristics:

70% of the flows are smaller than 1MB but contribute only

5% of all data bytes, with the rest from 1–30MB flows.

These flows also arrive according to a Poisson process and

we vary the rate of the arrivals to obtain a desired level of

load for the background traffic. Since our goal is to compare

the Leaf-Spine network with a large non-blocking switch we

generate flows such that all traffic traverses the spine. That is,

we ensure that the (randomly chosen) source and destination

servers for each flow are in different racks. Of course this

is not realistic since some amount of locality usually exists

at the rack level, but it allows us to stress the network and

tease out the impact of different aspects more clearly.

72

0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d
 Q

C
T

Load

Non-Blocking
2x100Gbps
5x40Gbps

20x10Gbps

(a) Query: Avg

0

5

10

15

20

0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d
 F

C
T

Load

(b) Background: (10MB, ∞) Avg

Figure 2. Average normalized query completion time (QCT) and flow
completion time (FCT) for large (10MB, ∞) background flows. The
completion time for each query (flow) is normalized to the minimum
possible value for that query (flow); i.e., the value achieved if the flow
(query) is transmitted at 10Gbps without any interference from other flows.

III. RESULTS

In this section we present our simulation results in three

main parts. First, we present simulations that compare

the performance of networks with 10Gbps, 40Gbps, and

100Gbps fabric links. Next, we evaluate the impact of

oversubscription at the leaf switches. Finally, we study the

impact of the buffer size of the leaf and spine switches.

A. Impact of link speed

We begin by comparing three topologies with different

link speeds between the leaf and spine switches: each leaf

switch has either (i) 20 × 10Gbps, (ii) 5 × 40Gbps, or (iii)

2 × 100Gbps uplinks, amounting to 200Gbps total uplink

capacity. Note that all three networks are non-oversubscribed

since the leaf switches have 20 10Gbps front-panel ports.

We compare these topologies with an ideal non-blocking

network where the leaf switches are connected to a single

spine switch using “infinite” capacity links. This represents

what we would achieve if we built the entire datacenter

network as one large output-queued switch.

Figure 2 shows the average query completion time (QCT)

and the average flow completion time (FCT) for large

(> 10MB) background flows at 30% to 80% traffic loads.

In the interest of space, we omit the plot for the small

background flows which, similar to the plot for query

traffic, does not show much difference between the different

topologies. Indeed, it is only for the large flows that we find

a notable difference for the 20×10Gbps topology with FCTs

that are ∼12–40% higher than the other topologies. Since

the FCT for large flows is determined by the bandwidth they

achieve, this shows that ECMP load-balancing is inefficient

when the fabric link speed is 10Gbps. However, increasing

the fabric link speed to 40Gbps or 100Gbps improves the

load-balancing efficiency and achieves performance that is

almost identical to Non-Blocking. Interestingly, there isn’t

much difference between using 40Gbps links and 100Gbps

links (which are more expensive) in the spine.

Further, though we clearly observe the Incast problem,

particularly at high load (as much as 12% of the queries

�

��

��

��

��

��

��

� �� ��� ��� ���

���
���
���
���
�
��
�
��
	

��
�
�
�

	
��
�� ���������� ������

�������� �����
�������� �������
�������� �����

��� ����

(a) Query: Avg

0

5

10

15

20

0 50 100 150 200

N
o

rm
a

liz
e

d
 F

C
T

Per-Leaf Throughput (Gbps)

(b) Background: (10MB, ∞) Avg

Figure 3. Comparison of 1:1, 2.5:1, and 5:1 oversubscribed topologies
with respectively 200Gbps, 80Gbps, and 40Gbps of uplink capacity per-
leaf switch. In each case, we vary the traffic intensity between 30–80% of
the uplink capacity in 10% increments.

experience TCP timeouts at 80% load), there isn’t much

difference between the three topologies suggesting that the

extent of Incast is predominately determined by the size of

the buffers (10MB at each switch). We revisit this in §III-C.

B. Impact of oversubscription

We now evaluate the impact of oversubscription at the

leaf switches. We introduce oversubscription to the non-

oversubscribed configuration of the previous section by

removing some spine switches from the network. Specifi-

cally, we consider two oversubscribed configurations with

(i) 2 × 40Gbps (2.5:1 oversubscribed) and (ii) 1 × 40Gbps

(5:1 oversubscribed) uplinks at each leaf switch. For each

topology, we vary the background traffic intensity from

30% and 80% of the available capacity in the spine (the

query rate is 10 queries per second per server in all cases).

For example, for the 2.5:1 oversubscribed topology which

has 80Gbps of uplink capacity per-leaf, the traffic intensity

varies between 24Gbps to 64Gbps per-leaf.

The average query and flow completion time for large

background flows are shown in Figure 3 (the behavior for

other background flows is similar). We find that oversub-

scription does not significantly degrade performance as long

as the load is not very high. For loads of 60% and lower, the

performance of the two oversubscribed topologies is inline

with that achieved by the non-oversubscribed topology at

the same traffic intensity. It is only for the two data points

at 70% and 80% load (the two rightmost data points of each

line) that the performance of the oversubscribed topologies

breaks away from the overall trend and is notably worse.

C. Impact of buffer size

We now study how the buffer size in the leaf and spine

switches impacts performance. We use the 2.5:1 oversub-

scribed topology of the previous section and evaluate four

combinations with either 2MB or 100MB total buffer in the

leaf and spine switches (a single queue can grab up to half

the total switch buffer during congestion events). We use

these values to make a clear contrast between the extremes

of small and large buffers at the leaf and spine switches and

to understand where buffers are more effective.

73

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F

Queue Length (MBytes)

Leaf (Fabric Ports)
Spine

(a) Queue buildup at 60% load with
100MB leaf and spine buffer size

0

20

40

60

80

100

0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d
 Q

C
T

Load

2MB-Leaf, 2MB-Spine
2MB-Leaf, 100MB-Spine
100MB-Leaf, 2MB-Spine

100MB-Leaf, 100MB-Spine

(b) Query: Avg

Figure 4. (a) CDF of queue occupancy at the leaf fabric (uplink) ports and
the spine ports. (b) Average normalized query completion time for different
buffer sizes at the leaf and spine switches. This is for a 2.5:1 oversubscribed
topology with 2× 40Gbps uplinks at each leaf switch.

Natural buffer occupancy: First, we study the natural

buffer occupancy at the leaf and spine switches defined

as the buffer occupancy when the switches have unlimited

buffer space and thus do not drop packets. As a representa-

tive example, Figure 4a shows the distribution of the buffer

occupancy at the leaf fabric ports (uplinks) and spine ports

at 60% load with 100MB buffers (which is large enough

to avoid packet drops) at both the leaf and spine switches.

We find that the distribution of buffer occupancy is nearly

identical at the leaf fabric ports and spine ports. This is

because these ports run at the same speed and are subject

to very similar traffic (in terms of intensity and flow size

distribution). Of course, this stems from the nature of the all-

to-all workload. For a different workload with predominately

one-to-many communication patterns (among leaf switches),

the natural buffer occupancy would be larger at the leaf

fabric ports, while for many-to-one patterns, the spine ports

would have more queue buildup. Nonetheless, this experi-

ment demonstrates that without specific knowledge of traffic

patterns, having significantly more buffering in one tier than

the other is wasteful.

Where are larger buffers more effective? While the

natural buffer occupancy indicates that the buffer sizes at the

leaf and spine switches should not differ too much, it could

be useful to have somewhat larger buffers in one tier versus

the other depending on the extent to which they experience

Incast [2] and traffic bursts. Indeed, comparing the average

query completion time for the different buffer combinations

in Figure 4b, we find that the “100MB-Leaf, 2MB-Spine”

configuration performs much better than the “2MB-Leaf,

100MB-Spine” configuration (though both are worse than

having 100MB buffers everywhere). Interestingly, the aver-

age query completion time with 2MB buffers at both the leaf

and spine switches is not that much worse than with 2MB

at the leaf and 100MB at the spine. This is explained by the

number of packet drops for the different buffer sizes. For

instance, as shown in Table I, at 60% load there are 261,350

dropped packets with 2MB buffers at both the leaf and spine

switches, while increasing the spine buffer to 100MB only

reduces the total drops to 238,499 packets.

2MB-Spine 100MB-Spine

2MB-Leaf 261,350 238,499
100MB-Leaf 126,142 0

Table I
NUMBER OF PACKET DROPS AT 60% LOAD.

IV. CONCLUSION

The datacenter network is evolving to a Leaf-Spine archi-

tecture that aims to approximate a very large non-blocking

switch. This paper investigated the data path performance of

these network using high-fidelity simulations with realistic

traffic workloads and real TCP stacks to shed light on dif-

ferent design tradeoffs such as link-speeds, oversubscription,

and buffering. We found that using higher speed links in the

fabric (between the leaf and spine tiers) relative to the edge

(at the servers) greatly improves the efficiency of ECMP

load-balancing, and that having significantly larger per-port

buffer sizes in the leaf or spine tier compared to the other is

wasteful. Further, it is better to apply additional buffering in

the leaf tier than the spine tier to control Incast problems.

REFERENCES

[1] “Cisco Global Cloud Index: Forecast and Methodology, 2011–2016,”
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/
ns1175/Cloud Index White Paper.pdf.

[2] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-grained TCP re-
transmissions for datacenter communication,” in Proc. of ACM SIGCOMM’09,
2009.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in Proc. of ACM
SIGCOMM’10, 2010.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center
network architecture,” in Proc. of ACM SIGCOMM’08, 2008.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data center
network,” in Proc. of ACM SIGCOMM’09, 2009.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud:
research problems in data center networks,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[7] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never than late:
meeting deadlines in datacenter networks,” in Proc. of ACM SIGCOMM’11,
2011.

[8] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. of ACM SIGCOMM’12, 2012.

[9] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker,
“Deconstructing datacenter packet transport,” in Proc. of HotNets-XI, 2012.

[10] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993.

[11] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda,
“Less is more: trading a little bandwidth for ultra-low latency in the data center,”
in Proc. of USENIX NSDI’12, 2012.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Proc. of
USENIX NSDI’10, 2010.

[13] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,
“Improving datacenter performance and robustness with multipath TCP,” in
Proc. of ACM SIGCOMM’11, 2011.

[14] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: reducing
the flow completion time tail in datacenter networks,” in Proc. of ACM
SIGCOMM’12, 2012.

[15] A. Varga et al., “The OMNeT++ discrete event simulation system,” in Proceed-
ings of the European Simulation Multiconference (ESM2001), vol. 9, 2001.

[16] S. Jansen and A. McGregor, “Performance, Validation and Testing with the
Network Simulation Cradle,” in Proc. of IEEE MASCOTS’06, 2006.

[17] N. Dukkipati and N. McKeown, “Why flow-completion time is the right metric
for congestion control,” SIGCOMM Comput. Commun. Rev., Jan. 2006.

[18] “INET framework,” http://inet.omnetpp.org/.

74

