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This document includes the mathematical details of the differentiable simulation developed in the paper “An End-to-End
Differentiable Framework for Contact-Aware Robot Design”. Our simulation is based on RedMax [1], which represents
the dynamic system in a reduced coordinate formulation and applies implicit time stepping as the integration scheme. A
differentiable version of RedMax1 has been implemented in MATLAB and computes the analytical gradients for control and
state variables. In our work, we extend differentiable RedMax to include the analytical gradients to a full spectrum of simulation
parameters including kinematics- and dynamics-related parameters. Such gradient information has not been supported by any
existing differentiable simulators (to the best of our knowledge) and unlocks the opportunity to apply efficient gradient-based
optimization to search for the design parameters of the robots. Furthermore, we generalize the penalty-based frictional contact
model proposed by Geilinger et al. [2] that only supports contact between a single dynamic body and a stationary surface
(i.e., ground and walls) to support contact between multiple dynamic bodies. The core of our simulation is fully implemented
in C++ and provides Python interfaces through pybind11 to allow downstream applications on Python side.

In this document, we mainly focus on the details of the extension part we made over the original differentiable RedMax
including the penalty-based contact formulation between dynamic bodies and its analytical gradients, and the analytical gradients
to the simulation parameters. For the basic formulation and the analytical gradients to the control and states variables, we
brifly introduce them in this document and refer the reader to the full and detailed notes provided by Sueda2.

I. DYNAMICS FORMULATION AND NOTATIONS OF REDMAX

RedMax [1] is an efficient articulated body simulation. RedMax is known for its compact reduced coordinates representation
and its flexibility for rigid-soft material coupling. In this document, we focus on its rigid body dynamics. We introduce its
forward dynamics formulation in Section I-B and the implicit time integration in Section I-C.

A. Notations

To make the whole document tractable for reading, we provide a look-up notation table in Table I. Since RedMax define most
of the dynamics in local joint/body coordinate, it frequently conducts conversions between coordination frames. We massively
use the subscript and superscript to denote coordinate frames. Without special clarification, frame 0 denotes the static inertial
frame of world space throughout this document.

B. Dynamics in Reduced Coordinates System

The dynamics equation of the RedMax is:

Mrq̈r = fr (1)

⇒ Mrq̈r = f̃r + JTmrfm + fQV V + u (2)

where Mr = JTmrMmJmr and fQV V = −JTmrMmJ̇mrq̇r.

C. Implicit Time Integration

RedMax steps forward the simulation through implicit time integration of Equation 2. In our implementation we support
both BDF1 and BDF2 integration schemes. Without special notation, we remove the subscript r for brevity and all symbols
without subscript are represented in reduced coordinates.

1The Matlab code of differentiable RedMax can be found at: https://github.com/sueda/redmax
2The full and detailed version of the introduction of differentiable RedMax is provided by Sueda at: https://github.com/sueda/redmax/blob/master/notes.pdf
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TABLE I
SIMULATION NOTATIONS

nm Number of rigid bodies in the system.
nr Number of degrees of freedom of the system.
h Time step size in simulation.

fm Maximal wrench vector including force and torque generated in maximal coordinate
systems such as gravity and Coriolis forces. 6D for each body.

fr Reduced force/torque vector defined on reduced degrees of freedom.
f̃r Reduced force/torque vector generated by joint-space effect (e.g., joint damping and

stiffness).
fQV V Quadratic velocity vector.

u Generalized joint torque vector generated by actuators (e.g., motors).
qm Maximal state vector of the simulation. qm ∈ R6nm . q̇m is the concatenation of iφi

of all rigid bodies.
qr Reduced state vector of the simulation. qm ∈ Rnr .

Mm Maximal inertia matrix. Mm ∈ R6nm×6nm .
Mr Generalized inertia matrix in reduced coordinates. Mr ∈ Rnr×nr

Jmr Jacobian mapping generalized velocity q̇r to its maximal coordinate counterpart q̇m,
i.e., q̇m = Jmr q̇r . We use J for brevity in the document.

a) BDF1: Under BDF1 integration scheme, the dynamics system is discretized into:

q̇(k+1) = q̇(k) + hM−1f
(
q(k+1), q̇(k+1)

)
(3)

q(k+1) = q(k) + hq̇(k+1) (4)

We can replace q̇ by 1
h

(
q(k+1) − qk)

)
in Equation 3 and rearrange it:

g(q(k+1)) = q(k+1) − q(k) − hq̇(k) − h2M−1f
(
q(k+1), q̇(k+1)

)
= 0 (5)

Newton’s method is applied to solve the nonlinear Equation 5 with the availability of first-order gradients ∂(M,f)
∂q and ∂(M,f)

∂q̇ .
b) BDF2: Since BDF2 is a multi-step method, we cannot use it to start the simulation–it needs access to two previous

states rather than just one. Therefore, to start BDF2, we use SDIRK2, which is:

q̇(α) = q̇(0) + αhM−1f
(
q(α), q̇(α)

)
(6)

q(α) = q(0) + αhq̇(α) (7)

q̇(1) = q̇(0) + (1− α)hM−1f
(
q(α), q̇(α)

)
+ αhM−1f

(
q(1), q̇(1)

)
(8)

q(1) = q(0) + (1− α)hq̇(α) + αhq̇(1), (9)

where α = (2−
√

2)/2.
For the steps afterwards, we apply BDF2:

q̇(k+1) =
4

3
q̇(k) − 1

3
q̇(k−1) +

2

3
hM−1f

(
q(k+1), q̇(k+1)

)
(10)

q(k+1) =
4

3
q(k) − 1

3
q(k−1) +

2

3
hq̇(k+1) (11)

Same as BDF1, we can construct a nonlinear implicit function g(q(k+1)) by representing q̇(k+1) by q(k+1) and rearranging,
and apply Newton’s method to solve g(q(k+1)) = 0.

II. SIMULATION PARAMETERS

To enable efficient optimization for robot shape design, we define a set of simulation parameters or called design parameters
and compute the gradients of the simulation results with respect to those simulation parameters. The simulation parameters can
usually be divided into two categories depending on whether they control the kinematic property or the dynamic property of the
robot as shown in Table II. The kinematic parameters affects the kinematic tree of the robot, and includes the transformation
matrices of each joint and body in the rest configuration. The dynamic parameters include the maximal inertia Mm (containing
mass m and inertia tensor I), contact point locations, joint stiffness/damping coefficient, and the contact coefficient scale
(affecting the contact/frictional coefficients and equivalent to the contact area mentioned in the paper). Since different parameters
affect the simulation results in different ways, the gradient computation for them can be very different. Therefore, we label
each type of parameters as a unique index and treat them differently during the computation in order to compute the gradient
more efficiently. Furthermore, some design optimization methods may not want to optimize all of them, our implemented



TABLE II
LIST OF SIMULATION PARAMETERS

Type Notation Parameter Description Dimension Index Bit mask

Kinematics
Ej Joint transformation SE(3) I 1

Eb Body transformation SE(3) II 2

Dynamics

Cb Contact points on body 3× nc III 4

mi Body mass 1 IV 8

Ii Body diagonal inertia tensor 3 IV 8

Kr Joint stiffness coefficient 1 V 16

Dr Joint damping coefficient 1 V 16

s Contact coefficient scale 1 VI 32

simulation allows the user to define in the simulation configuration file what types of the simulation parameters of each rigid
body needs the gradient information. This is achieved by set a binary value for each rigid body as a bit mask. Such flexibility
enable a more efficient gradient computation by not wasting computation on the gradients not being used. Here we give an
example of the bit mask. For a rigid body, if we set the simulation bit mask to be 11 = 1 + 2 + 8, then it means we would
like to compute the gradient for its joint transformation, body transformation, and mass inertia. To be noted, the dimension
shown in the table is different from the ones shown in the paper since here we count the dimension for each rigid body.

We analytically derive the gradients of the simulation with respect to those kinematic and dynamic parameters and provide the
detailed derivation of those gradients in Section V. (We have not derived the gradients for the joint stiffness/damping coefficient
since we do not consider these two types of parameters in our optimization. However the gradient to these parameters is much
easier to derive compared to other parameters and we will add those gradient computation as soon as possible to make the
simulation feature-complete.)

III. DIFFERENTIABLE FRICTIONAL CONTACT MODEL

We generalize the penalty-based frictional contact model proposed by Geilinger, el. al. [2] that only showed contact between
a single dynamic body and a static surface (e.g., wall) to support more general contact cases where the contact can happen
between dynamic bodies, a key requirement for object manipulation. Furthermore, we modify the contact damping force so
that it becomes free of discontinuities.

Specifically, we consider the contact between a robot body component represented by a mesh with a set of contact points and
a manipulated object represented by a signed distance field. Let the states (i.e., generalized coordinates) of the robot and the
manipulated object be qb and qo. While conducting collision detection, the world position and velocity of the contact point Cb
on a robot body Bi are computed by the kinematic tree of the robot as x(qb, Cb) and ẋ(qb, q̇b, Cb). Given the world position
and velocity of a point, we obtain the following quantities through the signed distance function attached to the manipulated
object:

d, ḋ penetration distance and speed
n contact normal
ṫ tangential velocity

where the contact normal determine the direction of the contact force and the tangential velocity determine the magnitude and
direction of the frictional force.

Then the contact force and frictional force are computed when there exist penetration (i.e., d < 0). The contact force applied
on the robot is computed as:

fc = (−knd+ kddḋ)sn (12)

where kn is the contact stiffness coefficient and s is the contact coefficient scale. The first part is the penalty-based contact
force while the second part is the contact damping force to help stabilize the simulation. Here, instead of using the original
formulation kdḋ proposed in [2], we use kddḋ as the magnitude of the damping force. That is because in the original formulation,
there will be a sudden change in the magnitude of the damping force at d = 0, since ḋ is not necessarily zero when d is zero,
which will have convergence issues in some cases during the Newton’s solver. Our small modification help keep the continuity
of contact force at the moment of collision.

Its corresponding local-frame wrench applied on the robot body is:

fc = JTc fc = (−knd+ kddḋ)sJTc n (13)



where Jc is the contact Jacobian of body Bi.
The wrench of frictional force is computed by:

ft = −min(kt‖ṫ‖, µ‖fc‖)sJc
ṫ

‖ṫ‖
(14)

where kt is the stiffness coefficient for the frictional force and µ is the coulomb frictional coefficient. The first part of the min
function can be regarded as the static frictional force and the second part is corresponding to the dynamic frictional force.

The contact force and frictional forces applied on the manipulated object are computed in the same way but in opposite
directions. Besides the forces computation, we also compute the derivatives of those force quantities with respect to qb, qo, and
simulation parameters. The derivatives of the frictional contact forces with respect to qb and qo are used to step the simulation
forward in time with the implicit integrator, and the derivatives with respect to simulation parameters are used to calculate the
sensitivities during the backward pass of the simulation as we will mention in the Section IV.

IV. DIFFERENTIABLE REDMAX

In this section, we show how to use implicit function theory (i.e., sensitivity analysis) and adjoint method to efficient compute
the gradients of the simulation results w.r.t the simulation and control variables. We consider a general task objective Ψ(p, q̄, v̄),
where p = {pd,q0,u} is the optimization variables. Here pd is the simulation parameters we introduced before including the
kinematics- and dynamics-related parameters, q0 is the initial states of the system, and u is the control sequence (e.g., joint
torque sequence) of the robot. q̄(p) is the concatenated vector of all state vectors q(t), and v̄(p, q̄) is the auxiliary variables
defined by the user such as the positions of end effectors.

A typical optimization problem can be then formulated as:

minimize
p

Ψ
(
p, q̄(p), v̄(p, q̄)

)
(15)

To apply a gradient-based solver (e.g., L-BFGS-B) for the optimization problem defined in Eq. 15, we would like to have
the following derivatives:

dΨ

dp
=
∂Ψ

∂p
+
∂Ψ

∂q̄

dq̄

dp
+
∂Ψ

∂v̄

(∂v̄
∂q̄

dq̄

dp
+
∂v̄

∂p

)
=
∂Ψ

∂p
+
(∂Ψ

∂q̄
+
∂Ψ

∂v̄

∂v̄

∂q̄

)dq̄
dp

+
∂Ψ

∂v̄

∂v̄

∂p
(16)

Since we have constraints on the implicit integration function g(p, q̄) = 0 at each time step, we can use the implicit function
theorem to compute the derivative dq̄

dp :

dq̄

dp
= −

(∂ḡ
∂q̄

)−1 ∂ḡ

∂p
(17)

Then the Eq. 16 becomes:

dΨ

dp
=
∂Ψ

∂p
−
(∂Ψ

∂q̄
+
∂Ψ

∂v̄

∂v̄

∂q̄

)(∂ḡ
∂q̄

)−1 ∂ḡ

∂p
+
∂Ψ

∂v̄

∂v̄

∂p
(18)

We use adjoint method to save the computation time. For the middle part, ∂Ψ
∂q̄ + ∂Ψ

∂v̄
∂v̄
∂q̄ is 1-by-Tnr,

(
∂ḡ
∂q̄

)−1

is Tnr-by-Tnr,

and ∂ḡ
∂p is Tnr-by-np. Thus we can save the time complexity on computing their multiplication by grouping the first two terms:

dΨ

dp
=
∂Ψ

∂p
−

((∂Ψ

∂q̄
+
∂Ψ

∂v̄

∂v̄

∂q̄

)(∂ḡ
∂q̄

)−1
)
∂ḡ

∂p
+
∂Ψ

∂v̄

∂v̄

∂p
(19)

Let ȳ = ∂Ψ
∂q̄ + ∂Ψ

∂v̄
∂v̄
∂q̄ and H̄ = ∂ḡ

∂q̄ . We first solve

H̄T z̄ = ȳ (20)

The block banded structure of the hessian matrix H̄ allows us to solve Eq. 20 efficiently with a block banded triangular
solver. To compute Ĥ , the Section 3.5 of Sueda’s notes3 introduces the detailed maths for it. Since Ĥ is also required by the
implicit solver during forward pass, we store the computed Ĥ and its matrix factors at each time step during forward pass,
and re-use those stored variables during the backward pass to save gradient computation time.

3https://github.com/sueda/redmax/blob/master/notes.pdf

https://github.com/sueda/redmax/blob/master/notes.pdf


After solve the Eq. 20, we can then form the derivative as:
dΨ

dp
=
∂Ψ

∂p
− z̄T

∂ḡ

∂p
+
∂Ψ

∂v̄

∂v̄

∂p
(21)

The last missing part here is how to compute ∂ḡ
∂p . Its derivation has to be discussed for BDF1 and BDF2 individually.

a) BDF1:

g(k+1) = M(k+1)
(
q(k+1) − q(k) − hq̇(k)

)
− h2fr

(
q(k+1), q̇(k+1),p

)
(22)

∂g(k+1)

∂p
=
∂M(k+1)

∂p
⊗
(
q(k+1) − q(k) − hq̇(k)

)
− h2 ∂f

(k+1)
r

∂p
(23)

b) BDF2: BDF2 includes two stages for the integration, SDIRK2 and BDF2.
For SDIRK2 step:

g(α) = M(α)
(
q(α) − q(0) − αhq̇(0)

)
− α2h2f(α)

r

(
q(α), q̇(α),p

)
(24)

g(1) = M(1)
(
q(1) − q(0) − (2α− 1)hq̇(0) − 2(1− α)

α
(q(α) − q(0))

)
− α2h2fr

(
q(1), q̇(1),p

)
(25)

∂g(α)

∂p
=
∂M(α)

∂p
⊗
(
q(α) − q(0) − αhq̇(0)

)
− α2h2 ∂f

(α)
r

∂p
(26)

∂g(1)

∂p
=
∂M(1)

∂p
⊗
(
q(1) − q(0) − (2α− 1)hq̇(0) − 2(1− α)

α
(q(α) − q(0))

)
− α2h2 ∂f

(1)
r

∂p
(27)

For BDF2 step:

g(k+1) = M(k+1)
(
q(k+1) − 4

3
q(k) +

1

3
q(k−1) − 8

9
hq̇(k) +

2

9
hq̇(k−1)

)
− 4

9
h2fr

(
q(k+1), q̇(k+1),p

)
(28)

∂g(k+1)

∂p
=
∂M(k+1)

∂p
⊗
(
q(k+1) − 4

3
q(k) +

1

3
q(k−1) − 8

9
hq̇(k) +

2

9
hq̇(k−1)

)
− 4

9
h2 ∂f

(k+1)
r

∂p
(29)

The computation of individual derivatives terms are detailed in Section V. By combining all the individual derivatives terms,
we are now able to analytically compute ∂ḡ

∂p , and thus dΨ
dp .

V. ANALYTICAL GRADIENTS FOR SIMULATION PARAMETERS

A. Inertia and Force Derivatives
In this section, we derive the inertia derivative ∂M

∂p and force derivatives ∂fr
∂p .

From Eq. 2, we have M = JTmrMmJmr, fr = f̃r + JTmrfm + fQV V + u, and fQV V = −JTmrMmJ̇mrq̇r. In the following, we
use J without any subscripts to mean Jmr.

1) Inertia M:

M = JTMmJ (30)

For design parameters of index I and II (refer to table II)
∂M

∂pk
=
( ∂J
∂pk

)T
MmJ + JTMm

∂J

∂pk
(31)

For design parameters of index IV:
∂M

∂pk
= JT

∂Mm

∂pk
J (32)

The following identities are used for derivatives:

Mm =


M1

M2

. . .
Mn

 (33)

Mi =

(
Ii

miI3×3

)
(34)

∂Mi

∂mi
=

(
0 0
0 I3×3

)
(35)

∂Mi

∂Ii(k)
can be also computed easily. (36)



2) Quadratic Velocity Vector:

fQV V = −JTMmJ̇q̇ (37)

For design parameters of index I and II:

∂fQV V
∂pk

= −∂J
T

∂pk
MmJ̇q̇ − JTMm

∂J̇

∂pk
q̇ (38)

For design parameters of index IV:

∂fQV V
∂pk

= −JT ∂Mm

∂pk
J̇q̇ (39)

3) All Forces:

∂fr
∂p

=
∂ f̃r
∂p

+
( ∂J
∂p

)T ⊗ fm + JT
∂fm
∂p

+
∂fQV V
∂p

+
∂u

∂p
(40)
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