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Abstract

Hybrid unmanned aerial vehicles (UAV) combine advantages of multicopters and
fixed-wing planes: vertical take-off, landing, and low energy use. However, hybrid
UAVs are rarely used because controller design is challenging due to its complex,
mixed dynamics. In this work, we propose a method to automate this design process
by training a mode-free, model-agnostic neural network controller for hybrid UAVs.
We present a neural network controller design with a novel error convolution input
trained by reinforcement learning. Our controller exhibits two key features: First,
it does not distinguish among flying modes, and the same controller structure can
be used for copters with various dynamics. Second, our controller works for real
models without any additional parameter tuning process, closing the gap between
virtual simulation and real fabrication. We demonstrate the efficacy of the proposed
controller both in simulation and in our custom-built hybrid UAVs. The experiments
show that the controller is robust to exploit the complex dynamics when both rotors
and wings are active in flight tests.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Intoduction

Multicopters are becoming increasingly popular due to their flight flexibility and sta-

ble hovering capability. Fixed-wing airplanes, on the other hand, are more energy

efficient during level flight, making them better vehicles for long distance flights.

In order to leverage the advantages of both designs, new hybrid UAVs which equip

multicopters with a pair of fixed wings have piqued the interest of the aircraft com-

munity [20, 31, 7, 27]. These vehicles can quickly switch between hover and flight

modes, allowing for highly stable, energy efficient flights. There are many ways to

combine multicopters and fixed wings, resulting in hybrid UAVs with vastly different

configurations.

Controlling such hybrid designs, however, is difficult because the aerodynamics

changes dramatically during the flight. In typical designs, experts manually design

controllers for both the copter flight mode and the plane flight mode, as well as con-

trollers for transitioning between these modes. Designing controllers for the transition

phase is especially challenging due to the complexity of the dynamics when rotors and

wings are both active. Furthermore, due to the vast differences between various con-

figurations of hybrid UAVs, controllers cannot be easily transferred between designs.

In order to construct a new hybrid UAV, engineers have to redesign the controller ar-

chitecture and its parameters. This makes the whole process extremely labor-intensive

and therefore only a small fraction of the possible hybrid UAVs design space has been

explored so far.
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To address these challenges, we propose a method that automatically computes

a neural network controller for a hybrid UAV. Compared with the traditional mode-

based, model-specific controllers, our unified controller has the following immediate

benefits: first, our mode-free, velocity-tracking controller works directly with the full

dynamics during the flight. Our controller does not need to differentiate between

the copter and flight modes or explicitly deal with the transition between modes. For

example, the controller will automatically orient a tail-sitter hybrid UAV purely based

on the input velocity – it will set it to a copter orientation for lower velocities and a

plane orientation for higher velocities. Second, the architecture of our model-agnostic

neural network controller can be used for almost any hybrid UAV configuration. In

the future, this could allow knowledge acquired in training one hybrid UAV model to

be directly transferred to another design’s controller.

A natural choice to train neural network controllers is using reinforcement learn-

ing, since these algorithms have been successfully applied on models with complex

dynamics [35, 34, 19, 41]. However, while this approach can be easily applied to train

hybrid UAVs in a simulation environment, using these controllers for real flights is

known to be challenging due to the gap between simulation and reality. To close this

gap, we propose a novel error integral block in the state vector for the input of our

network, enabling the elimination of steady-state drift errors that are challenging to

remove manually. Additionally, we also devise a simulation infrastructure enhanced

by noise and latency patterns and a reinforcement learning framework with novel

reward functions for hybrid UAVs. We demonstrate the capabilities of our method by

fabricating real hybrid UAVs and showing that our controller is robust for real flights.

In summary, our work has the following technical contributions:

∙ we present an automatic way for designing a mode-free, model-agnostic neural

network controller for real hybrid UAVs.

∙ we propose a method to improve the robustness of the trained neural network

controllers for hybrid UAVs and close the reality gap between simulation and

real flight.
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Chapter 2

Related Work

2.1 Computational Design for Fabrication

Computational design of complex functional mechanisms is a growing research field.

This body of work aims at (1) making it more efficient for experts to explore design

spaces and find unprecedented solutions and (2) lowering the barrier of entry for

design by casual users, enabling a new age of customization. Recent advances in the

field propose new interactive techniques to design mechanical characters [11], robotic

creatures [24], creatures with wheels and legs [18], and multicopters [16]. Our method

builds upon this research and proposes a tool for designing hybrid UAVs by mixing

and matching parts from an expert-designed collection [36, 13].

Computational design tools guide users in creating objects based on how they

should function once manufactured. Therefore, the tools need to support performance-

driven design exploration [39] or design optimization [40, 9]. Performance evaluations

are typically a bottleneck for these methods. This process is particularly challenging

for cyberphysical systems whose performance depends not only on geometric consid-

erations but also on motion planning and control. In the context of a hybrid UAV,

measuring its flight performance requires designing an adequate controller in addition

to designing its structure. Until now, the design process for hybrid UAV controllers

had to be done manually due to the complexity of system dynamics. Our paper

bridges this gap, proposing a new automatic method that can design controllers for
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a large variety of hybrid UAV designs.

2.2 Hybrid UAVs

Hybrid UAVs have demonstrated outstanding aerodynamic performance and energy

saving capabilities. However, they also bring new challenges in controller design.

A large variety of dynamic models and control algorithms have been developed to

accommodate UAVs with different wing configurations (see e.g. [12]). For example,

a simple flat-plate wing model coupled with a TVLQR controller has demonstrated

success in enabling precise control of a fixed-wing drone with fast locomotion and

varying trajectories [8]. This design supports a single flying mode and multiple

predefined trajectories, relying on online search to select the best control outputs

from the precomputed data.

Controlling a multi-mode UAV requires a complicated strategy due to the differ-

ences between flying modes, which rely on distinct flying mechanisms. A straightfor-

ward strategy is to aggregate multiple controllers with each one focused on a single

flying mode. These modes can be organized as a state transition graph [20] or a

cascading hierarchy [31, 7]. A number of intermediate modes need to be incorporated

to enable smooth transitions between different modes. A typical example of this ap-

proach is the design of a tail-sitter drone, which takes off vertically, hovers in the air

statically, and glides horizontally [27]. Such methods produce reliable control mecha-

nisms but lack applicability to different drone designs. Relatively little attention has

been paid to a universal controller that can be applied to different UAV models.

2.3 Reinforcement Learning

Deep reinforcement learning has become a prevalent tool for training continuous con-

trollers for a variety of robots to finish highly dynamic tasks in animation. Some

recent successful examples include walkers [19], humanoid robots with acrobatic or

athletic skills [30, 28, 23], robotic manipulators [14], and aerial robots [41, 42]. The
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work most related to ours is [42], which trained a flying dragon actuated by flapping

wings to follow a trajectory. Their flying robot modelled aerodynamic effects between

wings and airflow, but the method was not tested on hardware platforms.

While reinforcement learning has produced convincing results in animation, suc-

cessful demonstrations on real robots are rare due to discrepancies between simulated

and real environments. A few notable papers have managed to close this gap for

specific types of robots through domain randomization [38, 32, 3, 37], more accu-

rate modeling [6, 17], or better sensing [21]. Designing controllers for hybrid UAVs,

however, poses new challenges not addressed in the previous work—these vehicles

have a floating base, highly dynamic motion, and unsteady aerodynamic effects. Our

experiments show that existing techniques are not sufficient for training a robust

controller for a real hybrid UAV, which motivates us to propose neural network con-

trollers with new inputs and a novel integral block. Moreover, controllers in most of

the prior research worked for a specific robot design, while we present a method that

works robustly for a variety of hybrid UAVs with significantly different topology and

dynamics.

Our method is also related to [29] in that both propose neural network controllers

with time-dependent blocks to capture the mismatch between simulated and real

environments. Comparing to the LSTM network controller in their method which

uses a memory-based policy in a recurrent block, we encode the history information

in a concise integral block, which helps reduce the workload of the training process

significantly.

Our work draws inspiration from works on controlling real helicopters using re-

inforcement learning [22, 2] and learning from demonstrations [10, 1]. All the prior

work and ours show controllers on real UAVs; however, the scopes are quite different.

In the prior work, a functional controller on hardware is provided for a pilot expert

to demonstrate flight patterns, then the method either learns an accurate dynamics

model or learns an improved controller from the flight data. Our work is different in

that we design controllers directly from the inaccurate dynamics of the hybrid UAVs

without needing a real, working controller beforehand.
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Chapter 3

System Overview

In this chapter, we briefly describe the overview of our whole computational controller

design system.

As shown in Figure 3-1, we propose a computational pipeline to design the con-

troller for hybrid UAVs. Users design the geometry of a hybrid UAV by selecting

and matching parts from a component data set. This data set contains parametric

components designed by experts and composition rules that constrain how the com-

ponents can be assembled [16, 36, 18]. We built a numerical simulator to reproduce

the real experimental environment for UAVs that takes into account random sensor

noise, variances in system identification, and delay in control signals (Section 4).

At the heart of our hybrid UAV control algorithm is a novel and unified neural

network controller to support mode-free motion control (Section 5). We aim to tackle

two long-standing challenges in the state-of-the-art hybrid UAV control algorithms.

First, we want to automate the flying mode transitions for a single aircraft. To this

end, we replace all the modes and their discrete transitions, which are usually hard-

coded in a hybrid controller, with a mode-free continuous neural network. Second,

we aim to automate the transfer from a network trained in a virtual simulator to a

controller that can fly a real hybrid UAV. We formulate a new state vector as the input

of our network by incorporating an error integral term, enabling a universal solution

to eliminate the steady-state drift error that is challenging to fix even manually.

These two essential contributions, in conjunction with our aircraft simulator en-
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Simulation Flight TestShape Design FabricationController Design

Figure 3-1: In our system, users first design the geometry of a hybrid UAV (left
most). The design is then used in our realistic simulator (middle left) to compute
the corresponding neural network controller using reinforcement learning (middle).
Once the training is done, we construct the corresponding hybrid UAV based on the
geometry and controller specifications (middle right). Finally, we verify the UAV
performance in real flight tests (right).

hanced with noise perturbations (Section 4) and the reinforcement learning framework

with a novel reward function (Section 6), establish a full pipeline to automate the

processes of controller design and parameter tuning for a customized hybrid UAV.

Finally, we evaluate the efficacy of the neural network controller, state representation,

and the fully automated pipeline in numerical settings (Section 7.3). We finish the

pipeline by manufacturing the vehicle based on the geometry specifications, set its

controller code based on the manufactured vehicle, and conduct real flight experi-

ments (Section 8).

20



Chapter 4

Hybrid UAVs Simulation

In this chapter, we introduce our physics-based simulation for hybrid UAV, which

provides a high-fidelity virtual environment to later train a robust controller in it.

4.1 Dynamic Model

The state variables of the hybrid UAV system are represented by a twelve-dimensional

vector in phase space:

q = (𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓, 𝑢, 𝑣, 𝑤, 𝜔, 𝛽, 𝛾)𝑇 ∈ R12, (4.1)

which can be subdivided into four three-dimensional vectors in sequence. These four

state vectors include position x = (𝑥, 𝑦, 𝑧)𝑇 , the Euler angles (i.e. roll, pitch and yaw)

𝜑 = (𝜑, 𝜃, 𝜓)𝑇 , velocity u = (𝑢, 𝑣, 𝑤)𝑇 , and angular velocity 𝜔 = (𝜔, 𝛽, 𝛾)𝑇 .

Following the Newton’s second law, the time derivative of the system’s linear

momentum can be written as

𝑚ẍ = f𝐺 + f𝑇 + f𝐿 + f𝐷, (4.2)

with 𝑚 as mass, f𝐺 as gravity, f𝑇 as thrust, f𝐿 as wing lift and f𝐷 as wing drag.

Following Euler’s rotation equations, the time derivative of the system’s angular
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momentum can be written as

J𝜔̇ + 𝜔 × J𝜔 =
𝑁∑︁
𝑖=1

(𝜆𝑖𝑇𝑖d𝑖 + r𝑖 × 𝑇𝑖d𝑖) +
𝑀∑︁
𝑗=1

[s𝑗 × (f𝐿𝑗 + f𝐷𝑗 )], (4.3)

with inertial tensor J, propeller torque-thrust ratio 𝜆, propeller thrust 𝑇 , propeller

direction d, propeller position in body frame r, and the mass center of wing in body

frame s. The number 𝑁 and 𝑀 denote the number of propellers and wings, respec-

tively.

We follow the flat-plane model [12] to approximate the lift and drag on each wing

as:

f𝐿 = 𝜌|u|2𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼)𝑆 (4.4)

f𝐷 = 𝜌|u|2𝑠𝑖𝑛2(𝛼)𝑆 (4.5)

with 𝜌 as the air density, 𝛼 as the angle of attack, and 𝑆 as the surface area of each

wing. The aerodynamic interactions among the propellers, wings, and fuselage are

ignored in our dynamic model.

4.2 Numerical Simulation

We build a rigid-body simulator incorporating this simplified aerodynamic model

to support the controller training process in a virtual environment. Our simulator

mimics a closed feedback loop. In particular, the controller receives its input from

both the pilot and the sensor and generates the control signals which are then used

to update the rotor thrusts at each time step. The phase variables are updated with

an explicit Euler time integration using Equations 4.2 to 4.5. We also model noise

in a real feedback control loop by applying different numerical perturbations in the

system such as adding noise to sensor readings, perturbing mass and inertia, adding

noise to lift and drag, and perturbing the latency of control signals and the time step

length of the control loop.
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Chapter 5

Neural Network Controller for

Hybrid UAVs

We design a neural network controller that is mode-free and model-agnostic to au-

tomate the control parameter tuning processes for various customized UAV designs.

In particular, we incorporate an error integral term in our state vector to enable the

transfer from a computationally trained model to a real copter.

5.1 Network Architecture

The architecture of our novel neural network controller is illustrated in Figure 5-1.

We design a neural network with two fully-connected hidden layers. Each layer is

composed of 64 𝑡𝑎𝑛ℎ units. The input state s ∈ R13 is represented by a vector

with fixed dimensions and the output of the network is an 𝑁 -dimensional vector a

specifying the control signal for each rotor, with 𝑁 as the total number of rotors

equipped on the aircraft.
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64 𝑡𝑎𝑛ℎ units

64 𝑡𝑎𝑛ℎ units

𝑎1 𝑎2 … 𝑎𝑛𝑎𝑛−1

𝜙

Euler Angles 𝛼

𝜔 𝛽 𝛾 𝐷𝑢 𝐷𝑣 𝐷𝑤 𝐼𝑢 𝐼𝑣 𝐼𝑤

Angular Velocity ω Velocity and Yaw Error Error Integral

𝐼𝜓

Thrusts

Integrator

𝜃

INPUT: 

OUTPUT: 

HIDDEN LAYERS: 

𝐷𝜓

Figure 5-1: The neural network controller takes a thirteen-dimensional vector con-
sisting of angle, angular velocity, error, and its integral as input. The neural network
consists of two layers with 64 𝑡𝑎𝑛ℎ units each and a linear layer to output the final
thrust for each rotor.

5.2 State Variables

As illustrated in Figure 5-1, we define the input state vector of a hybrid UAV for our

neural network controller as:

s = (𝜑, 𝜃, 𝜔, 𝛽, 𝛾,𝐷𝑢, 𝐷𝑣, 𝐷𝑤, 𝐷𝜓, 𝐼𝑢, 𝐼𝑣, 𝐼𝑤, 𝐼𝜓)
𝑇 ∈ R13, (5.1)

where 𝐷𝑢,𝐷𝑣,𝐷𝑤 are the differences between the target and the current velocity com-

ponents in a local coordinate system, 𝐷𝜓 is the difference between the target and the
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current yaw angle, and 𝐼𝑢, 𝐼𝑣, 𝐼𝑤, 𝐼𝜓 are the convolutional integrals of 𝐷𝑢,𝐷𝑣,𝐷𝑤, and

𝐷𝜓, respectively. Notice that each component of s is a function of time 𝑡. We omit

the symbol 𝑡 in the following context for conciseness.

Compared to a standard state vector of a hybrid UAV (such as q in Equation 4.1),

we design our network input vector following these philosophies: first, we remove

position from the state because we track velocity only for UAV motion control. We

have chosen to use a velocity-tracking controller not only because it works as a unified

control representation for various types of hybrid UAVs where an on-board positioning

system is not always available, but also because it is a more intuitive framework for

the pilot. Second, we record the velocity difference instead of recording both vectors

to reduce the dimension of the space. Third, we append a four-dimensional integral

term to the end to compensate for accumulated error terms regarding both velocity

and yaw angle (see Section 5.3).

If we further define 𝜑 = (𝜑, 𝜃)𝑇 , D = (𝐷𝑢, 𝐷𝑣, 𝐷𝑤, 𝐷𝜓)
𝑇 , and I = (𝐼𝑢, 𝐼𝑣, 𝐼𝑤, 𝐼𝜓)

𝑇 ,

we can rewrite s in a blockwise manner as

s = (𝜑𝑇 ,𝜔𝑇 ,D𝑇 , I𝑇 )𝑇 , (5.2)

where now the state vector is a combination of the roll and pitch angles, the angular

velocity, an error vector consisting of linear velocity and yaw, and the time integral

of the error vector.

Finally, we give the definition of D as the difference between the target state vector

and the current state vector in a local frame specified by the current yaw angle:

D =

⎡⎣R𝑧(−𝜓) 0

0 1

⎤⎦ (

⎡⎣û
𝜓

⎤⎦−

⎡⎣u
𝜓

⎤⎦). (5.3)

The first three components of the target vector are the target velocity û and the last

component is the target yaw angle 𝜓. Both the target velocity and the target yaw

are in world space. Similarly, the current state vector is composed of the current

velocity and the current yaw angle in world space. The difference between these two
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vectors are then transformed into a local space by a homogeneous matrix specified by

a rotation with the angle of −𝜓 along the world-down axis (we use North-East-Down

coordinates for both world and body frames). We want to highlight that this rigid

transformation always aligns the motion in the forward and right directions with the

components of 𝐷𝑢 and 𝐷𝑣, which is the key to enabling an efficient learning process

for the network.

5.3 Error Integral

A distinguishing feature of our state vector compared with previous work is the in-

troduction of the temporally accumulated errors of linear velocity and yaw angle. We

will later show that this error term is the critical factor that enables effective transfer

of control policies from one aircraft configuration to another (see Section 7.3).

We define the error integral term 𝐼 as the convolution of D and a smoothing kernel

𝛿:

I(𝑡) =

∫︁ 𝑡

0

D(𝜏)𝛿(𝑡− 𝜏)𝑑𝜏, (5.4)

The discrete form of Equation 5.4 can be obtained by discretizing the time axis

with 𝑛 time steps as

I(𝑛) =
𝑛∑︁
𝑖=1

D(𝑖)𝜂𝑛−𝑖, (5.5)

in which a constant decay coefficient 𝜂 is used to incrementally attenuate the impact

of the errors in previous time steps, as well as to avoid numerical explosion after a

long time interval.

We can further obtain a recursive expression of Equation 5.5 to update I𝑛 based

on I𝑛−1:

I𝑛 = 𝜂I𝑛−1 +D𝑛. (5.6)

We use Equation 5.5 to characterize the drift between different system configura-

tions. In our network training experiments (see Section 7.3), we observed that it is

challenging to transfer the control parameters from a virtual trained example to a real
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fabricated UAV. Adding noise into the simulation model can only help marginally.

For example, a controller that works for a simulated UAV in tracking a certain target

velocity trajectory will exhibit a constant drift when tracking the same trajectory for

a real UAV with slightly different physical configurations. This constant drift issue

is named the steady-state error in control theory [5].

The key idea of this error integral is motivated by the classical PID controller.

Recall that a traditional PID controller consists of three terms: 𝑃 is proportional

to the current tracking error, 𝐼 is a integration of past error over time, and 𝐷 is

the derivative of error which is a estimate of the future trend of the system. The

integral term 𝐼 is designed to eliminate the system’s steady-state error by consistently

penalizing the accumulated drifts over time. Inspired by that, we append an error

integral term to the state input of our neural network model to mimic the behavior of

PID in minimizing the accumulated systematic error. Such drift is recorded in every

time step and penalized as an energy term in the objective function (see Section 6)

when training the neural network.
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Chapter 6

Controller Training Method:

Reinforcement Learning

6.1 Framework

We train our controller using a standard reinforcement learning framework. Our con-

trol problem is modeled by a Markov decision process problem (𝒮,𝒜,𝒫 , 𝑅, 𝑠0, 𝛾,𝐻),

where 𝒮 is the set of states, 𝒜 is the set of actions, 𝒫(𝑠′|𝑠, 𝑎) is the transition function

which is a distribution of next states 𝑠′ given the current 𝑠 and action 𝑎, 𝑅(𝑠, 𝑎) is a

scalar reward the agent can get after taking action 𝑎 from state 𝑠, 𝑠0 is the start state,

𝛾 ∈ [0, 1) is a discount factor, and 𝐻 is the maximum horizon. A policy 𝜋𝜃(𝑎|𝑠) mod-

els the probability of choosing action 𝑎 in state 𝑠. The goal is to find the parameters

𝜃 of a policy 𝜋𝜃(𝑎|𝑠) that maximizes the expected finite-horizon reward:

𝐽(𝜃) = E𝜏∼𝑝𝜃(𝜏)
[︀ 𝐻∑︁
𝑡=0

𝛾𝑡𝑅𝑡

]︀
, (6.1)

where 𝑝𝜃(𝜏) = 𝑝(𝑠0)
∏︀𝐻−1

𝑡=0 𝒫(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡) is the probability distribution over all

trajectories 𝜏 = (𝑠0, 𝑎0, ..., 𝑠𝐻 , 𝑎𝐻), and 𝑝(𝑠0) is the initial state distribution.

In our work, the state 𝑠 is a 13 dimensional vector defined in Equation 5.1, and

the action 𝑎 consists of 𝑁 values representing the thrust of each rotor. The policy 𝜋
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is our neural network controller. We use Proximal Policy Optimization [35] (PPO),

the state-of-the-art policy gradient method, to train the controller.

6.2 Reward

Our reinforcement learning reward 𝑅 at each step 𝑡 consists of five terms – the ve-

locity tracking error, energy efficiency, flight stability, error integral, and orientation.

The philosophy of this reward function is to enable the UAV to match a prescribed

trajectory in the velocity space and meanwhile to optimize other objectives of motion.

We give the definition of the reward function for the current time instant as:

𝑅(s, a) = 𝑑− 𝑤𝑣𝑐𝑣(s)− 𝑤𝑎𝑐𝑎(a)− 𝑤𝜔𝑐𝜔(s)− 𝑤𝐼𝑐𝐼(s)− 𝑤𝜓𝑐𝜓(s). (6.2)

In Equation 6.2, 𝑑 is a constant alive bonus, 𝑐𝑣 is the velocity cost, 𝑐𝑎 is the action

cost, 𝑐𝜔 is the stability cost, 𝑐𝐼 is the integral cost, and 𝑐𝜓 is the orientation cost, and

𝑤𝑣, 𝑤𝑎, 𝑤𝜔, 𝑤𝐼 , 𝑤𝜓 are their corresponding weights. The role of the alive bonus 𝑑 is

to keep the controller alive as long as possible by providing a positive reward at each

time step.

The need for the first three terms stems directly from the definition of a velocity-

tracking controller for hybrid UAVs. The velocity cost 𝑐𝑣 penalizes the deviation of

the current velocity from the target velocity as 𝑐𝑣(s) = ‖𝑣𝑡 − 𝑣‖22. The action cost

𝑐𝑎(a) aims to maximize the leverage of the wing lift forces by penalizing the thrust

output: 𝑐𝑎(a) = ‖a‖22 (see the usage of the wing lift in Figure 8-4). The stability cost

𝑐𝜔(s) prevents the jittering motion by minimizing angular velocity: 𝑐𝜔(s) = ‖𝜔‖22.

The fourth term, the integral cost 𝑐𝐼 , attempts to zero out the steady state error

by discouraging large integral error: 𝑐𝐼(s) = ‖𝐼2𝑢 + 𝐼2𝑣 + 𝐼2𝑤 + 𝐼2𝜓‖22. As previously

discussed, this term is essential for bridging the reality gap.

Finally, the orientation cost 𝑐𝜓 = 𝐷2
𝜓 encourages the controller to fly along the

desired orientation as straight as possible by penalizing large 𝐷𝜓. As our velocity

is defined in a re-oriented coordinate system, a UAV that travels along an arbitrary
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curve with its heading consistent with the tangent direction and its velocity being of

the same magnitude as 𝑣 also has near-zero velocity cost.

The term 𝑐𝜓 takes the yaw angle 𝜓 at each time step into account to penalize those

undesired turning motions. As the control of a UAV is affected not by the actual yaw

value but by the yaw error, we always set 𝜓 to be zero during training. We show the

ablation test for the orientation cost in Table 7.4.
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Chapter 7

Experiment and Evaluation in

Simulation

In this chapter, we provide the details about the models for evaluation, training spec-

ifications and the evaluation of our algorithm in simulation. We train our controller

for five hybrid UAV models in a physics simulator enhanced by a set of perturbation

terms. We report the implementation details for the training process in Section 7.2.

We evaluate our controller in Section 7.3 by conducting a series of ablation tests to

demonstrate the efficacy of each reward term.

7.1 Hybrid UAV Models

To verify that our method is general for different UAV configurations, we developed

a CAD interface within a parametric CAD tool [26] to design a variety of different

models. We designed a number of subcomponents such as wings, fuselages, and

propeller mounts. We define a handful of parameters for each components that control

shape and size variations. Users can create new designs by mixing, matching and

manipulating parameters of the components. Once the design is finished, system

identification (Table 7.1) is measured and computed based on the assembly of its

specific components. The same numbers are used in training and simulation. We

created the following virtual hybrid UAV models (Figure 7-1) to test the algorithm,
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model quad-plane tail-sitter x-wing
mass 1.779 1.108 1.532

diagonal inertia x 0.194 0.13 0.184
diagonal inertia y 0.064 0.025 0.191
diagonal inertia z 0.253 0.149 0.336

wingspan 1.38 1.43 1.51
max thrust 7 7 7

Table 7.1: System identifications of the hybrid UAVs. Numbers are in SI units.

which we briefly describe below.

Figure 7-1: Four hybrid UAV models used in our training and evaluation process.
Note that their dynamics are quite different, making it a non-trivial task to design a
control scheme that works for all of them.

Quad-plane Our quad-plane is modeled based on the corresponding real plane we

built. We use the system identification data for its physical parameters in simulation.

The four vertical rotors are primarily used to cancel out gravity, and the front rotor

is the major source of forward propulsion. For simplicity, we ignore the influence of

the propellers on the aerodynamic models of the wings.

Tail-sitter The virtual tail-sitter model is equipped with a flat wing and two pairs

of rotors. To enter the plane mode, the tail-sitter is tilted forward to allow the wings

to generate lift. This transition is challenging because the UAV needs to change its

pose aggressively in a timely fashion: as the tail-sitter leans forward, the vertical net
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thrust quickly decays while the wings may yet not be ready to generate enough lift to

compensate. This can easily cause the UAV to lose altitude if the controller is slow

to respond.

X-wing The X-wing model is a variant of the aforementioned tail-sitter, and there-

fore brings similar challenges when transitioning from hovering to gliding, even in

simulation. This UAV consists of two orthogonal pairs of wings and four rotors at

the end of each wing. Like a classic quadcopter, the design is symmetric around the

axis of the fuselage, giving it good performance in copter mode.

Double-wing This example is another variant of a tail-sitter but with two pairs of

parallel wings. We compute the lift and drag of each wing separately, assuming no

interference in between. Rotors are evenly distributed on both sides and are connected

by two rods orthogonal to the wings. Two fuselages are modeled between each pair

of wings. Transitioning to the plane mode requires the fuselage to lean forward until

the wings start to generate sufficient lift.

Asymmetric tail-sitter We design this non-traditional hybrid UAV models to test

the robustness of our controller algorithm. Essentially, this is the same tail-sitter as

the second example with randomly translated (within 0.1m) and rotated (up to 15

degrees) rotors.

Note that the dynamics of these models is significantly different: for example, in

order to make use of the wings when advancing, the quad-plane model needs to simply

turn on the front rotor and mildly adjust the other four rotors, while the tail-sitter

model has to lean forward drastically so that the wings become horizontal.

7.2 Training

We implemented our algorithm in Python and C++ using the PPO algorithm in

OpenAI Baselines [15].At the beginning of each trajectory, a target velocity and the

initial state are randomly generated, and the UAV attempts to track this velocity
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in a simulator at 100Hz. Rewards are collected at each time step. The simulation

is terminated after a fixed duration (20s in our experiments) or the UAV cannot

maintain a stable flying status, after which the simulation restarts with a new target

velocity and initial state. The epoch terminates when the total number of simulated

time steps reaches 4096. We ran PPO for 30 million time steps using the same

hyperparmeters in Table 7.2 for all models. Training each model took 70 minutes

with 32 parallel MPI calls on a workstation of 112 CPU cores and 500G memory, and

convergence was usually achieved well before the training ended (Figure 7-2).

During training, we added sensor noise, signal latency, and perturbed dynamic

models to improve the robustness of the controller as suggested in previous work [37,

29]. We summarized their specifications in Table 7.3. In terms of perturbing the

dynamic model, we further constrained the change of thrust at each time step to be

below 0.4𝑁 . As a result, the system had to learn to avoid generating unreasonably

high frequency control signals.
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Figure 7-2: The training progress on 5 hybrid UAV models using 30 million timesteps
in 70 minutes.

7.3 Evaluation

We conducted ablation study on all our five virtual models (Figure 7-1) in simulation

to validate the necessity of the new components we introduced in the training pipeline.

The ablation test shows that our unique reward definition and the integral block are
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name value name value
timesteps_per_actorbatch 4096 schedule linear

clip_param 0.2 𝜂 0.999
entcoeff 0 𝑑 4

optim_epochs 10 𝑤𝑣 0.5
optim_stepsize 3e-4 𝑤𝑎 2e-3
optim_batchsize 64 𝑤𝜔 5e-2

gamma 0.995 𝑤𝐼 6e-2
lam 0.95 𝑤𝜓 1.5

adam_epsilon 1e-5

Table 7.2: Hyperparameters used in training all models. Please refer to [15], Section 5,
and Section 6 for the meaning of each parameter.

category noise distribution parameter range
sensor noise Gaussian |𝜇| ≤ 0.2, 0.005 ≤ 𝜎 ≤ 0.05

mass uniform ≤ 5%
perturbation

inertia uniform ≤ 40%
perturbation
lift and drag uniform 10% to 20%
signal delay Gaussian 𝜇 = 0.04, 𝜎 = 0.01
time step Gaussian 𝜇 = 0.01, 𝜎 = 0.005

delay

Table 7.3: A summary of noise we added in the training process. All magnitudes use
SI units. Percentage numbers mean the noise is relative.

the core reasons for our success in narrowing the reality gap.

Evaluation Metrics To evaluate the performance of a given controller in simula-

tion, we consider the following metrics: first, we randomly generated a target velocity

and simulated the UAV for up to 20s at 400Hz, the control frequency on real UAV

platforms. The simulation stopped early once the controller was incapable of main-

taining a steady flight. We report the velocity tracking error and the survival time

averaged in 50 repeated experiments. We refer to this as the RandVel task. Sec-

ond, we designed two velocity trajectories by concatenating multiple one-dimensional

constant speed tracking tasks: advancing, backing, ascending, descending, and side

sliding at a constant rate. The UAV was instructed to finish the selected tasks in or-

der. We refer to them as the VelTraj 1 and VelTraj 2 tasks respectively. In VelTraj
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1, we designed a 50s velocity trajectory and commanded the UAV first to climb up

at a constant rate, followed by advancing then landing. In VelTraj 2, the task is

more complex, including advancing and back, side sliding and back, descending and

ascending, and finally advancing at a high speed. We repeated the experiment 25

times for each task and report the average. We conducted all tasks in our simulation

with noise modelling.

In the remaining section, we report the ablation study on the following components

we introduced in the training pipeline: (1) the orientation cost in rewards, (2) the

sensor noise, signal latency, and the dynamics noise in simulation, (3) the integral

block in the neural network controller, and (4) the usage of velocity difference as

the input to the controller. We remove each component from the pipeline, retrain

the controller using the same hyperparameters, and analyze the performance of the

controller using the evaluation metrics above. This gives us 5 training environments

to compare in total. We report the performance in these tasks in Table 7.4.

The Orientation Cost As can be seen from Column 3 and 4 of Table 7.4, penal-

izing large orientation error lengthens the survival time in general. Among all the 15

experiments, including the orientation cost in rewards improved the flight time in 12

of them. Specifically, it brought significant performance boost for VelTraj 2, which

is the most complex task among the three. Moreover, by comparing Column 4 and

5 with Column 6 and 7, we can see the orientation cost and the noise are the two

most indispensable factors for increasing the flight time. Based on these observations,

we conclude that by discouraging large heading angles, it is easier for the UAV to

maintain a steady flight.

Compared with its influence on the flight time, the improvement on velocity track-

ing is less notable, part of the reason being that the orientation cost does not consist

of any velocity quantities.

Sensor Noise, Latency, and Perturbation on Dynamics Column 5 of Ta-

ble 7.4 summarizes the performance of the controller after disabling all types of noise
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mentioned above. Together with Column 3, Column 5 shows that disabling noise in

training has very strong negative effects on both metrics. In fact, after excluding

noise, the performance became the worst in 10 and 5 out of the 15 experiments on

flight time and velocity tracking error respectively.

Another interesting observation is that disabling noise is the least effective on

model 1 among all models, especially for the flight time. Noting that the other three

models are all variants of tail-sitters, this implies the quad-plane dynamic model is

more resistant to noise. This is not surprising: a tail-sitter needs to change its pitch

aggressively to switch between plane and copter modes, and therefore even a moderate

perturbation may easily flip it over.

Integral Block Quantitative results on the performance of the integral block are

reported in Column 6 of Table 7.4. Comparing Column 6 with Column 3, we observe

that adding the integral block suppressed the velocity residual moderately in 12 out

of the 15 experiments. This is consistent with the behavior of an integral controller

in the classic PID control theory, i.e., it can zero out the steady-state error given

enough time. The velocity tracking errors in our experiments did not end up being

zero because of the noisy environment as well as the fact that we were chasing a

changeable target velocity in VelTraj tasks.

We also notice the improvement of the survival time after introducing the integral

block, but it is less significant. As a result, it is a good complement to the aforemen-

tioned orientation cost, which increases the flight time by a large margin but is less

effective in reducing velocity tracking errors.

The combination of the orientation cost, the integral block, and the noise and

latency model is the core reason for successfully bridging the simulation to reality

gap when we transfer the trained controller to hardware, as shown in our video.

Furthermore, the performance drop between Column3 and Column 4 to 6 indicates

that all three components are indispensable.
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Velocity Inputs In this experiment, we fed the desired and actual velocity as op-

posed to their difference into the neural network controller and report the results

in Column 7 of Table 7.4. Among all the 30 experiments, the resulting controller

outperformed ours in 9 experiments and was dominated by ours in fifteen, with the

remaining six being the same. This modification to the velocity inputs is essentially

nothing but a simple arithmetic operation. Given that our neural network has two

hidden layers of 64 neurons, the network may easily absorb this operation into its

control policy, which explains why this modification results in a controller with com-

parable performance to ours. Nevertheless, we chose to use our original design in all

experiments because it led to a more compact input representation.
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metric model ours w/o 𝑐𝜓 w/o noise w/o integral w/o vel diff
RandVel 1 0.35 0.45 0.49 0.42 0.51
velocity 2 0.44 0.40 0.39 0.40 0.37
tracking 3 0.45 0.51 0.51 0.52 0.51

error (m/s) 4 0.41 0.57 0.50 0.57 0.43
5 0.34 1.14 0.49 0.56 0.46

RandVel 1 20.00 19.98 20.00 19.61 19.98
survival 2 20.00 20.00 11.67 19.62 19.95
time (s) 3 20.00 19.90 14.25 20.00 20.00

(max: 20s) 4 17.71 19.24 13.13 19.26 20.00
5 20.00 14.64 11.66 19.66 20.00

VelTraj 1 1 0.47 0.59 0.64 0.55 0.61
velocity 2 0.57 0.73 0.81 0.61 0.53
tracking 3 0.73 0.69 0.96 0.78 0.66

error (m/s) 4 0.70 0.84 0.93 0.89 0.63
5 0.62 0.60 0.57 0.58 0.63

VelTraj 1 1 50.00 50.00 49.07 50.00 50.00
survival 2 50.00 47.54 10.55 50.00 47.35
time (s) 3 50.00 14.76 10.44 50.00 50.00

(max: 50s) 4 40.66 14.12 10.90 34.43 50.00
5 44.83 10.73 10.60 43.81 50.00

VelTraj 2 1 0.39 0.95 0.56 0.65 0.58
velocity 2 0.43 0.59 0.45 0.41 0.45
tracking 3 0.53 0.66 0.57 0.69 0.55

error (m/s) 4 0.53 0.53 0.49 0.60 0.67
5 0.44 0.61 0.48 0.61 0.52

VelTraj 2 1 100.00 39.71 93.33 100.00 100.00
survival 2 100.00 71.20 69.63 100.00 97.69
time (s) 3 100.00 65.02 70.80 73.78 100.00

(max: 100s) 4 89.05 47.87 65.30 76.87 97.70
5 92.57 63.61 70.60 91.25 100.00

Table 7.4: The average velocity tracking error (smaller is better) and survival time
(larger is better) of different controllers in the task of tracking random velocities and
two trajectories. Bold number is the best in each row. The meaning of each column is
as follows: ours: enabling all features; w/o 𝑐𝜓: training without the orientation cost
in the reward function; w/o noise: training without sensor noise, signal latency, or
perturbation in the dynamic model; w/o integral: training without the integral block
from the neural network controller and the integral term in the reward function; w/o
vel diff: using the target and sensed velocities instead of their difference as the input
to the neural network in training.
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Chapter 8

Fabrication and Flight Tests

We fabricate three UAVs using the design models (including the quad-plane, the tail-

sitter, and the x-wing, see Figure 8-1) discussed in the previous section. First, we will

discuss the fabrication process in Section 8.1, and then we will present a set of flying

tests and log analyses in Section 8.2 to demonstrate the aerodynamic performance of

our hybrid UAVs.

8.1 Fabrication

After the shape design is fixed and the controller is finalized in simulation, we gener-

ate a corresponding fabrication plan. We fabricated three UAV models to verify our

trained controller in real flight. For the hybrid UAVs, fabrication processes include

3D printing, laser cutting and manual assembly. Structural stiffness and weight opti-

mization are paramount to ensure the flight performance of the hybrid UAV. During

the materials selection process, we optimize the design to limit weight and maximize

structural stiffness. To ensure structural stiffness, each hybrid UAV has an internal

chassis constructed from carbon fiber tubing and fiberglass reinforced 3D printed ny-

lon connectors. To construct the wings, we used two different architectures: one built

from laser cut foam, and one built from a balsa wood frame and heat shrink plastic

film. Laser cut foam wing are more durable, while the heat shrunk wings allow for

more effective lift generation. The designer can choose from one of these techniques
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Figure 8-1: The fabricated hybrid UAV models. From left to right: quad-plane (model
1), tail-sitter (model 2), x-wing (model 3).

depending on preferred performance.

The flight controller runs our modified version of the open source software Ar-

duCopter [4] on a Pixhawk flight computer hardware [25]. The hybrid UAVs’ pro-

pellers are driven by brushless electric motors.

We briefly describe the three fabricated UAVs below:

Model 1: Quad-plane Our custom-built quad-plane (Figure 8-1 left) is based

on a classic fixed-wing plane model plus overlapping the rotor configuration of a

standard quadcopter. We first built the fuselage, the wing, and the tail and assembled

them into a fixed-wing model. We then added four rotors on both sides of the wing

symmetrically. The wings and the tail did not have articulated control surfaces,

so they generated lift and drag passively. The attitude of the UAV was primarily

controlled by the net effects of all five rotors.

Model 2: Tail-sitter The tail-sitter model (Figure 8-1 middle) is a mixture of

a delta-wing plane and a quadcopter. We first assembled the fuselage and the pair

of wings, after which we placed two rods with rotors on both ends in a position

perpendicular to the wings and equally distant to the body. We added two wingtips

so that the tail-sitter could take off from a vertical position on land.

Model 3: X-wing The x-wing plane (Figure 8-1 right) consists of two pairs of

wings perpendicular to each other. All wings were attached to the four sides of the

central fuselage. We placed four rotors at the end of each wing and intentionally lifted

them a little higher to reduce the interference between propellers and wings.
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8.2 Flight Tests

During the flight test, the UAV first loitered for a few seconds to show that the con-

troller can stabilize the body in the air, which is the key feature of a multicopter. We

then instructed the UAV to advance directly from the loitering state, exhibiting the

aerodynamic behavior of a fixed-wing plane. In contrast to other hybrid UAV con-

trollers, which typically execute a manually designed mode transition from hovering

to gliding, our neural network controller does not store any modes and can switch

modes implicitly by simply updating target velocities. The UAV then pulled itself

back to loiter and land. To demonstrate the generality of our approach, we perform

the same flight tasks on three hybrid UAVs which have dramatically different dynam-

ics. We highlight the transition between hovering and advancing for all three models

in Figure 8-2 and Figure 8-3. Note that for each model, the same controller was used

both in simulation and in the flight video. We ask readers to refer to our video for

the full flight tests.

Our flight logs (Figure 8-4) recorded the output thrust of each rotor over time

during the flight, labeled by different colored curves. We computed the vertical com-

ponent of the net thrust and plotted it as a gray curve in the log. To assist the

analysis, we also plotted the net external force excluding gravity in the vertical di-

rection in orange, which we estimated from the motion data. Assuming the UAV

maintained its altitude all the time during the flight, we can use the margin between

the orange and gray curves to estimate the lift from the wings. Finally, we highlighted

the hovering, transition, and advancing using different background colors.

Model 1: Quad-plane Traditionally, the front rotor of the quad-plane is solely

used in the plane flight mode. Our flight log (Figure 8-4, top) shows that it also

contributed to resisting gravity when the UAV was loitering. This novel usage of

the front rotor came from the fact that the neural network controller was trained to

intentionally fuse the copter and plane flight modes. We also notice that the wings

started to provide lift as soon as the UAV entered its advancing mode (as expected),

as the net thrust curve consistently lies below the reference weight line.
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Model 2: Tail-sitter During the loitering mode, the tail-sitter behaved quite sta-

bly as indicated by the almost constant output thrust from each rotor (Figure 8-4,

middle). The transition from loitering to advancing is significantly harder than the

quad-plane because it needs to lean forward by a large amount before the wings be-

come active. Still, our neural network controller was capable of transitioning smoothly

from loitering to advancing. From the flight log, we can see that both the rotors and

wings were active when the vehicle was cruising afterwards, making the flight more

efficient than a pure multicopter.

Model 3: X-wing The X-wing shares quite a few similarities with the previous tail-

sitter model, e.g., steady loitering mode and challenging transition. After entering

the cruising mode, the margin between the vertical net force and the vertical net

thrust is particularly large because it has the longest wingspan of the three models,

making it possible to generate powerful lift.
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Figure 8-2: Flight tests for X-Wing. The fabricated UAV is shown on the left, and
the real flight tests and virtual flight tests are shown on the right.

Figure 8-3: The quad-plane (model 1) and the tail-sitter (model 2) are transitioning
from loitering to gliding (row 1 and 3). Their corresponding flight simulation are
shown below (row 2 and 4).
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Figure 8-4: The flight logs of the quad-plane (top), tail-sitter (middle) and X-wing
(bottom). The shaded background represents the time interval when the UAV was
loitering (green), transitioning (red), and starting to advance (yellow). The colored
curves other than the orange ones correspond to the thrust from each rotor. The gray
curve shows the vertical component of the net thrusts, and the orange curve presents
the estimated net external force excluding gravity of the UAV. The difference between
the orange and gray lines indicates the lift the wings contributed.
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Chapter 9

Discussion and Limitations

In this chapter, we make the conclusion of our work and discuss about the limitations

and potential works.

The simulation experiments show that our model-agnostic method is able to con-

trol widely different configurations of hybrid UAVs and our mode-free controller en-

ables flight in all six directions from an input velocity. The ablation tests show that

there is a strong motivation for the components we introduce in the pipeline. Most

importantly, borrowed from the classic PID control theory, the integral block decreases

the velocity tracking error. Finally, our flight tests show how our proposed solution

can bridge the reality gap.

Our method still leaves room for further developments. First, the analytic flat-

plane model does not take into account complex aerodynamic effects between the

airflow and the fuselage. We have chosen this approach because it allows real-time

simulation in the training process. While such model is qualitatively good enough for

building real fixed-wing plane models [8], it would be interesting to investigate if a

more accurate simulation could lead to better results in the case of hybrid UAVs.

Second, our proposed velocity tracking controller has no direct way to measure

position, and therefore the deviation between a desired flight path and the actual

trajectory of the hybrid UAV could be large. In the future, it would be valuable to

add position sensors and design a trajectory tracking controller.

Third, it would be interesting to increase the maneuverability of the vehicles.
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While the UAVs can efficiently change pitch in order to maximize velocity, changes

in the heading direction are slower because our method trains the copter to advance

by keeping yaw at zero. Further training would be necessary to allow sharp turns.

Fourth, we restricted the scope of the problem to wings as passive actuators.

Future work should investigate models with control surfaces (e.g., rudders) on the

wings and tails.

Finally, it would be interesting to explore the parametric component database to

develop algorithms for automatic design optimization based on flying capabilities, as

in previous work [16]. In theory, one could couple the proposed automatic method

for computing controllers with simulation to measure flight performance for a given

input geometry. While this would make performance evaluation quite slow, it could

be coupled with pre-computation techniques for interactive design exploration [36].

A more interesting approach would be to develop concurrent optimization methods

directly in the reinforcement learning pipeline. While some approaches have been

suggested [33], further study is still required in this direction.
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