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1. Proof of Theorem 1

Let R, : R* — R? be a family of rigid motions of the form Ry (x) :=
O:x + pr where Oy € SO(3) is an orthogonal matrix with unit de-
terminant and p; € R? is a vector; neither of these depend on x.
The Eulerian velocity vector field of this motion is an aﬁ‘ine vec-
tor field of the form V;(x) := A;x + b, where A; := do’ O/ and

b = % — do’ (’), p:. Moreover, by differentiating the identity

O, O = Id, we find that A; is antisymmetric. The Jacobian ma-
trix of V; is thus constant and equal to A;, therefore satisfying
DV, +[DV;]T =0.

For the converse, let 9;V/ denote the partial derivatives of the
components of V. Then the Killing equation implies that oVl =
32V2 = 83V3 =0as well as agvl +31V2 = 83V' +81V3 = 82V3 +
83V2 = 0. By taking a second derivative, observe that

0=0, (azvl +81V2) = azaQV] +04 (azvz)

so that 9,0,V! = 0 since 9,V? = 0. In the same way, we find
9393V = 0. Finally, observe that

0=03(0,V"' +0,V?) +0,(33V" +0,V°)
= 28283\/1 +04 (82V3 + 83V2)

so that 9,93V ! since 9,V> +93V2 = 0. Thus we have learned that
V! is an affine function of x*> and x* alone. Similarly, we find that
V2 is an affine function of x! and x3, and V7 is an affine function of
x! and £2. Writing yl.= a12x2 +a13x3 + ¢, and so on, we can now
substitute this form for V into the Killing equation to find additional
constraints on the a- and c-coefficients. In this way, we find that
the c-coefficients are unconstrained and the a-coefficients are anti-
symmetric. This establishes the first part of the lemma

Next, we study the mapping x — O;(x) which solves the ODE
(2) with a family V; satisfying the Killing equation (which we know
exists thanks to the assumed smoothness of V; in ). To show that O;
is a rigid motion, we show that the derivative matrix DO, preserves
the inner products of vectors as follows. If a,b € R, then

) w9 (90F 0K\ ;
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by the Killing equation. Thus DO;a - DO;b is constant. O

2. Derivation of PDE Form

To derive the first-order optimality conditions satisfied by the min-
imizer of (5), we form the Lagrangian
> ey

)= [P+ [ (@JFVF,

where A : U — R is the Lagrange multiplier function. Since the
minimizing pair (V,A) is a critical point of £, then for any vari-
ation 8V of V we have %C(V + €0V, k)‘ e—o = 0. Expanding this
expression provides the weak form of the optimality conditions:

o [ (1ir

If we then integrate by parts, we find

V)[P(8V)]T) +AVE -8V> . )

o:/M<P P(v)HvE).5v+/au1vau-1a(v)-5v, 3)

where P* : Symmetric matrix fields — vector fields is the adjoint
operator of P. Also, Ny, is the unit normal vector of dl{. Since
Equation (3) is true for all variations 8V, we conclude that the inte-
grands appearing there must vanish.

3. Proof of Theorem 4

If Q; = R;(Q) for some rigid motion R; its level set function satis-
fies [; ;= FoR,” ! Where F is a level set function for the reference
geometry. As we know, the Eulerian velocity V;(x) := % oR ! (x)
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is a Killing vector ﬁeld satisfying P(V;) = 0. Let V; have compo-
nents [V;(x)]' = [Rt] Kx/. Then,

iaFoR,(x) OF o R¢(x)
LI =55 =

oF k d[Rt}k‘ i
:;@om (R,],Z R,]j dt/)x/.

The term in brackets vanishes because the linear part of R; is an or-
thogonal matrix. Thus V satisfies the constraints as well. Therefore
(Vi,A) = (0,0) is the solution of the PDE.

4. Discrete Optimality Conditions

We obtain the discrete optimality equations by substituting the re-
duced forms of V and 8V into (2). That is,

V= Z Z Z Ajs! Zjss! +Wls)§zes

i s=1s'=

4)
= szt,/&je, Vjand Vi =1,2.
=1

Since the variation V'’ above is orthogonal to VF; by construction,
the Lagrange multiplier term in (2) vanishes, leaving

0= / Te(P(V)[P(V')]T)

o&; @
= 22 Z 85\/81‘14 +55’8“V V”Zﬂt/ Z/ Bf" aii ®)

i SIMV—

after expanding in terms of the partial derivatives of the compo-
nents of V and V’. Here §; ;j is the Kronecker delta v;; are the com-
ponents of V in the expansions (5).

To evaluate further we need a formula for VE&;, which is piece-
wise constant since &; is piecewise linear. Let T := [x;,y1,y2,y3] be
a tetrahedron containing x; and let n(i,T) be the inward-pointing
unit vector normal to the face [y1,y2,y3] and let A(i,T) be its area.
Then a straightforward geometric calculation shows that

AGT)
=— T).
Ir wvoiry "7
The product of the partial derivatives in (5) is supported on 7T if and
only if x;, x; are both vertices of T, so for each i

9 0 1 (A(i,T))zn (i
;/ axt axv_9T§(i) Voi(ry "D @), (6)

VE;

where R(i) is the one-ring of tetrahedra containing x;; and for each
pair i # j such that [x;,x;] is an edge

o 1w AGDAGT) o
;/T@w = §T€§ivj>wnu(laT)nv(]vT)v (6b)

where R(i, j) is the one-ring of tetrahedra containing [x;,x;]. We
now substitute these expressions into (5) and find
3
0= Z Z Kijxt(ais’zisx’ +Wis)zjtt/ vV j and Vi = L2, (1)
i st=1

where K;j5; are the coefficients of the stiffness matrix.
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Figure 1: Solver execution time and time slice construction time as a function of bandwidth size with respect to a fixed background grid
resolution (equal to 60 x 60 x 60) in 3D. Units are fractions of the diameter of the background grid. We collect data from the ellipse moving
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Figure 2: Solver execution time and time slice construction time as a function of grid resolution using a fixed-size narrow band (equal to
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0.25) in 3D. We collect data from the ellipse moving according to four different types of motion.
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